
Testing non-testable programs using association rules
Antonia Bertolino

ISTI – CNR
Pisa, Italy

antonia.bertolino@isti.cnr.it

Emilio Cruciani
University of Salzburg

Salzburg, Austria
emilio.cruciani@sbg.ac.at

Breno Miranda
Federal University of Pernambuco

Recife, Brazil
bafm@cin.ufpe.br

Roberto Verdecchia
Vrije Universiteit Amsterdam
Amsterdam, Netherlands

r.verdecchia@vu.nl

ABSTRACT
We propose a novel scalable approach for testing non-testable

programs denoted as ARMED testing. The approach leverages effi-
cient Association Rules Mining algorithms to determine relevant
implication relations among features and actions observed while
the system is in operation. These relations are used as the spec-
ification of positive and negative tests, allowing for identifying
plausible or suspicious behaviors: for those cases when oracles are
inherently unknownable, such as in social testing, ARMED testing
introduces the novel concept of testing for plausibility. To illustrate
the approach we walk-through an application example.

KEYWORDS
testing, non-testable systems, association rules, plausibility testing
ACM Reference Format:
Antonia Bertolino, Emilio Cruciani, Breno Miranda, and Roberto Verdecchia.
2022. Testing non-testable programs using association rules. In Proceedings
of AST ’22: 3rd ACM/IEEE International Conference on Automation of Software
Test (AST ’22). ACM, New York, NY, USA, 5 pages.

1 INTRODUCTION
Given a program 𝑃 to be tested, a test case 𝑡 for 𝑃 can be described

as a pair (𝑥, 𝑒𝑥𝑝 (𝑥)), where 𝑥 is a test input and 𝑒𝑥𝑝 (𝑥) is the
expected output of 𝑃 for the given input 𝑥 . Let us assume that by
feeding the program 𝑃 with input 𝑥 , we get an output 𝑃 (𝑥) = 𝑜 ; we
say that test case 𝑡 passes if 𝑜 = 𝑒𝑥𝑝 (𝑥), i.e., if the actual output 𝑜
matches the expected output for 𝑥 , otherwise we say that 𝑡 fails.
The function 𝑒𝑥𝑝 (𝑥) is referred to as the test oracle, which is a
mechanism able to decide whether the actual output is equal (or
“sufficiently close” for partial oracles) to the expected one.

Already in 1982,Weyuker [20] drew software engineers attention
to the problem of non-testable programs, i.e., programs for which a
test oracle cannot be determined with a “reasonable” effort or does
not even exist. This problem is exacerbated in modern huge and
dynamic software intensive systems, such as autonomous reactive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AST ’22, May 21-22, 2022, Pittsburg, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

systems, cyber-physical systems, and social networks, that ask not
only for more scalable and adaptive test approaches, but even for
a radical rethinking of what software testing means. One eminent
example is WW, the cyber-cyber simulation of the Facebook plat-
forms [4]: at ICSE 2021 Facebook launched a Call-for-Proposal of
new ideas to address the challenges of testing agent-based user in-
teraction simulation, including novel approaches to “social testing”:
with this term they refer to a new testing level for social media at
which properties emerging from more users interacting over the
platform are validated. As elegantly noted by Ahlgren et al. with
reference to such simulation systems, they constitute the “epitome”
of non-testable programs, because a test oracle is not unknown but
“inherently unknowable” [3].

Our ongoing work answers that Call-for-Proposal by introducing
a novel concept of testing. When testing highly non-deterministic
and large-scale systems for which an oracle is unknowable, the
traditional meaning of a test is lost, as we cannot decide whether
a test passes or fails. Therefore, upon observing a test execution
𝑃 (𝑥) = 𝑜 , we will decree whether the observed output 𝑜 is plausible
or otherwise suspicious by comparing it with a prediction 𝑒𝑥𝑝 (𝑥)
of the test oracle, which is unknowable. Such a prediction 𝑒𝑥𝑝 (𝑥) is
based on how the system has behaved so far and is used to establish
the “plausibility” of the output 𝑜 . More precisely, we propose to
leverage Association Rules Mining (ARM) algorithms [1] for this
purpose and introduce below the novel approach of ARM-basED
(ARMED, for short) testing.

As better described in the following section, an Association Rule
(AR) expresses an implication such as 𝐴 ⇒ 𝐵, i.e., if we observe
𝐴, then it is likely that 𝐵 will also be observed. The very idea
of ARMED testing is simple: we mine relevant ARs by observing
features and actions of a system while in operation; then a mined
AR can be used as a test case specification to test the follow-up
behavior of the same system. The left part of the AR is taken as
the test input and the right part (the implication) as the test oracle.
In this way ARMED testing supports automated mining not only
of the test oracle, but also of the test input. Clearly, such a test
cannot decide whether the observed test output is “correct”, but can
only predicate whether what we observe is credible after having
monitored the system for a while: for this reason we denote our
approach as testing for plausibility.

Interestingly, ARs can postulate not only that an element/output
is positively associated with a set of elements (or, for us, a test input),
but also that an element/output is not likely to be observed given

AST ’22, May 21-22, 2022, Pittsburg, PA, USA Antonia Bertolino, Emilio Cruciani, Breno Miranda, and Roberto Verdecchia

a test input. Thus plausible testing can cover not only “positive”
tests, i.e., we expect to see 𝑜 , but also “negative” (or robustness)
tests: after an input 𝑥 , output 𝑜 should not occur.

It is important to note that, for ensuring that the concept of
ARMED testing can find application to practical systems, we need
to allow the concept of plausibility to evolve, i.e., the ARs used for
plausibility testing are not mined once and for all, but have to be
periodically updated according to some policy and depending on
the domain.

2 BACKGROUND
Let 𝐼 = {𝑖1, . . . , 𝑖𝑛} be a set of 𝑛 items and let 𝐷 = {𝑑1, . . . , 𝑑𝑚}

be a database of𝑚 observations such that each 𝑑 𝑗 ⊆ 𝐼 . An AR is
an implication of the form 𝐴 ⇒ 𝐵, where the itemsets 𝐴, 𝐵 ⊆ 𝐼 and
𝐴 ∩ 𝐵 = ∅; 𝐴 is called the antecedent and 𝐵 the consequent of the
rule. ARM algorithms learn from 𝐷 a set of rules that can tell with
some confidence if, having observed 𝐴, it is likely that also 𝐵 is
observed. However, the number of possible ARs is exponential in 𝑛
and usually most of them are not significant in practical scenarios.
The typical way to mine interesting ARs efficiently comprises two
steps: 1) mining frequent itemsets, i.e., finding all subsets of 𝐼 that
appear frequently in 𝐷 ; 2) generating interesting ARs, i.e., using
the frequent itemsets to generate significant rules.

2.1 Mining frequent itemsets
Given a database of observations 𝐷 as input and a frequency

threshold𝜎 ∈ [0, 1], mining frequent itemsets from𝐷 means finding
all itemsets (i.e., nonempty subsets of 𝐼), as well as their frequency,
that appear in at least a fraction 𝜎 of𝐷 . The task requires to look for
the frequency of all possible itemsets (2𝑛−1 in theworst case), which
has an enormous computational cost even for small databases.

In practice the problem can be solved by efficient algorithms that
exploit the down-ward closure property of frequency, i.e., all subsets
of a frequent set are also frequent, as in Apriori [2], or that exploit
advanced data structures or algorithms, as in FP-Growth [10] or
Eclat [22]. Nevertheless, when dealing with big data the cost of such
a task could still be prohibitive. For this scenario there exist also
scalable random randomized algorithms such as Toivonen’s [18],
or algorithms that only need a limited number of passes over the
database such as SON [17], overall requiring lower memory and
lending themselves for parallel computing environments.

An extension of the standard problem discussed so far is the
mining frequent itemsets in evolving scenarios, which is of interest
for applying ARM algorithms to our ARMED testing concept. In
particular, we could imagine an evolving database (observations
are added to the database over time), a database of evolving obser-
vations (items are added to observations of the database over time),
or a combination thereof. While some clever adaptations of the
previously discussed algorithms have been provided for the first
scenario, to the best of our knowledge the others have not been
studied in the data mining literature and it is not clear if something
smarter than trivial adaptations can be performed.

2.2 Generate association rules
Once the frequent itemsets of 𝐷 are computed, it is possible to

generate association rules by simply considering all their binary

partitions, i.e., for each itemset 𝑆 we generate all the rules of the
form 𝐴 ⇒ 𝐵, where 𝐴 ⊂ 𝑆 , 𝐴 ≠ ∅, and 𝐵 = 𝑆 \𝐴. However, we still
need to measure the significance of the generated rules in order to
only consider the interesting ones.

Originally defined in [1], the trivial interest measure is support:

supp(𝐴 ⇒ 𝐵) ≔ Pr(𝐴 ∩ 𝐵), (1)

namely the probability of observing 𝐴 and 𝐵 together in 𝐷 , mea-
sured as the fraction of data-entries containing both 𝐴 and 𝐵.
Generating ARs from frequent itemsets with frequency threshold
𝜎 ∈ [0, 1] guarantees that each rule 𝐴 ⇒ 𝐵 has supp(𝐴 ⇒ 𝐵) ≥ 𝜎 .

A measure defined together with support in [1] is confidence:

conf(𝐴 ⇒ 𝐵) ≔ Pr(𝐵 |𝐴), (2)

namely the conditional probability of observing 𝐵 given that 𝐴
has already been observed. Confidence indicates how often the
rule has been observed to be true. A rule 𝐴 ⇒ 𝐵 is interesting if
conf(𝐴 ⇒ 𝐵) ≥ 𝛾 for a threshold 𝛾 ∈ [0, 1].

Another commonly-used measure is leverage, defined in [15]:

levg(𝐴 ⇒ 𝐵) ≔ Pr(𝐴 ∩ 𝐵) − (Pr(𝐴) · Pr(𝐵)), (3)

namely the difference between the probability of observing𝐴 and 𝐵
together and what would be expected if 𝐴 and 𝐵 were independent.
If levg(𝐴 ⇒ 𝐵) = 0, then 𝐴 and 𝐵 are independent; if levg(𝐴 ⇒
𝐵) > 0, then 𝐴 and 𝐵 are positively correlated; if levg(𝐴 ⇒ 𝐵) <
0, then 𝐴 and 𝐵 are negatively correlated. The absolute value of
leverage indicates the degree of correlation between𝐴 and 𝐵, while
its sign if the correlation is direct or inverse. A rule 𝐴 ⇒ 𝐵 is
interesting if |levg(𝐴 ⇒ 𝐵) | ≥ _ for a threshold _ ∈ [0, 1].

3 ARMED TESTING
As previously discussed, the idea behind ARMED testing is sim-

ple and elegantly fits several specific scenarios. In every scenario the
approach proceeds at a high level in the same fashion. An overview
of the ARMED testing process is depicted in Figure 1.

Given three parameters 𝜎,𝛾, _ ∈ [0, 1], the generic workflow of
ARMED testing follows twomain steps. In the preparation phase, the
approach generates a (plausibility) test suite by simply observing
the considered software system and mining ARs from the observa-
tions that have been made:

(1) By observing features and actions of the system in operation,
we build a database of observations 𝐷 , each one modeled as
a set of items. An accurate modeling is crucial for the gener-
ation of relevant rules and must be customized according to
the specific scenario by focusing on the aspects of interest;
however, the ARMED testing approach is independent of
the modeling choices and only requires observations to be
modeled as discrete sets of items. This is depicted in Figure 1,
Step P1.

(2) We mine from the database 𝐷 the set 𝐹 of frequent itemsets,
with frequency threshold 𝜎 , using the most suitable algo-
rithm according to the scale of the problem. This is depicted
in Figure 1, Step P2.

(3) Using 𝐹 we generate a set 𝑅 of ARs guaranteeing that each
rule (𝐴 ⇒ 𝐵) ∈ 𝑅 has supp(𝐴 ⇒ 𝐵) ≥ 𝜎 , conf(𝐴 ⇒ 𝐵) ≥ 𝛾 ,
and |levg(𝐴 ⇒ 𝐵) | ≥ _ (respectively Equations (1), (2),
and (3)). This is depicted in Figure 1, Step P3.

Testing non-testable programs using association rules AST ’22, May 21-22, 2022, Pittsburg, PA, USA

Testing Phase

Observe
Input x, Output o

T1
Retrieve Tests for

Input x

T2
Flag Output o as

Plausible or
Suspicious

Generate
Association Rules

Mine
 Frequent Itemsets

P3

Preparation Phase

Build
 Database of Observations

P1 P2
Generate

 Test Suite

P4 T3

Figure 1: ARMED Testing approach overview.

(4) We generate a test suite 𝑇 by mapping each rule (𝐴 ⇒ 𝐵) ∈
𝑅 to a positive test (𝑥 : 𝐴; 𝑒𝑥𝑝 (𝑥) : 𝐵) if levg(𝐴 ⇒ 𝐵) > 0, or
to a negative test (𝑥 : 𝐴;¬𝑒𝑥𝑝 (𝑥) : 𝐵) if levg(𝐴 ⇒ 𝐵) < 0;
we denote by 𝑒𝑥𝑝 (𝑥) the expected output of positive tests
and by ¬𝑒𝑥𝑝 (𝑥) the unexpected output of negative tests, i.e.,
predictions of the test oracle. This is depicted in Figure 1,
Step P4.

The preparation phase can be adapted to evolving scenarios, for
example by updating the database 𝐷 whenever the system changes
(e.g., a new observation is made or an existing observation is up-
dated) or by considering only themost recent history under a sliding
window model of observations.

In the testing phase, the approach tests the system for which
significant rules have been generated.

(1) We observe an input 𝑥 = 𝐴 as well as its output 𝑜 . This is
depicted in Figure 1, Step T1.

(2) We “get armed” and retrieve the set of tests 𝑇 (𝐴) ⊆ 𝑇 , i.e.,
all positive and negative tests generated in the preparation
phase that have (𝑥 : 𝐴). This is depicted in Figure 1, Step T2.

(3) We test the program: for each positive test (𝑥 : 𝐴; 𝑒𝑥𝑝 (𝑥) :
𝐵) ∈ 𝑇 (𝐴) the output 𝑜 is flagged plausible if and only if
𝐵 ⊆ 𝑜 , i.e., the expected output 𝑒𝑥𝑝 (𝑥) is observed in the
actual output, or suspicious otherwise; for each negative test
(𝑥 : 𝐴;¬𝑒𝑥𝑝 (𝑥) : 𝐵) ∈ 𝑇 (𝐴) the output 𝑜 is flagged plausible
if and only if 𝐵 ⊈ 𝑜 , i.e., the unexpected output ¬𝑒𝑥𝑝 (𝑥) is
not observed in the actual output 𝑜 , or suspicious otherwise.
This is depicted in Figure 1, Step T3.

In the case of multiple tests for the same input/output pair, multiple
flags can be aggregated into a single flag, e.g., via a voting strategy
where the most frequent flag wins or via a more conservative strat-
egy where a suspicious flag is enough to flag the output suspicious.

4 A WALK-THROUGH EXAMPLE
We anticipate that ARMED testing can find useful variant ap-

plications in several scenarios involving non-testable programs.
Herein we illustrate a possible application of our ARMED testing
approach assuming the specific scenario that the system under test
is the Facebook WW simulator mentioned in Section 1. Among
other purposes, ARMED testing could be applied to validate the
behavior of BOTs that are used in WW to simulate real individuals.

In particular, suppose we want to test if the interactions between
the BOTs inhabiting the Facebook digital twin platform are realistic
(w.r.t. the personas they are modeled from). First we learn from the
real system how typical users’ interaction patterns are correlated
with users’ features taken into account to create personas. Then
we test BOTs by checking if their interaction patterns are expected

or not, by comparing them with those of the personas they are
modeled from.

In more detail, following the workflow described in Figure 1,
we start by observing the real system, namely the real Facebook
platform, in order to build a database 𝐷 of observations1. In this
specific scenario, an observation consists of modeling the users
as sets of features. For the purpose of this example, we use the
MyPersonality database2 to illustrate a possible modeling via ag-
gregated features such as personality traits and network measures3.

MyPersonality in fact aggregates data regarding personality
traits of a set of Facebook users and a set of their relative social
network measures. More in detail, regarding personality traits, the
database includes five different traits, namely openness to experience
(𝑂𝑃𝑁), conscientiousness (𝐶𝑂𝑁), agreeableness (𝐴𝐺𝑅), extroversion
(𝐸𝑋𝑇), and neuroticism (𝑁𝐸𝑈) [16]. The data regarding user traits
was gathered by involving a set of Facebook users to a psychological
research that consisted in filling in a personality questionnaire. In
addition to personality traits, each user is mapped to a set of social
network metrics. The metrics included in the database are: network
size (𝑆𝐼𝑍), betweenness centrality (𝐵𝐸𝑇), density (𝐷𝐸𝑁), brokerage
(𝐵𝑅𝐾), and transitivity (𝑇𝑅𝑁) [19].

Concerning the features of MyPersonality, wemodel the values
of each user as a set of “items”. Specifically, each user is mapped to
the presence/absence of a certain metric if the metric value of the
user is above/below a threshold (e.g., median value). By considering
the data included in MyPersonality, we could for instance model
a user 𝑢 as 𝑢 = {𝐸𝑋𝑇,𝐴𝐺𝑅, 𝑆𝐼𝑍, 𝐵𝐸𝑇 } if 𝑢 is extrovert, agreeable,
has a large network size and a high betweenness centrality.

Once the database 𝐷 is built, we mine frequent itemsets, i.e.,
subsets of features of users that are common in the database, for
example setting 𝜎 = 0.05, i.e., observed in at least 5% of users.
Then we generate relevant ARs by setting, for example, a confi-
dence threshold 𝛾 = 0.5 and a leverage threshold _ = 0.1. In this
specific application we model users/personas features as a set of
personality traits and users/bots interactions as a set of network
metrics. For this reason, we restrict the set of generated rules 𝑅
to having the antecedent 𝐴 ⊆ {𝐸𝑋𝑇, 𝑁𝐸𝑈 ,𝐴𝐺𝑅,𝐶𝑂𝑁,𝑂𝑃𝑁 } and
the consequent 𝐵 ⊆ {𝑆𝐼𝑍, 𝐵𝐸𝑇, 𝐷𝐸𝑁, 𝐵𝑅𝐾,𝑇𝑅𝑁 }. Finally, from the
set of rules 𝑅, we generate a set of tests 𝑇 where the inputs are
sets of personality traits and the expected outputs are network
measures. An example of rules could be {𝐸𝑋𝑇,𝐴𝐺𝑅} ⇒ {𝑆𝐼𝑍 } or
{𝐴𝐺𝑅,𝑂𝑃𝑁 } ⇒ {𝑆𝐼𝑍, 𝐵𝐸𝑇 }, i.e., we expect a BOT modeled from

1Such observations must be obviously carried out in respect of privacy regulations,
such as GDPR law.
2https://www.psychometrics.cam.ac.uk/productsservices/mypersonality. Accessed on
09/10/2021.
3Note that this is just a possible modeling of users, driven by the MyPersonality
database, but that a different and more comprehensive modeling could be adopted.

https://www.psychometrics.cam.ac.uk/productsservices/mypersonality

AST ’22, May 21-22, 2022, Pittsburg, PA, USA Antonia Bertolino, Emilio Cruciani, Breno Miranda, and Roberto Verdecchia

an extrovert and agreeable persona to have a large network size, or
a BOT modeled from an agreeable and open to experience persona
to have a large network size and a high betweenness centrality.

In order to test a BOT 𝑏, we also model 𝑏 using the same features
considered for the users. Therefore, some of the features of 𝑏 will
be personality traits (call this set 𝐴𝑏), while other will be network
measures (call this set 𝐵𝑏). We then look in the test suite for𝑇 (𝐴𝑏),
i.e., the set of generated tests that have input 𝑥 = 𝐴𝑏 , and finally test
the BOT 𝑏: for each positive test (𝑥 : 𝐴𝑏 ; 𝑒𝑥𝑝 (𝑥) : 𝐵), we flag the
behavior of BOT 𝑏 plausible if the expected behavior 𝐵 is observed,
namely if 𝐵 ⊆ 𝐵𝑏 , or suspicious otherwise; for each negative test
(𝑥 : 𝐴𝑏 ;¬𝑒𝑥𝑝 (𝑥) : 𝐵), we flag the behavior of BOT 𝑏 plausible if
the unexpected behavior 𝐵 is not observed, namely if 𝐵 ⊈ 𝐵𝑏 , or
suspicious otherwise. As described in Section 3, flags of BOT 𝑏 are
then aggregated according to some strategies, e.g., if the majority
of the flags are suspicious then 𝑏 does not behave as the persona it
is modeled from would in the majority of the tested interactions.

5 RELATEDWORK
Conceived in the early 90’s for mining interesting relations in

large data bases, e.g., in market basket analyses, ARs have already
found several applications in software engineering, e.g., for ranking
clones [13], for revealing false test alarms [11], even for statically
detecting software bugs such as, e.g., in [6, 12]. However, ours is the
first proposal of leveraging ARM techniques as the basis for formu-
lating a new software testing concept. The only similar work we are
aware of is an early short paper by Zheng et al. [23], who proposed
to use ARs for validating the outcome of Web Search Engines and
detecting suspicious outcomes. Indeed, Web Search Engines are
again an example of systems whose test oracle is unknowable, and
the idea formulated in that work could be seen as an application of
our ARMED testing approach. However, that work only presented
one specific application example of using ARs for testing search
engine results and did not explicitly recognize the novel broader
concept of testing for plausibility behind the idea. Moreover, they
did not consider negative tests and did not discuss the evolvability
and scalability of the approach, as we do.

There exists a large literature on test oracles: a 2015 survey [5]
found 694 papers over the period 1978-2012 dealing with the test
oracle problem, whereas a 2018 mapping study [14] identified until
mid 2014 a set of 137 primary studies focusing on testing non-
testable systems. In the latter, solution are classified under five
“umbrella” techniques: N-version Testing, Metamorphic Testing,
Assertions, Machine Learning, and Statistical Hypothesis Testing.

Among these, Metamorphic Testing (MT) [7] has by far received
the highest attention with regard to testing non-testable programs.
MT is in fact also the solution currently pursued to test the Facebook
WW simulator [3]. MT does not need to know the expected outputs,
but relies on (metamorphic) relations that must hold between the
outputs produced by some “source” test cases and their “follow up”
ones. MT does not really solve the oracle problem though, rather
it shifts it from determining the expected output to discovering
meaningful Metamorphic Relations (MRs), for which “the current
state of the art is only, at best, partially automated” [3]. In fact, for
Facebook WW testing, some effective MRs have been manually
identified; however the approach requires the support of domain
experts and appears ad hoc and non scalable.

MT and ARMED testing could be seen as complementary ap-
proaches: in our intuition, ARMED testing can fit the need for
testing large scale systems when some continuity in the exposed
behavior is expected. In such conditions, the advantage over MT
is evident: ARs can be derived automatically and systematically,
in contrast with the difficulty of manually deriving metamorphic
relations. In WW, for example, humans accessing the platform are
simulated by BOTs: at Facebook scale it is simply impossible to
think to build a faithful simulator that can act as a test oracle for
each individual BOT. However, we can plausibly expect that hu-
mans sharing similar traits will behave similarly when exposed
to similar stimuli. Hence we can test whether the behavior of a
BOT is plausible when referring to the humans it simulates. On
the other hand, there can be systems for which homogeneity of
behavior cannot be assumed and even deciding what is plausible
can be difficult. Examples could be testing of scientific software [8],
or of machine learning classifiers [21]. In both cases we cannot
easily predict what is a plausible output, but some MRs have been
settled leveraging the inherent mathematics of the domain.

Finally, also specification mining approaches and, more in par-
ticular, dynamic invariant detection from execution traces, such as
Daikon [9], aim at identifying properties that hold for a program
under test, similarly to what we do. However such approaches, al-
though scalable, have been conceived for software systems testing
and it is yet unclear if they can be adapted to the more abstract
dimension of social testing addressed by ARMED testing. Although
a more detailed comparison is needed, we foresee a semantic differ-
ence between extracting an invariant property that should locally
hold for all executions of every BOT instance and finding a rule
that applies to a broad context, also involving human simulations.

6 CONCLUSIONS AND FUTUREWORK
With this ongoing work we introduced a novel scalable approach

for testing non-testable programs denoted as ARMED testing. Our
approach leverages efficient association rules mining algorithms
to determine relevant implication relations among features and
actions observed while the system is in operation. As part of our
future work we plan to instantiate the concept of ARMED testing
in several testing scenarios. In addition to the case of testing the
realism of BOTs described in Section 4, we foresee several other
possible applications. For instance, ARMED testing could allow
for detecting abnormal user or community behaviors. We could
leverage ARs for hinting at abnormal users (“bad actors”) in two
ways: if ARs of known abnormal behaviors are available, they can
be compared against other users’ behavior; otherwise, when an
unexpected behavior is observed, the output is reported to the tester
as a symptom worthy of attention. Moreover, ARMED testing could
also help to early detect deviations for ultra-large scale systems,
looking at the overall trend of observed outcomes. We also plan
to investigate different application scenarios of ARMED testing by
means of empirical experimentation in tight collaboration with an
industrial partner, in order to evaluate the feasibility, effectiveness,
and scalability of the approach.

Acknowledgement. This work is supported by a Facebook 2021
Research Award on “Agent-based user interaction simulation to
find and fix integrity and privacy issues”.

Testing non-testable programs using association rules AST ’22, May 21-22, 2022, Pittsburg, PA, USA

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association

Rules between Sets of Items in Large Databases. SIGMOD Rec. 22, 2 (June 1993),
207–216. https://doi.org/10.1145/170036.170072

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining
association rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215.
Citeseer, 487–499.

[3] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Erik
Meijer, et al. 2021. Testing Web Enabled Simulation at Scale Using Metamorphic
Testing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 140–149. https://doi.org/10.
1109/ICSE-SEIP52600.2021.00023

[4] John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann
George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon M. M. Lucas,
Erik Meijer, Steve Omohundro, Rubmary Rojas, Silvia Sapora, and Norm Zhou.
2021. Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins. In Eval-
uation and Assessment in Software Engineering (Trondheim, Norway) (EASE
2021). Association for Computing Machinery, New York, NY, USA, 1–9. https:
//doi.org/10.1145/3463274.3463275

[5] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Trans. Softw. Eng.
41, 5 (May 2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[6] Pan Bian et al. 2018. Nar-miner: Discovering negative association rules from
code for bug detection. In ESEC/FSE. 411–422.

[7] Tsong Yueh Chen et al. 2018. Metamorphic Testing: A Review of Challenges
and Opportunities. ACM Comput. Surv. 51, 1, Article 4 (Jan. 2018), 27 pages.
https://doi.org/10.1145/3143561

[8] Junhua Ding, Dongmei Zhang, and Xin-HuaHu. 2016. An application of metamor-
phic testing for testing scientific software. In Proceedings of the 1st International
Workshop on Metamorphic Testing. 37–43.

[9] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[10] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without
candidate generation. ACM sigmod record 29, 2 (2000), 1–12.

[11] Kim Herzig and Nachiappan Nagappan. 2015. Empirically detecting false test
alarms using association rules. In 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, Vol. 2. IEEE, 39–48.

[12] Benjamin Livshits and Thomas Zimmermann. 2005. Dynamine: finding common
error patterns by mining software revision histories. ACM SIGSOFT Software
Engineering Notes 30, 5 (2005), 296–305.

[13] Manishankar Mandal, Chanchal K Roy, and Kevin A Schneider. 2014. Automatic
ranking of clones for refactoring through mining association rules. In 2014 Soft-
ware Evolution Week-IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). IEEE, 114–123.

[14] Krishna Patel and Robert M. Hierons. 2018. A Mapping Study on Testing Non-
Testable Systems. Software Quality Journal 26, 4 (Dec. 2018), 1373–1413. https:
//doi.org/10.1007/s11219-017-9392-4

[15] Gregory Piatetsky-Shapiro. 1991. Discovery, analysis, and presentation of strong
rules. Knowledge discovery in databases (1991), 229–238.

[16] Sebastiaan Rothmann and Elize P Coetzer. 2003. The big five personality di-
mensions and job performance. SA Journal of Industrial Psychology 29, 1 (2003),
68–74.

[17] Ashok Savasere et al. 1995. An efficient algorithm for mining association rules in
large databases. Technical Report. Georgia Institute of Technology.

[18] Hannu Toivonen. 1996. Sampling Large Databases for Association Rules. In
Proceedings of the 22th International Conference on Very Large Data Bases (VLDB
’96). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 134–145.

[19] Stanley Wasserman and Katherine Faust. 1994. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press. https://doi.org/10.1017/
CBO9780511815478

[20] Elaine J Weyuker. 1982. On testing non-testable programs. Comput. J. 25, 4 (1982),
465–470.

[21] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. 2011. Testing and validating machine learning classifiers by
metamorphic testing. Journal of Systems and Software 84, 4 (2011), 544–558.

[22] Mohammed Javeed Zaki. 2000. Scalable algorithms for association mining. IEEE
transactions on knowledge and data engineering 12, 3 (2000), 372–390.

[23] Wujie Zheng, Hao Ma, Michael R. Lyu, Tao Xie, and Irwin King. 2011. Mining
Test Oracles of Web Search Engines. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’11). IEEE
Computer Society, USA, 408–411. https://doi.org/10.1109/ASE.2011.6100085

https://doi.org/10.1145/170036.170072
https://doi.org/10.1109/ICSE-SEIP52600.2021.00023
https://doi.org/10.1109/ICSE-SEIP52600.2021.00023
https://doi.org/10.1145/3463274.3463275
https://doi.org/10.1145/3463274.3463275
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/3143561
https://doi.org/10.1007/s11219-017-9392-4
https://doi.org/10.1007/s11219-017-9392-4
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1109/ASE.2011.6100085

	Abstract
	1 Introduction
	2 Background
	2.1 Mining frequent itemsets
	2.2 Generate association rules

	3 ARMED testing
	4 A walk-through example
	5 Related work
	6 Conclusions and Future Work
	References

