
ATDx: Prototype Implementation Technical Report

Roberto Verdecchia1, Patricia Lago1,2, Ivano Malavolta1, and Ipek Ozkaya3

1Vrije Universiteit Amsterdam, The Netherlands
2Chalmers University of Technology, Gothenburg, Sweden

3Software Engineering Institute, Carnegie Mellon University, USA
{r.verdecchia, p.lago, i.malavolta}@vu.nl, ozkaya@sei.cmu.edu

Keywords: Software Architecture, Technical Debt, Software Analytics, Software Metrics, Software Maintenance

Abstract: In this technical report we document a preliminary investigation carried out to evaluate the viability and the
implementation feasibility of ATDx, and index designed to gain an overview of the architectural technical
debt (ATD) present in a software-intensive system. We implement a prototype via the ATDx method by
considering the source code static analysis tool SonarQube. This process is carried out by manually identifying
45 architectural rules, and subsequently applying the constructed prototype on a large-scale dataset composed
of 6,706 open source Java-based projects. Among other results, this technical report provides insights into
the benefits and drawbacks entailed by the concrete implementation of ATDx, the distribution of architectural
debt across 6 distinct ATD dimensions (marked by the prominence of issues related to interfaces), and the
correlation among the identified dimensions.

1 ATDx APPROACH VIABILITY
In this technical report we document a preliminary in-
vestigation carried out to evaluate the viability and the
implementation feasibility of the ATDx approach pre-
sented in [Verdecchia et al., 2020]. This process is
carried out in order to get further insight into the po-
tential benefits and drawbacks entailed with the con-
crete implementation of an ATDx instance. Specifi-
cally, we apply the ATDx methodology by considering
the SonarQube source code static analysis tool and a
large-scale set of open source Java-based projects.

2 ATDX BUILDING STEPS
EXECUTION

In the remainder of this section we document the pro-
cess followed to build an ATDx prototype by follow-
ing the implementation steps defined in the approach.

2.1 Step 1: AR Identification from
SonarQube Rule Set

The first step of the ATDx establishment entails the
identification of a set of architectural rules ART for
a tool T . To this aim, we selected as our initial set
of source-code rules RSQ, the SonarQube design rules
presented by Ernst et al. [Ernst et al., 2017] and spe-
cific to the Java programming language. Our rationale
is multi-fold: (i) the rules focus on software design,
and hence they may be good candidates for having ar-
chitectural relevance, (ii) the rules are implemented in

a prominent static source-code analysis tool, easing
the ARSQ

i (SUA) measurement retrieval process, and
(iii) given the widespread adoption of SonarQube and
Java in industrial contexts [Janes et al., 2017], the ex-
periment results can be leveraged in follow-up studies
with industrial parties.

Given that the rules considered are implemented
in SonarQube, we knew a priori that they can be as-
sociated to a granularity level GrSQ, that each can be
considered as a function ARSQ

I : [E]→{0,1}, and that
it is possible to retrieve via source-code analysis the
granularity GrSQ

i associated to each rule i.
To evaluate the two criteria which define an anal-

ysis rules RT , as architectural rules ART , we carried
out a manual inspection of the definition of each rule,
available in the official documentation of the static an-
alyzer1. The selection process was executed by ana-
lyzing the content of each rule description, and evalu-
ating it against each criterion.

To mitigate potential threats to construct validity,
two independent researchers carried out the identifi-
cation of the ARSQ rules on the predefined set RSQ

of Java-based rules in SonarQube. A third researcher
with several years of experience in software engineer-
ing was involved to resolve potential conflicts and re-
view the ARSQ identification results. In a first iteration

1https://docs.sonarqube.org/latest/
user-guide/rules/

https://docs.sonarqube.org/latest/user-guide/rules/
https://docs.sonarqube.org/latest/user-guide/rules/


a 72.2% of agreement was reached, which then was
resolved with the intervention of the third researcher.

From the initial set of 72 SonarQube design rules
presented by Ernst et al. [Ernst et al., 2017], we iden-
tified 45 architectural rules. The full list of all rules
supported by SonarQube and the identified subset
of architectural rules are included in the replication
package of this study.

2.2 Step 2: Formulation of the
Java-based 3-tuples
〈ARSQ

i , GrSQ
i ,ATDDSQ

j 〉
Once we established a set of ARSQ, we proceeded to
formulate the 3-tuples 〈ARSQ

i , GrSQ
i ,ATDDSQ

j 〉. This
process is carried out by following the ATDx pro-
cess defined to identify the 3-tuples, leading to the
mapping for each ARSQ

i its corresponding granularity
GrSQ

i , and its ATD dimensions AT DDSQ
j .

As for the identification of ARSQ, we followed
the previously presented research methodology car-
ried out by three researchers in collaboration.

Regarding the granularity levels GrSQ, we identi-
fied 4 levels of granularity that characterized the rules
in ARSQ, namely Java non-comment lines of code
(NCLOC), Java method, Java class, and Java file.

As for ATD dimensions ATDDSQ, we observed
the emergence of 6 core dimensions, namely In-
heritance, Exception, Java Virtual Machine Smell
(JVMS), Threading, Interface, and Complexity. The
Inheritance dimension (9 rules) clusters rules evalu-
ating inheritance mechanisms between classes, such
as overrides and inheritance of methods or fields. The
Exception ATDDSQ (8 rules) groups rules relating to
the Java throwable class “Exception” and its sub-
classes. JVMS (7 rules) embodies instead rules which
assess potential misuse of the Java Virtual Machine,
e.g., the incorrect usage of the specific Java class “Se-
rializable”. Rules associated with the Threading di-
mension (7 rules) deal with the potential issues aris-
ing from the implementation of multiple execution
threads, which could potentially lead to concurrency
problems. The Interface dimension (7 rules) encom-
passess rules assessing fallacies related to the usage
of Java interfaces. Finally, the Complexity dimension
(6 rules) encompasses rules derived from prominent
complexity measures, such as McCabe’s cyclomatic
complexity [McCabe, 1976].

2.3 Step 3: Dataset establishment via
SonarCloud

In order to build our dataset of ARSQ(SUA) measure-
ments, we took advantage of the SonarCloud plat-

form2, which provides a dataset of pre-computed
SonarQube analysis results of open-source software
projects. Specifically, SonarCloud encompasses
SonarQube analysis results of over 90K software
projects, implemented in different programming lan-
guages, ranging from Python, to C++, and Swift.

As the starting step to build our ATDx analysis
dataset, we selected from the SonarCloud dataset ex-
clusively the software projects implemented in Java
(as we base our ATDx analysis on Java-based ARSQ,
whose selection is documented in Section 2.1). This
step led us to the identification of a preliminary set of
14,037 projects.

Next, we carried out a series of quality-filtering
steps to ensure a good level of quality of the soft-
ware projects considered for inclusion in our dataset.
Specifically, a first filtering step removed from the
dataset all the projects deemed as too small in order
to be considered as “real-world” software projects.
To this aim, we filtered out all software projects con-
taining less than 100 Java NCLOC and 9 Java source
code files. This process led to the removal of 4,431
projects.

We then sanitized our dataset by removing all soft-
ware outlier projects according to one or more of the
identified granularities GrSQ (i.e., Java NCLOC, Java
method, Java class, and Java file). This process re-
moved 1,801 additional projects, resulting in a pre-
liminary dataset of 7,805 projects.

Finally, in order to avoid “toy” projects, we car-
ried out an inspection of the project name of the re-
maining codebases. This step was carried out by iden-
tifying all the projects which contained one or more of
the following keywords as sub-strings of their names:
“demo”, “course”, “thesis”, “exam”, “tool”, “util”,
“helper”, “plugin”, “plug-in”, “homework”, “sonar-
cloud”, and “sonarqube”. This led to the identifica-
tion of 511 potential “toy” projects for potential ex-
clusion. The names of the projects where then manu-
ally inspected by two independent researchers and, af-
ter reaching a consensus, the projects deemed as “toy”
projects were removed from the dataset. This process
led to removing 499 additional projects, leading to a
final number of 6,706 projects as input to our ATDx
experimentation. The metadata related to the projects
either excluded or included at each intermediate filter-
ing step is available in the replication package of this
study.

After the identification of the dataset of projects,
the SonarCloud API was leveraged in order to obtain
the ARSQ(S) values for each selected project.

2https://sonarcloud.io/about

https://sonarcloud.io/about


2.4 Step 4: ATDx Analysis Execution
and Refinements

After we gathered the data necessary to carry out the
ATDx analysis, we applied the ATDx analysis pro-
cess on the established dataset of projects. We im-
plemented ATDx via a script implemented in the R
programming language3.

While the values of ATDDSQ(S) and ATDxSQ(S)
are, by definition, normalized in a range of [0,1], we
opted to further process such values by normalizing
them within a range of [0,5]. While such operation
does not entail any statistical change, we opted for
such adjustment in order to ease the interpretation of
such metrics by practitioners and researchers alike,
facilitating the inspection of the ATDx analysis re-
sults, while ensuring their correctness.

Additionally, driven by preliminary inspection
of the ATDx analysis results, we opted to apply
a 1K multiplier to the intermediate ATDx value
NORMSQ(S), in order to make such values more in-
tuitive to interpret by a human reader.4

2.5 Step 5: Results Inspection
After executing the ATDx analysis, we conducted

an inspection of the gathered results. Specifically,
we conducted a statistical analysis on the calculated
ATDx data in order to identify the most recurrent types
of AT DDs. Additionally, we investigated to what ex-
tent the different AT DD dimensions are correlated,
in order to identify if issues in one AT DD dimen-
sion may statistically influence also other dimensions.
Finally, we investigated the ATDx analysis results by
considering individually some prominent projects P,
in order to gain further insights into the calculated
AT DDSQ values at project level.

3 APPROACH VIABILITY
RESULTS

In this section we report the results of our ATDx vi-
ability investigation. Specifically, we inspect (i) the
distribution of AT DD across projects, (ii) the correla-
tion between ATDD dimensions, and (iii) the AT DD
values of a subset of selected software projects.

3.1 ATDD distribution
We examine the distribution of ATDDSQ across the
software projects included in our dataset in order to

3www.r-project.org/about.html
4This heuristic is bound to the experimental setting used,

i.e. the identified architectural rules ARSQ, their associated
granularity GrSQ, and the dataset of projects we considered.
Hence such heuristic may vary according to the experimen-
tal setting considered.

get insights into the constituent parts of this specific
ATDx instantiation. An overview of the AT DDSQ

value distribution, as well as the cumulative value of
ATDx, obtained by calculating for each project P the
mean value of its AT DDSQ, is depicted in Fig. 1. Ad-
ditionally, we report summary statistics of the AT DD
dimensions in Table 1.

0
1

2
3

4

Interface Inheritance Exception JVMS Threading Complexity ATDx

ATDD
V

al
ue

Figure 1: Distribution ATDDSQ values across projects, and
cumulative ATDxSQ value

Table 1: Descriptive statistics for the values of each
AT DDSQ dimension per project (SD = standard deviation,
CV = coefficient of variation)

ATDD Min. Max. Median Mean SD CV

Interface 0 4.28 0 0.50 0.69 1.39
Inheritance 0 3.33 0 0.21 0.41 1.95
Exception 0 3.12 0 0.24 0.45 1.87
JVMS 0 2.14 0 0.06 0.23 0.38
Threading 0 1.44 0 0.03 0.15 5.0
Complexity 0 3.33 0 0.15 0.37 2.4

ATDx 0 2.29 0.11 0.15 0.26 1.7

From the values reported in Fig. 1 and Table 1, we
observe that all ATDDSQ values are characterized by
a median value of zero across software projects. This
has to be attributed to the design and purpose of
ATDx, which leverages outliers detection to identify
severe ATD issues. Additionally, our analysis re-
veals that the overall ATDxSQ has a median value
greater than zero, indicating that more than half of
the considered projects presents ATD issues in at
least one of the ATTDSQ dimensions. In fact, 4,179
out of 6,706 projects are characterized by ATD is-
sues at a varying level of severeness. Regarding
recurrence of ATDDSQ dimensions, Interface is the
ATD dimension which most frequently present is-
sues across projects (3204/6706), followed by Excep-
tion (1863/6706), and Inheritance (1860/6706). Prob-
lems related to the Complexity, JVMS, and Thread-
ing dimensions are overall less frequent (1130/6706,
567/6706, and 272/6706, respectively).

www.r-project.org/about.html


3.2 ATDD dimensions correlation
After the analysis of the constituent dimensions of
ATDxSQ, we investigate if any statistically significant
correlation can be observed between them. The ex-
ecution of the Kruskal-Wallis omnibus test [Kruskal
and Wallis, 1952] reveals that the distributions of
ATDDSQ values significantly differ, i.e., the mean
ranks of the ATDDSQ values across ATD dimensions
is not statistically the same (p-value < 2.2−16).

In order to get further insights into the correla-
tion of ATDDSQ values, we calculate the Spearman’s
rank correlation coefficient [Spearman, 1961] for the
dimensions composing AT DxSQ, in order to assess
if any statistical relationship is established between
them5. The results of such analysis are visually pre-
sented in Fig. 2.

Figure 2: Spearman’s rank correlation coefficient between
architectural technical debt dimensions ATDD

From the correlation analysis emerges that no
strong linear relationship can be observed across
ATDDSQ dimensions. Moderate correlations are in-
stead present between the dimensions Inheritance
and JVMS (ρ= 0.54), Complexity and Interface (ρ=
0.45), Inheritance and Interface (ρ= 0.39), and Ex-
ception and Interface (ρ= 0.37). The moderate cor-
relation between those ATDDSQ dimensions can be
partially attributed to the underlying ARSQ which the
different dimensions share. Nevertheless, from an in-
spection of the mapping of ARSQ to ATDDSQ we ob-
served that the moderately-correlated dimensions do
not share ARSQ. This leads us to conclude that the cor-
relation is exclusively of a “data-driven” nature, rather
than a “design-driven” one.

5We adopt the Spearman’s ρ coefficient as, while car-
rying out a thorough selection of the software projects to
be included in our dataset, we do not assume any normal
distribution of the AT T DSQ values.

3.3 Inspection of ATDDSQ values of
sample projects

In order to get further insights into our data at a re-
fined level of granularity, we inspect the ATDx anal-
ysis results for a set of projects P by depicting their
ATTDSQ(S) values via radar charts. The adoption of
such graphical notation for displaying the normalized
yet multivariate data composing ATDx, provides us
with the means to intuitively compare our approach
analysis results across different software projects,
leading to what could be a general overview visual-
ization of the ATDx results. Specifically, we carry out
an ad hoc selection of the projects by identifying the
ones which report the maximum value in one of the
architectural technical debt dimensions ATTDSQ. An
overview of the ATDDSQ values calculated via ATDx
for the selected projects is depicted in Fig. 3.

From Fig. 3 we observe a highly heterogeneous
distribution of ATDDSQ values across the different
projects. This finding highlights the lack of a strong
correlation among the identified ATD dimensions,
which was previously identified in our statistical cor-
relation analysis (see Section 3.2). The visualization
method reported in Fig. 3, in addition to the represen-
tation of ATDDSQ values, also provides a straightfor-
ward means to gain an intuitive picture of the overall
ATD present in a software project analyzed via ATDx.
In fact, we can intuitively evince that the area circum-
scribed by a radar chart is linearly proportional to the
composite ATDxSQ, i.e., the larger the area circum-
scribed by the radar chart of a project, the more severe
is the overall ATDx of a project.

Interestingly, the project presenting the highest
Complexity ATDD value (Fig. 3f), is also character-
ized by the highest composite value ATDx. By in-
specting the radar chart, we can observe that this is
mostly due to the high values of the Complexity and
Interface dimensions, as the dimensions report lower
values, and the Threading dimension is null.

The statistical findings regarding the Threading
dimension, i.e., that such dimension is less frequent
and characterized by overall lower values, can also be
observed in the sample projects selected. In fact, 4
out of the 6 projects do not present any issues in this
dimension.

Interestingly, in Fig. 3e, which represents the
AT DDSQ values for the project with the highest
Threading value, we observe that such project yields
the lowest ATDx value among the projects considered.
This fact, together with the previous observation on
the Threading dimension and the high coefficient of
variation reported in Table 1, points to some pecu-
liar characteristic of this dimension. Nevertheless, an
in-depth investigation should be carried out to ver-



(a) Most severe Interface ATTD (b) Most severe Inheritance ATTD (c) Most severe Exception ATTD

(d) Most severe JVMS ATTD (e) Most severe Threading ATTD (f) Most severe Complexity ATTD.
Also, most severe ATDx value.

Figure 3: ATDx results of software projects presenting a maximum value in one architectural
technical debt dimension ATDDSQ

ify this conjecture.

4 THREATS TO VALIDITY
4.1 External validity
It is important to stress that in this evaluation we are
not claiming generalizability, but rather we aim at
showing the viability and feasibility of the ATDx ap-
proach in the context of a tool widely use in practice
and real-world Java projects. A potential threat to va-
lidity consists in the representatives of the projects
selected in Step 3. We mitigated it by performing
a series of quality-filtering steps to filter out corner
cases or toy projects. Nevertheless, selected projects
still exhibits a certain level of heterogeneity in terms
of size and present architectural technical debt items.
Moreover, SonarQube is one of the most used static
analysis tools for Java-based systems [Janes et al.,
2017], making us reasonably confident about the rel-
evance of its rules in real-world projects.

4.2 Internal validity
The projects considered in the dataset provided by
SonarCloud can also contain non-Java source code.
To mitigate this potential threat to validity, we (i) con-
sider only projects with a minimum number of Java
artifacts and (ii) consider only SonarQube rules per-
taining to Java. To avoid bias when selecting the ARSQ

rules, three researchers were involved in step 1 of the
ATDx building process, their level of agreement was

measured statistically, and disagreements were jointly
discussed with the help of a third researcher. The
same mitigation strategy was applied for the defini-
tion of the Java-based 3-tuples in step 2.

4.3 Conclusion validity
We are reasonably confident of the correctness of
the applied statistical methods; when inspecting the
AT DxSQ and AT DDSQ values, we computed standard
summary statistics on the obtained data and applied
a non-parametric statistical test (i.e., Kruskal-Wallis)
which does not make any assumption on the distribu-
tion of the analysed data. Also, a replication package
with the raw data and analysis scripts is available for
independent verification of the results6.

4.4 Construct validity
It is important that the used analysis tool is config-
ured correctly in order to provide reliable results. We
mitigated this potential threat by reusing the dataset
of analysis results provided by the SonarCloud plat-
form. Moreover, our viability assessment suffers from
a mono-method bias since we are consider only one
analysis tool, i.e., SonarQube. This is in line with the
feasibility-oriented nature of this assessment, which
will be expanded to additional analysis tools in the
next steps of this research line.

6https://github.com/ATDindeX/ATDx

https://github.com/ATDindeX/ATDx


REFERENCES
Ernst, N. A., Bellomo, S., Ozkaya, I., and Nord, R. L.

(2017). What to fix? distinguishing between de-
sign and non-design rules in automated tools. In
IEEE International Conference on Software Architec-
ture (ICSA), pages 165–168.

Janes, A., Lenarduzzi, V., and Stan, A. C. (2017). A contin-
uous software quality monitoring approach for small
and medium enterprises. In 8th ACM/SPEC on In-
ternational Conference on Performance Engineering
Companion, pages 97–100.

Kruskal, W. H. and Wallis, A. (1952). Use of ranks in one-
criterion variance analysis. Journal of the American
Statistical Association, (47):583–621.

McCabe, T. J. (1976). A complexity measure. IEEE Trans-
actions on Software Engineering, (4):308–320.

Spearman, C. (1961). The proof and measurement of asso-
ciation between two things. The American Journal of
Psychology.

Verdecchia, R., Lago, P., Malavolta, I., and Ozkaya, I.
(2020). ATDx: Building an Architectural Technical
Debt Index. In ENASE, pages 531–539.


	ATDx Approach Viability
	ATDx building steps execution
	Step 1: AR Identification from SonarQube Rule Set
	Step 2: Formulation of the Java-based 3-tuples "426830A ARiSQ, GriSQ, ATDDjSQ"526930B 
	Step 3: Dataset establishment via SonarCloud
	Step 4: ATDx Analysis Execution and Refinements
	Step 5: Results Inspection

	Approach Viability Results
	ATDD distribution
	ATDD dimensions correlation
	Inspection of ATDDSQ values of sample projects

	Threats to Validity
	External validity
	Internal validity
	Conclusion validity
	Construct validity


