
Computer Standards & Interfaces 92 (2025) 103906 

A
0

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Energy-efficient neural network training through runtime layer freezing,
model quantization, and early stopping
Álvaro Domingo Reguero a, Silverio Martínez-Fernández a,∗, Roberto Verdecchia b

a Universitat Politècnica de Catalunya, Spain
b University of Florence, Italy

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.1
3371442

Keywords:
Green AI
Deep learning
Computer vision
Layer freezing
Model quantization
Early stopping

A B S T R A C T

Background: In the last years, neural networks have been massively adopted by industry and research in
a wide variety of contexts. Neural network milestones are generally reached by scaling up computation,
completely disregarding the carbon footprint required for the associated computations. This trend has become
unsustainable given the ever-growing use of deep learning, and could cause irreversible damage to the
environment of our planet if it is not addressed soon.
Objective: In this study, we aim to analyze not only the effects of different energy saving methods for neural
networks but also the effects of the moment of intervention, and what makes certain moments optimal.
Method: We developed a novel dataset by training convolutional neural networks in 12 different computer
vision datasets and applying runtime decisions regarding layer freezing, model quantization and early stopping
at different epochs in each run. We then fit an auto-regressive prediction model on the data collected capable to
predict the accuracy and energy consumption achieved on future epochs for different methods. The predictions
on accuracy and energy are used to estimate the optimal training path.
Results: Following the predictions of the model can save 56.5% of energy consumed while also increasing
validation accuracy by 2.38% by avoiding overfitting.The prediction model developed can predict the
validation accuracy with a 8.4% of error, the energy consumed with a 14.3% of error and the trade-off between
both with a 8.9% of error.
Conclusions: This prediction model could potentially be used by the training algorithm to decide which
methods apply to the model and at what moment in order to maximize the accuracy-energy trade-off.
1. Introduction

Since the resurgence of deep neural networks in 2012 due to its
breakthrough for image classification [1], deep learning and other
related Artificial Intelligence (AI) methods have lived an exponential
growth in relevance up to this day. This includes academic interest via
journal, conference and repository publications, but it is not limited
to that. In the private sector, tons of new AI companies have been
funded, existing ones have integrated this technology, and the new-
born AI sector experienced an ever-growing increase of investments
over the last few years [2,3]. The line of improvement of these tech-
nologies over the latest years has been scaling up the computation,
either directly (parallelization or distributed training) or by chang-
ing parameters that indirectly increase it (larger datasets or bigger
model architectures), with algorithmic improvements occurring spo-
radically [4]. The computation scaling trend has led to an exponential
increase on the power used in the largest AI training runs by a factor
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of 10 yearly, yielding a growth of more than 300,000x from 2012 to
2018 [5]. Despite that this rate is starting to slow down in state-of-
the-art models due to technical infeasibility to meet the computational
requirements [6], most modern policies in AI development still focus on
outspending rivals in computational power [7]. Amidst the compute-
centered development trend, numerous AI researchers have expressed
their concerns about the environmental implications of ever-growing
energy-consuming algorithms [8].

In the field of green AI, most of the proposals either integrate com-
pute awareness in the own learning algorithm prior to start training, or
perform an optimization process after training the model. The goal of
this study is to conceive a novel framework that allows the designer to
pose different training modes, allowing the model to choose the most
appropriate one during the training according to the predefined objec-
tives and the collected data up to that moment. The framework is based
on a monitoring system that collects the data and a control system that
modifies the training at will in the middle of it. To develop a decision
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criteria for choosing the method that best follows the objectives, we
perform a statistical analysis of the impact that different methods have
on the energy consumption and accuracy of a model when applied at
different moments of the training phase. To collect the data, we train a
Convolutional Neural Network (CNN) on 12 different computer vision
datasets during 50 epochs, applying 3 methods (layer freezing, model
quantization and early stopping) at 5 different moments each run of the
training. The analysis includes the development of an auto-regressive
prediction model based on a what if analysis and simulation.

The contributions of this work are:

• The creation of a dataset on mid-training decisions of different
methods applied over CNNs at different epochs of the training
with measures of accuracy and carbon footprint.

• An analysis on the effect of those decisions over the accuracy
obtained and energy consumed at the end of the training.

• A data-driven auto-regressive prediction model for accuracy and
energy based on a regression over the mentioned dataset.

• A technique to reduce the energy consumption without hindering
the accuracy achieved by predicting the optimal decisions during
the training based on the prediction models developed.

The rest of the paper is structured as follows: Section 2 describes the
ackground knowledge needed to understand the concepts explained
n the study, as well as presenting an overview of the related work.
ection 3 formulates the problem to be solved and the goals of the
roject by defining the research questions (RQs), and the design of the
tudy, including the variables taken considered and the methodology
tilized to collect and analyze the results. Section 4 shows the results
f the stated analysis and the answers to the RQs. Section 5 discusses
he results obtained, their implications, and the future work the results
ntail. Finally, Section 6 presents the final conclusions of the study.

. Background and related work

.1. Background

In the sustainable computing research area, and more specifically
n Green AI, new solutions for the sustainable development of AI
re constantly searched and tested, motivated by the environmental
oncerns on the high energy demands of common ML algorithms and
he current state of the global climate [9]. Those solutions can target
ither the training or the inference phase. The energy consumption
n the training phase is critical [10]. That is why we opt to focus
n methods to improve the energy efficiency for the training of NNs.
recisely, we consider three widespread methods utilized to alleviate
he computational requirements during training, namely early stopping,
ayer freezing, and model quantization.

Early stopping is a regularization method mostly utilized in the
raining phase to prevent overfitting [11–13]. The method involves
onitoring the performance of a model on a validation set during

raining, and stopping the training process when performance on the
alidation set begins to deteriorate, allowing to identify the optimal
umber of training epochs to reduce overfitting. Layer freezing [14–
6] instead is a method adopted during neural network training which
ntails keeping layers unchanged (or ‘‘frozen’’), while focusing com-
utational efforts on fine-tuning the unfrozen layers. Finally, model
uantization is a method entailing the precision reduction of the num-
ers used to represent parameters models, typically from 32-bit floating
oint to 16-bit or 8-bit integers, hence decreasing model size and
peeding up inference times [17–19]. Model quantization can be ap-
lied during training or post-training, and often entails techniques to
inimize the accuracy loss associated with lower precision.

In the current literature, algorithmic design techniques for Green
I typically involve taking into account the compute implications
f the strategies to determine how to apply them in a determinis-
ic and learnable fashion, such as using reinforcement learning or
2 
dynamic parameter adaptation [20]. We decided to take a different
approach, namely leveraging the live monitorization of resources, a
parallel branch of green AI which was to the best of our knowledge
never utilized for energy-aware training algorithms. The major advan-
tage of monitorization is that the algorithm cannot only obtain the
current state of the model, but can access also the history of past states.
This allows to forecast next states and, with the help of data from
other executions, simulate different paths of training according to the
different decisions made. To make this possible, we collected data from
training multiple neural networks with different datasets of computer
vision, applying the mentioned methods at different moments of the
training phase.

2.2. Related work

Sustainable software had multiple and ambiguous definitions in
its early stage, usually referring only to long-lasting software. The
Karlskrona manifesto in 2015 defined sustainability in software by
dividing it into five dimensions: environmental, social, economical,
technical and individual sustainability [21]. In this work, we focus
particularly on environmental sustainability, defined by Calero et al.
as ‘‘how software product development, maintenance, and use affect
energy consumption and the consumption of other natural resources.
[...] This dimension is also known as Green Software’’ [22,23] or
‘‘Sustainability IN Software.’’ [24].

In the context of Green AI [22,25], i.e., AI environmental sustain-
ability, one the most relevant paper on the environmental sustainability
of deep learning is the work done by Strubell et al. in 2019 [26], that
spiked a major research interest in the topic.

Based on the observation that accuracy increased logarithmically
with respect to model size [27], dataset size [28], or the number
of hyperparameter tuning experiments [29], researches in the past
presented light-weight architectures or algorithms that take less com-
putational power to achieve similar accuracy metrics [30–32]. As re-
ported in a dedicated survey [33], common green AI techniques are
based on parameter pruning [34] and quantization [35], convolutional
filter compression and matrix factorization [36], neural architecture
search [37], and knowledge transfer and distillation [38].

As can be evinced by inspecting the literature, a large fraction of
studies focus on the inference phase, e.g., the work of Li et al. [39],
which showed that inference optimization methods should be followed
by millions of inferences to compensate the energy spent in training.
While millions of inferences are achieved by some widely utilized
deployed models, there are still loads of NNs that do not reach that
amount of usage, e.g., test models that never get deployed, or the ones
trained for a very specific few-use task. based on such related works,
in this study, we opted to focus on the energy efficiency of the training
phase.

Regarding papers that propose new methods to improve NN envi-
ronmental sustainability, we find only few studies on improving the
effect of already existing methods by an optimized application of them.
As examples, Yang et al. proposed an algorithm for weight pruning
that focuses on pruning first the layers that consume more energy, as
they showed that traditional algorithms that reduce the total weight
or number of operations of the model do not necessarily reduce the
energy consumption [40]. Nonetheless, Yang et al. again only measure
and reduce the energy consumed on inference time, ignoring the energy
consumed during training. Wang et al. instead reviewed minibatching,
layer freezing, and model quantization to reduce energy consumed
throughout training [41], by proposing algorithm modifications to
make them self-adaptive and learnable from the start of the training.

Other related literature explored how inference energy consumption
can be optimized on edge devices [42], the impact that hyperparameter
tuning can have on power consumption [43], knowledge distillation
techniques to make neural machine translation more efficient [43], the

impact of NN hardware deployment on energy, and energy-accuracy
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trade-offs achievable via structure simplification [44]. As further dis-
cussed below, among such vast and heterogeneous amount of green AI
literature, no study seemed to date to have focused on the research
line we are considering in this work, namely achieving energy efficient
model training via a mix of known green AI strategies, mid-training
monitoring, and execution of runtime decisions.

Regarding the topic of green AI monitoring, numerous frameworks
have been proposed to collect and estimate energy and carbon con-
sumption of ML models (Machine Learning Emissions Calculator [45],
xperiment-impact-tracker [46], Green Algorithms [47], among others).
ome of them include an algorithm to optimize energy consump-
ion, like Perseus, which optimizes parallel GPU job scheduling by
dentifying straggler pipelines and critical paths of computation. Very
ew monitoring tools however include a prediction functionality as
he one utilized in our study. One of the first approaches to energy
rediction was NeuralPower, which proposed a polynomial regression
sing the model architecture as the predictor [48]. SyNERGY fine-
rained this concept to predict energy consumption for each layer
ased on predicted Single-Instruction Multiple-Data operations and
us accesses, which at the same time are predicted using Multiply-
ccumulate operations registered [49]. IrEne decomposes a model into
tree where each node is a ML primitive (such as layers) and its

nergy is predicted using data from previous executions on different
odels with similar nodes, to later combine all nodes to get total energy

onsumed [50]. Wang et al. developed time and energy prediction
odels for the inference phase using the computation graphs from the
eural networks in order to find equivalent graph substitutions with
ower power costs [51]. In contrast to the green AI monitoring research
resented above, which focus on the inference phase, in this work we
everage monitoring strategy considering the training phase, which as
dditional novely is used in this work to optimize the energy consumed
y training.

In contrast to all the work discussed so far, a framework that
ombines monitoring and prediction for the training phase is Carbon-
racker, which enables self-reporting of real and forecasted compute
ime, energy consumption and carbon emissions based on measure-
ents on GPU, CPU and DRAM [52]. Building upon such work, we

xplore the impact that a novel strategy based on forecasting the effects
f different green AI techniques, and the runtime application of the
echniques based on the computed forecasts, can have on concrete
odel training energy consumption.

In conclusion, to the best of our knowledge, no previous study has
ombined at runtime Green AI techniques like layer freezing, model
uantization, and early stopping with monitoring and prediction capa-
ilities. Therefore, as most prominent novelty of this work with respect
o the related literature, this study presents the integration of these
reen AI techniques with monitoring and prediction capabilities, en-
bling the execution of Green AI decisions during mid-training runtime
or the first time.

. Research methodology

.1. Research goal

We define the research goal, following the Goal Question Metric
GQM) approach [53], of the project as:
nalyze the mid-training decisions (layer freeze, model quantization, early
topping)
ith the purpose of measuring their impact on energy consumption and
ccuracy
ith respect to the training phase
rom the point of view of the ML engineer
n the context of neural networks.

This goal breaks down in two research questions (RQs):
RQ1: Do the mid-training decisions (layer freeze, model quantization,

umber of epochs) have any effect on accuracy and energy consumption?
3 
The aim of RQ1 is to provide an initial analysis on the proposed
design decisions, to ascertain their effects on the training of the NN
and their worth as an alternative to be considered during the design
of the training in the context of energy efficiency. The metrics have
been chosen to follow the score defined as 𝑆𝑐𝑜𝑟𝑒 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦∕𝐸𝑛𝑒𝑟𝑔𝑦
presented in [54].

RQ2: Can accuracy and energy consumption be accurately predicted
throughout training for all the design decisions?

The aim of RQ2 is to provide a reliable prediction model to try and
maximize the score in advance, which requires an estimation of the
accuracy and energy consumption. The data generated in RQ1 will be
interpreted as a time series using the epochs as the temporal unit. This
question involves simulating the training to predict the accuracy and
energy of further epochs, as well as what if analysis to simulate the
application of the mentioned methods.

3.2. Study design

With these RQs in mind, we propose a study design consisting of
three stages, as shown in Fig. 1, which are:

1. Stage 1: Original data management. This stage consists of collect-
ing, preprocessing, and saving a wide range of computer vision
datasets. The output of this stage is a locally saved collection of
datasets ready to be directly read and interpreted by the CNN
models to train on them.

2. Stage 2: Model training and new data generation. This stage
consists of training our CNN with the datasets collected while
applying the mid-training design decisions proposed, and saving
all the intermediate results. The output of this stage is a novel
dataset on green CNN training evolution called EAT-IT (Energy
Accuracy Trade-off - Interactive Training).

3. Stage 3: New data analysis. This stage consists of analyzing the
newly created dataset, interpreted as different time series, to
answer RQ1 and RQ2, and creating and evaluating a reliable
prediction model for those time series. The output of this stage
is in first place an understanding of the data collected in the pre-
vious stage and the relationship between the different variables
following the research questions, and a usable auto-regressive
prediction model for the variables of interest as part of the
answer of RQ2 with its evaluation.

To guarantee replicability, all the data and scripts used are avail-
able in a Zenodo repository. 1 To guarantee reproducibility, the study
design is composed by basic blocks, each one of them with one or
multiple components that can be altered, removed or added without
affecting the general structure of the study, allowing for alternative
experiments and studies that could expand the knowledge and insights
provided by this methodology.

3.3. Variables

In the following subsections we define the variables of our ex-
perimental design grouped into three categories, as summarized in
Table 1.

3.3.1. Independent variables
In this study we define three independent variables, which are:

training mode, epoch of intervention and number of epochs.
Training mode (TM) refers to variations on the setup of the training

that have previously been proposed by other authors to modify the per-
formance of the model, in comparison to a by-default ‘‘base’’ training.
In this study, the alternative modes are chosen to be layer freezing

1 https://doi.org/10.5281/zenodo.13371442.

https://doi.org/10.5281/zenodo.13371442
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Fig. 1. Schema of the empirical study.
Table 1
Variables of the experiment and their classification.

Class Name Description Scale Operationalization

Independent Training mode The decisions made during the training Nominal {Base, layer freezing, model quantization}
Epoch of intervention The number of epochs used before taking a decision on training Numerical {0, 10, 20, 30, 40}
Epoch of stopping The total epochs of training the model Numerical [1, 50]
Dataset The input dataset used to train the models Nominal 12 popular CV datasets

Dependent Energy consumption Net power supply consumed during the compute time Numerical Measured with Nvidia-SMI as kW h
Accuracy Validation accuracy obtained after training Numerical Measured with TensorFlow
and model quantization. The modes are experimental blocking factors,
meaning that a model cannot be freezed and quantized at the same
time, to avoid a possible interaction between the two modes [55]. In
addition, to limit the number of possible interactions between variables,
once a model changes its TM from base mode, it cannot change again
neither to base mode nor to another TM, reflecting also that such
situation rarely happens in common DL training practices.

The base mode is defined as having freezed the base layers of the
model, training the top part of it, with a numerical precision of 16-
bit floating point. This mode is the ‘‘by-default’’ mode. The base mode
is designed to enforce the focus of the research design on fine tuning
pretrained models, as it is a very extended practice in DL for sav-
ing resources, reducing environmental impact. Additionally, accuracy
achieved in fine tuning pretrained models is correlated with accuracy
achieved by training from scratch [56].

On the Layer Freezing (LF) mode, all layers but the last one are
freezed, so that only the output layer can be trained.

On the Model Quantization (MQ) mode, all the model is quantized
from the default 32 bits to the smaller 16 bits, including the computa-
tional results and the model weights, in contrast of the mixed precision,
which only quantizes the computational results to the lower precision.
16 bits is chosen over mixed precision in this setup to force bigger
energy savings, with a potentially higher accuracy downgrade.

The epoch of intervention (EoI) marks the moment at which a
decision during the training of the model is made, being a decision a
change on the TM. As said before, the base mode is the default one with
which all trainings are expected to start, so the EoI marks when the TM
changes from base to LF mode or to MQ mode. As only one change of
mode is possible in this setup, each record can only have one EoI. This
number is a positive integer for a model in a state where its training
mode is different to the base one, and is set to zero if and only if the
model is at base mode. If the training starts directly in a mode different
than the base one, the EoI is defined to 1.
4 
The epoch of stopping shows for how long the model has been
training, adding up the epochs of base and modified training. This does
not imply an actual stop of training, but a simulation of stopping, as all
the intermediate results are saved and later analyzed as if the training
had really been stopped at that point. In this experiment, the number
of considered epochs goes up to 50 for every training.

We use a categorical variable to indicate which dataset is the model
trained with. Although the effects of different datasets on the model
performance is not on the focus of this study, it is still a variable that
can affect the results. This variable can take up to 12 values, corre-
sponding to the 12 datasets used to train this model. More information
about the datasets can be seen in Table 2.

3.3.2. Dependent variables
As defined in Section 3.1, the focus of this study is the trade-off

between energy consumption and accuracy, so the dependent variables
measured in this experiment aim to assess those attributes: Energy
consumption measured in kW h, and validation accuracy of the models
trained.

3.4. Data collection

The starting point for the data chosen to train the CNN in our study
is a collection of 12 computer visions datasets used by Kornblith et al.
in [56] to test transfer learning and fine tuning over models pretrained
on ImageNet. This dataset perfectly fits our study, as the models used
here will also be fine-tuned over pretrained weights on the same
dataset. The images from the 12 datasets are cropped if the labels
include bounding boxes, and resized to a resolution of 32 × 32 pixels
to match the lowest resolution of the datasets, corresponding to the
resolution of cifar10 and cifar100. This also saves computational power,
and although the accuracy obtained is lower than the possible with

complete resolution, it is still a predictor of it [57].
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Fig. 2. Visualization of the training tree recreated, where each ball represents an epoch and each bifurcation a cloning of the model.
The model chosen to be trained is VGG16, as it is composed of fewer
layers than similar architectures while still achievig very good results
in benchmarks such as ImageNet [58]. In this study, the convolutional
layers of the model are imported already pretrained on ImageNet, as
transfer learning allows to achieve good performance way faster than
training from zero. The pretrained layers are frozen, to which two fully-
connected layers of 4096 channels are added, apart from the output
layer with a variable number of channels depending on the dataset, to
match the original architecture proposed. The chosen software in which
develop the training is the Python library TensorFlow, as it includes a
pretrained version of VGG16 as well as most of the datasets used.

The training decisions to be made are four:

• Keeping the model untouched as previously defined, which is said
to be the ‘‘base’’ training mode.

• Layer freezing freezes the two fully connected layers, leaving only
the last one as trainable.

• Model quantization is performed over all the weights of the
model, as well as for the intermediate computations and results.
Model quantization is mutually blocking with layer freezing, so
they will never be applied together over the same training.

• Early stopping is mocked by selecting the metrics achieved at the
desired epoch during the analysis, although the training is not
stopped.

The models are trained for a total of 𝑁 = 50 epochs, as that is
far beyond the convergence point of the validation accuracy of the
models. Such convergence point of validation accuracy is between 10–
15 epochs on average, as seen in Fig. 13. The training mode can be
changed at regular intervals of 𝑠 = 10 epochs starting at 0 (a whole
training in that mode). This generates 5 decision points at which 𝑚 = 2
decisions can be taken, apart from letting the model in the current
mode (early stopping is not performed in this phase), forming a decision
tree. As the training decisions are blocking, and once taken the model
cannot revert back to base mode, the decision tree has 𝑚⌈𝑁

𝑠 ⌉ + 1 = 11
leaf nodes. This tree can be visualized at Fig. 2. Each model training
on each dataset follows this tree structure, called from now on training
tree, meaning that only one model is created at first, cloned at each
decision node for the different branches, avoiding redundant computa-
tion for different paths that start with the same decisions. That makes
each training on a dataset consist of 350 epochs following the training
tree structure, in comparison with 550 epochs that would be needed
to train each of the 11 leaf nodes of decision. The datasets are trained
on a random order, and the training tree is explored following a Depth
First Search strategy to save space, running the leaf branches first in
every bifurcation.
5 
Table 2
Datasets used and their characteristics.

Dataset num_classes train_size test_size from_tensorflow

birdsnap 500 37 354 2500 No
caltech101 102 3059 6085 Yes
cars196 196 8144 8041 Yes
cifar10 10 50 000 10 000 Yes
cifar100 100 50 000 10 000 Yes
dtd 47 1880 1880 Yes
food101 101 75 750 25 250 Yes
oxford_flowers102 102 1020 6149 Yes
oxford_iiit_pet 37 3680 3669 Yes
sun397 397 76 127 21 750 Yes
visual_domain_
decathlon/aircraft

100 3334 3333 Yes

voc 20 2501 4952 Yes

The training is performed on the high performance servers provided
by /rdlab, a Research and Development Lab founded by the UPC to fos-
ter the research on computer science.2 A 250 m2 TIER II+ ANSI/TIA-942
certified space, with a dual cooling system, redundant power generator
and a 24 × 7 monitoring service. Accuracy after each epoch is registered
using already implemented TensorFlow callbacks due to the simplicity
of its integration, and energy consumption is measured with Nvidia-
SMI, due to its ease of use and accuracy due to being implemented and
accessing actual measurements on the Nvidia GPUs. Nvidia-SMI queries
the power draw to sensors built in the GPU itself with a sampling
frequency of 1 s [59]. As it is an energy profiler, Nvidia-SMI gives
estimations. These estimations correlate with real consumption [60],
and have been correctly used in previous studies [61].

The data is saved in a dataset called EAT-IT consisting of 3 files,
public to use in the replication package. Two files correspond to the
two sources of data collection: TensorFlow callbacks (history.csv)
and Nvidia-SMI (monitor.csv). The third one is an auxiliary table
explaining information about the datasets chosen to be used, which is
presented for completeness in Table 2.

3.5. Data analysis

Below, we describe the process to analyze RQ1 and RQ2. For the
tests described here and the results reported in Section 4, the level
of significance is defined to be 𝛼 = 0.05. The code is available in the
replication package highlighted in the data availability statement and
the end of the introduction.

2 https://rdlab.cs.upc.edu/, last visited 11/09/2023.

https://rdlab.cs.upc.edu/
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Table 3
Tests performed for RQ1 with their null hypotheses.

Variables Null hypothesis Statistical test Results

Accuracy on three
TM

There is no difference between the accuracies obtained by
the three different TMs

Kruskal–Wallis Table 4

Accuracy on base
and LF modes

There is no difference between the accuracies obtained under
base mode and under LF mode

Wilcoxon Table 4

Accuracy on base
and MQ modes

There is no difference between the accuracies obtained under
base mode and under LF mode

Wilcoxon Table 4

Accuracy on epoch
of stopping

There is no difference between the accuracies obtained at
each epoch of the training

Kendall Fig. 6

Energy on three TM There is no difference between the energy consumed by the
three different TMs

Kruskal–Wallis Table 5

Energy on base and
LF modes

There is no difference between the energy consumed under
base mode and under LF mode

Wilcoxon Table 5

Energy on base and
MQ modes

There is no difference between the energy consumed under
base mode and under LF mode

Wilcoxon Table 5

Energy on epoch of
stopping

There is no difference between the energy consumed up to
each epoch of the training

Kendall Fig. 9
3.5.1. Data analysis for RQ1
For RQ1, the analysis is divided in two parts, corresponding to

the two dependent variables we are studying, namely accuracy and
energy consumption.

In order to compare accuracy over different factors, directly using
the accuracy can be problematic, as an additive increase should be
interpreted differently depending on the baseline: an increase of 1%
in accuracy is different over a base 50% or over a base 99%. For that
reason, in RQ1, the accuracy is transformed into a derived metric as
in [56]: a logit function 𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑−1(𝑝) = 𝑙𝑜𝑔(𝑝∕(1 − 𝑝)), that
is, the log odds. To eliminate the effect of varying difficulty across
datasets, the metrics of accuracy and energy are adjusted by subtracting
the difference between the group mean and the dataset mean. That is,
if 𝑥𝑚𝑑 denotes a metric of the model 𝑚 in the dataset 𝑑, the centered
metric is computed as 𝑥′𝑚𝑑 = 𝑥𝑚𝑑 − 𝑥𝑑 + 𝑥 [62]. This way, all datasets
ave the same average log odds, making it simpler to compare the
ariance caused by the effects of a modified training across different
atasets with a different complexity.

To test if layer freezing or model quantization affect the energy
onsumption and accuracy, the data collected at the end of each
raining phase is selected, and the results from the base training are
ointly compared to that ones of the two methods, independently for
ach epoch of intervention, with a Kruskal–Wallis test [63]. If this test
etrieves a significant difference of medians, the different treatments
re compared individually to the base training with the Wilcoxon
est [64].

To test if early stopping affects performance, data from each of the
0 epochs of the training is extracted (simulating that the training had
topped at that moment) and compared to the data at the end of the
0 epochs by computing the Kendall correlation coefficient [65].

All these tests performed in RQ1 are summarized in more detail in
able 3.

.5.2. Data analysis for RQ2
For RQ2, in which we create models to predict accuracy and en-

rgy consumption and validate their accuracy, we follow the pipeline
ummarized in Fig. 3.
Predicting accuracy. The prediction model on accuracy is an auto-

egressive model over previous accuracies and training modes fitted
sing panel data analysis, treating each dataset as a different individual
hat might have specific parameters while still sharing common ones
ith all the group. Pooled Ordinary Least Squares, fixed effects and

andom effects models are tested and compared to select the model
hich best fits our data [66]. Pooled OLS model ignores all differ-
nces of individual-level characteristics by pooling all time series and

erforming the same linear regression over all the different entities,
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fixed effects model estimates individual-specific intercepts to account
for the differences between individuals assuming that those are fixed
over time, and random effects model assumes that the individual-level
effects are random and uncorrelated with the independent variables.
Pooled OLS represents a nested model of fixed effects, so they can
be compared with an ANOVA or a Wald test [67]. Fixed effects is
compared to random effects via Hausman test [68], considering the
former as consistent but less efficient, and the latter as more efficient
but whose consistency needs to be tested.

To know how many previous values (lags) have to be considered in
order to make reliable predictions without overfitting, different models
are fitted, every one with a different amount of values lagged. For
a model or order 𝑛, the 𝑛 coefficients corresponding to the 𝑛 lagged
values are tested to be significantly different to 0 with a 𝑡-test. As
multiple tests are being performed, increasingly more as 𝑛 grows, the
probability of a type I error (a false positive) increases. To control it,
the Bonferroni correction method is applied, in which the significance
level gets divided by the number of tests being performed [69]. If on a
model of order 𝑛 all coefficients are significantly different to 0, and on
the model of order 𝑛 + 1 they are not, then 𝑛 is the optimal number of
lagged values to use for the prediction. This methodology is performed
first to determined the lags needed on accuracy. Then, this number is
fixed and the same methodology is performed to determine the lags
needed on the TM.

The model precision is then measured using 12-fold cross-
validation, dividing the data according to the 12 datasets in which
the model has been trained. The data collected from the 11 training
datasets is used to estimate a priori the regression coefficients for the
lagged accuracy and TM values. The individual-specific coefficients for
each dataset can be discarded as it is not relevant. The model then
traverses the training tree of the twelfth dataset performing inferences
on the next epoch of the tree. The data collected on this dataset up to
the inference epoch is used to estimate the individual-specific parame-
ter. This parameter is simply an additive correction over the prediction
obtained using the common ones. It can then be estimated by the
average difference between the accuracies predicted before each epoch
without any correction and the real accuracies measured after the
epoch. This factor is the one that, when added to a predicted accuracy,
minimizes the expected error of it with the real measured one. For that,
the model needs 𝑛 + 1 starting values of accuracy, being 𝑛 the number
of lagged values of accuracy with which the auto-regressive model is
fitted, and one extra to estimate the individual-specific parameter.

Predicting energy consumption. As, on the same dataset and
under the same training mode, the computational effort of each epoch
is the same, the energy consumption of each one should be independent

from any other factor of previous ones, without defining any temporal
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Fig. 3. Pipeline of the design and evaluation of the prediction models in RQ2.
pattern. This is tested with the Ljung–Box test [70], under the null
hypothesis that there is no autocorrelation on the series of energy
consumed at each epoch. If it is not rejected, temporal independence of
energy consumed between epochs is assumed, and energy consumption
is assumed then to be drawn from some unknown random distribution
around an unknown mean. Under that assumption, the best prediction
possible for future epochs is just the average energy consumed in
previous epochs on the same dataset and TM. In order to predict the
energy that would consume the next epoch on a different training mode
that the current, two smaller regression models are fitted. These models
use as the predictor the average energy consumption on each dataset
under base mode, and as the response the average energy consumption
on each dataset for layer freezing and model quantization modes each.
In the event of a change of TM, the corresponding model is used
to estimate the average energy consumption under that TM from the
average registered energy consumption under base mode up to that
epoch.

The energy prediction model is evaluated on a similar 12-fold
cross-validation way as the accuracy prediction model. 11 datasets are
used to estimate the regression over TM averages, and inferences are
performed on the twelfth one traversing the training tree. The model
uses 𝑛 + 1 starting values of energy consumption to be the same as the
accuracy prediction model.

Maximizing trade-off of both accuracy and energy consump-
tion. The predictions to the score 𝑆𝑐𝑜𝑟𝑒 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦∕𝐸𝑛𝑒𝑟𝑔𝑦 are
just performed using the two previous models, dividing the estimated
accuracy of the next epoch by the sum of the already consumed energy
and the estimated for the next epoch. The precision of this model is
measured with the same 12-fold cross-validation technique as both the
previous models, using also 𝑛+1 starting values of accuracy and energy
consumption.

This model is then used to minimize energy consumption by choos-
ing the best TM in which train the next epoch and the best epoch
to stop in order to find the optimal predicted trade-off score. As,
across epochs, the accuracy is characterized as an increasing function
with diminishing returns until stabilization, and energy consumption
as a constantly increasing function, the score is characterized as a
decreasing function that approaches 0, decreasing rapidly at first and
slowing over time. The trade-off between accuracy and energy is then
defined to be optimum when the rate of increase of both variables is
equal, that is, when the local derivative of the score function is −1. To
reduce the effect of outliers of accuracy or energy on the calculation of
the local score derivative, the measured score up to the inference epoch
is concatenated to the predicted score for the next 10 epochs and fit to a
function of the form 𝑆𝑐𝑜𝑟𝑒 ≈ 𝑐

𝑒𝑝𝑜𝑐ℎ+𝑏 , being 𝑐 and 𝑏 constants estimated
via non-linear least squares. This function is the one used to estimate
the optimal epoch from its derivative. To decide which TM should the
next epoch be trained on, the optimal score (being the one obtained
at the optimal epoch) obtained with all possible TMs is computed, and
the mode with the best one is selected.
7 
Fig. 4. Violin plot for centered log odds for each epoch of intervention.

4. Results

In this section we discuss the quantitative results in response to the
RQs and hypotheses presented in the previous section.

4.1. Do the training decisions have any effect on accuracy and power
consumption? (RQ1)

4.1.1. Effects on accuracy
Fig. 4 shows the violin plot of the correlation between the TM (base,

layer freezing or model quantization) and the epoch of intervention for
each mode with the accuracy (processed as explained in 3.4) obtained
at the end of the training across all datasets. Table 4 shows the 𝑝-values
for the different tests performed. The first one is the Kruskal–Wallis
between the 3 training modes. As can be seen, for all 5 epochs of
intervention tested the 𝑝-value is below the significance level, which
leads to reject the null hypothesis and conclude that at least one group
is different to the rest.

As a follow-up to this result, the training decisions are compared
individually to the base training with Wilcoxon tests. Results of the tests
between LF and base mode show a 𝑝-value under the significance level
for each EoI tested, which leads to reject the null hypothesis in favor
of the alternative one, meaning that, no matter the moment where the
layers are freezed, it has a significant positive effect on accuracy. On
the other hand, no 𝑝-value of the Wilcoxon tests between the MQ and
the base mode fall below the significance level, so the null hypothesis
cannot be rejected. Therefore, there is no evidence that supports the
hypothesis that model quantization affects the accuracy of the model
at the end of the training no matter the EoI.

Fig. 5 shows the box plot of the correlation between the epoch at
which the training has been stopped with the accuracy achieved at that
point of the training. Accuracy shows a Kendall’s 𝜏 coefficient of 0.1594
with a 𝑝-value on the order of 1×10−53, which marks that the estimated
coefficient as significantly different to 0. As can be seen on the box



Á.D. Reguero et al. Computer Standards & Interfaces 92 (2025) 103906 
Table 4
𝑝-values for accuracy tests.

EoI 3-way Wilcoxon Wilcoxon
Kruskal base vs. LF base vs. MQ

0 0.0339 0.0376 0.443
10 5.38 × 10−4 2.01 × 10−4 0.0597
20 0.00232 0.00182 0.843
30 0.00122 2.01 × 10−4 0.590
40 2.51 × 10−4 8.88 × 10−6 0.160

Fig. 5. Box plot for centered log odds at each epoch of the training.

Fig. 6. Kendall’s 𝜏 coefficient for each epoch of start and the centered log-odds, with
its 𝑝-value and the significance threshold in red. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

plot, accuracy seems to stabilize at a certain point during training. To
find the stabilization point, Kendall’s 𝜏 has been estimated multiple
times, each one taking into account one epoch less at the beginning, so
that it arrives a moment when the plot of the accuracy of the selected
epochs is not significantly different than a flat line. Fig. 6 shows the
estimated correlation coefficients with their 𝑝-values against the epoch
at which data has started being considered. The first value to get above
the significance level is starting at 18 epochs, with a 𝜏 of 0.022 and a
𝑝-value of 0.555, being all following values even higher. This means
that stopping at epoch 17 or before has a significant negative impact
on the accuracy achieved, but every epoch after that has no significant
difference to the accuracy reached at the end of all 50 epochs.

4.1.2. Effects on energy consumption
Analogously, Fig. 7 shows violin plot of the correlation between

the training mode and the EoI for each mode with the total energy
consumed at the end of the training, and Table 5 the 𝑝-values for the
different tests done. This time, 𝑝-values of the Kruskal–Wallis tests are
below the significance level only if the EoI is 20 or lower, not being able
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Table 5
𝑝-values for energy tests.

EoI 3-way Wilcoxon Wilcoxon
Kruskal base vs. LF base vs. MQ

0 0.0384 0.0242 0.932
10 4.92 × 10−4 7.17 × 10−5 0.443
20 0.0140 0.0121 0.932
30 0.107 0.0780 0.932
40 0.881 0.671 0.977

to find significant difference in energy consumed when the intervention
it is 30 or higher.

Wilcoxon tests between base and MQ mode do not identify a sig-
nificant difference between the energy consumed of the two modes,
no matter when the quantization is conducted. Nevertheless, the tests
between LF and base mode show the same pattern as the Kruskal–
Wallis test, rejecting the null hypothesis of equal energy consumption
only for an EoI of 20 or lower. An exponential function has been
fitted to the 5 𝑝-values with respect to their EoI via non-linear least
squares. The interpolated function represents the estimated 𝑝-value that
a Wilcoxon test between a supposed energy consumed for base and for
layer freezing training would retrieve for each EoI. This estimated 𝑝-
value surpasses the significance level at a value of 27.88 epochs before
intervention, which leads to the estimation that if a significant negative
difference in energy consumption is sought, layer freezing must be
performed at epoch 27 of before.

Fig. 8 shows the box plot for the centered energy consumed up to
each epoch. This retrieves a Kendall’s 𝜏 coefficient of 0.882 and a 𝑝-
value smaller than the numerical precision of the software (2.2×10−308),
which means strong evidence to support the correlation between the
epoch of stopping and the energy consumed. Moreover, when consid-
ering progressively less epochs, the correlation coefficient decreases
under 0.3 as can be seen in Fig. 9, but the 𝑝-value always remains
way under the significance level, with the maximum 𝑝-value reached
being just 2.04 × 10−7 when just considering the last two epochs. This
means that there is a significant negative difference on the total energy
consumed at the end of the training and at every epoch before.

Key findings for RQ1 (Training Decisions):
Finding 1.1: Layer freezing has a positive effect on final ac-

curacy achieved, no matter at which epoch it has been performed.
Layer freezing also has a negative effect on total energy consumed
as long as it is performed at epoch 27 or before.

Finding 1.2: Model quantization has no effect on model ac-
curacy nor energy consumption, no matter at which epoch model
quantization is performed.

Finding 1.3: Early stopping has a negative effect on final
accuracy as long as it is performed at epoch 17 or before, and
after that the accuracy achieved does not significantly change. Early
stopping also has a negative effect on the total energy consumed no
matter at which epoch it is performed.

4.2. Can accuracy and energy consumption be accurately predicted through-
out training for all the design decisions? (RQ2)

4.2.1. Accuracy prediction
Different panel data analysis methods are used in order to create

a prediction model for the accuracy. To test which method fits better
the data, first only the base mode training data is selected to generate
a single, unbranched time series for each individual (here represented
by the dataset), and the independent variable is lagged once to get the
dependent one.

First, pooled OLS and fixed effects models are compared via an 𝐹 -
test, which retrieves a 𝑝-value smaller than 1 × 10−50, rejecting the null
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Fig. 7. Violin plot for centered energy consumption for each epoch of intervention.

Fig. 8. Box plot for centered energy consumed up to each epoch of the training.

Fig. 9. Kendall’s 𝜏 coefficient for each epoch of start and energy consumed, with its
𝑝-value and the significance threshold in red. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

hypothesis that both models are equally good favoring fixed effects. On
top of that, a Wald test is performed on the coefficients added on the
fixed effects model with respect to pooled OLS, with the null hypothesis
that they are all equal to 0. This test retrieves a 𝑝-value of virtually 0,
rejecting that hypothesis and again proving a difference between both
models. Then, this model is compared to a random effects model via a
Hausman test, which retrieves a 𝑝-value smaller than 1 × 10−50, ruling
the random effects inconsistent in favor of the fixed effects. All those
tests are repeated using more lagged values on the data, and all of them
give the same general results. More details on the models and tests can
be seen on Tables 6 and 7. From the collected results we can conclude
that fixed effects is the method that better explains the data.
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Once the model is chosen, all the data can be taken into considera-
tion, adding an independent variable to codify the training mode.

𝑛 models are fitted, each one with 𝑖 = 1,… , 𝑛 lagged values of
accuracy and TM. The 𝑖 coefficients corresponding to the lags on
accuracy are tested to be significantly different from 0 with a 𝑡-test.
The first model with at least one coefficient not proven to be different
from 0 is the one that uses 𝑛 = 5 lagged values, whose coefficient
for the last one is of 0.0126 with a correspondent 𝑝-value of 0.297,
and a Bonferroni-corrected significance level of 0.01. On top of that,
an ANOVA test is performed between every two consecutive models,
that is, one fitted with 𝑛 lagged values and the other one with 𝑛 + 1.
The first test that does not give a significant difference between the
residual error of two contiguous models is for 𝑛 = 4, with an 𝐹 -statistic
of 0.616 and a 𝑝-value of 0.605. This test is then also unable to reject
the hypothesis that the addition of the fifth lagged value does not
significantly increase the precision of prediction.

Upon a further inspection on the models fitted, the coefficients
corresponding to the dummy variable for the MQ mode are never
significantly different from 0, neither on the current epoch’s mode nor
on the lagged modes. This is consistent with the results for RQ1, which
proved that there is no difference between the results with the base TM
and the MQ one. For that reason, that variable is dropped and the data
collected with that mode is treated in the same way as the one collected
with the base mode.

After fixing the number of lags on accuracy on 𝑛 = 4, four more
models are fitted, using 𝑖 = 1,… , 4 previous values of TM, and the 𝑖
coefficients are again tested to be significantly different from 0 with
a 𝑡-test. For each of the models, only the last coefficient from the
TM (corresponding to the mode of 𝑖 epochs before the current one) is
significantly different from 0 after the Bonferroni correction, being the
previous 𝑖 − 1 not significant, so the only model with all coefficients
significant is the one that only uses 𝑖 = 1 lagged value of TM

To sum up, the model reporting the best prediction precision is fixed
effects, using 4 lagged values of accuracy and one of training mode as
the predictors, without considering quantization mode. This model is
evaluated via 12-fold cross-validation over the 12 datasets on which the
CNN was trained, as explained in Section 3. The model achieves a sum
of squared errors (SSE) of 0.2161 and a mean (MSE) of 5.425e−5, with a
mean relative error (MRE) of 8.77%. A visualization of the predictions
can be seen in Annex C

4.2.2. Energy consumption prediction
To test the hypothesis of independence, that is, that each sample on

energy consumed is independent from the previous one, the autocorre-
lation coefficients from the energy consumed on single-mode trainings
are inspected. All trainings with a change of mode in the middle of it are
discarded for this test, as the subsequent change of energy consumption
can give place to an undesired correlation not caused by an actual
temporal pattern on the data. Therefore, for each dataset 3 series are
tested, one for each training mode (base, LF and MQ). The first 10
correlation coefficients from 2 datasets can be seen on Fig. 10, as well as
the 95% confidence bands for those being significantly different than
0. Those correspond with the datasets with more and less significant
coefficients. It can be seen that only a few of the coefficients surpass
the confidence bands, meaning that all the rest are not significantly
different from 0 so there is no evidence of autocorrelation. The ones
that surpass the bands only do it slightly, so the results can be attributed
to spurious results, given the high number of coefficients that are being
tested (30 per dataset for 12 datasets).

To further test the presence of autocorrelation on the series, espe-
cially for those which had significant coefficients, the Ljung–Box test is
applied, which compares the whole group of correlation coefficients to
0. The 𝑝-values of the tests can be seen on Fig. 11. As can be observed,
for most of the datasets and modes, the test did not find sufficient
evidence to reject the null hypothesis of all the correlation coefficients
being equal to zero, except for 2 series of the 30 tested, which are
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Table 6
Details on prediction models for different lagged values.
Lagged values Model Statistic DF 𝑝-value SSE RSE 𝑅2

Pooled OLS 16 181 586 <10−307 0.08306 0.01191 0.9950
1 Fixed effects 16 181 575 7.6 × 10−135 0.04895 0.009227 0.9970

Random effects 116 390 1 <10−307 0.08306 0.01191 0.9950

Pooled OLS 62 187 573 <10−307 0.07467 0.01142 0.9954
2 Fixed effects 19 830 562 2.6 × 10−91 0.03542 0.007939 0.9978

Random effects 124 375 2 <10−307 0.07467 0.01142 0.9954

Pooled OLS 52 496 560 <10−307 0.05660 0.01005 0.9965
3 Fixed effects 18 696 549 4.2 × 10−51 0.03343 0.007804 0.9979

Random effects 157 489 3 <10−307 0.05660 0.01005 0.9965
Table 7
Details on prediction model tests for different lagged values.

Lagged values Test Statistic DF 𝑝-value

𝐹 -test OLS vs. FE 56.62 11 4.1 × 10−59

1 Wald test over FE 670.1 11 <10−307

Hausman test FE vs. RE 615.3 2 3.1 × 10−88

𝐹 -test OLS vs. FE 36.42 11 1.1 × 10−83

2 Wald test over FE 400.6 11 <10−307

Hausman test FE vs. RE 396.6 2 2.5 × 10−134

𝐹 -test OLS vs. FE 34.58 11 6.1 × 10−56

3 Wald test over FE 473 11 <10−307

Hausman test FE vs. RE 375.7 2 4.0 × 10−81

Fig. 10. Autocorrelation coefficients for single-mode trainings for two datasets, one
with significant coefficients and one without.

Fig. 11. Ljung–Box test 𝑝-value for single-mode trainings for each dataset.

considered outliers as no evidence was found on the other 28 training
branches. So, despite of the mixed results on the Ljung–Box test, the
independence hypothesis is accepted.

Fig. 12 shows the average energy per epoch consumed in the
alternative modes against the base one, with the identity line in blue.
10 
A point over that line represents an increase on energy when changing
to that mode, while a point under it represents a decrease. It is worth
noticing that there is a clear distinction of five datasets that consume a
higher amount of energy (precisely cifar10, cifar100, sun397, food101
and birdsnap, in ascending order, with the two first ones overlapping
and seeming only one point) and seven that consume much less. For the
five high-consuming datasets, all data points are below the identity line,
indicating a reduction of energy. On the other hand, some of the low-
consuming datasets present a small increase of energy for some modes.
Although counter-intuitive and against the general pattern and against
the conclusion drawn for RQ1 (in the case of layer freezing mode), this
can happen just due to smaller numbers having a bigger variance.

The figure also shows the regression lines fitting the 12 points for
each alternative mode, with the intercept fixed to 0 as it was deemed
insignificant for both model quantization and layer freezing modes
(with 𝑝-values of 0.433 and 0.599 respectively). The lines have a slope
of 0.956 for MQ and 0.836 for LF mode. This means that the predicted
average energy consume per epoch for a dataset on MQ mode will be
95.6% the recorded one on base mode, and 83.6% for LF mode. When
compared to the identity line via a 𝑡-test, both are proven to be signifi-
cantly different, with 𝑝-values of 0.0146 and 0.00855 respectively. This
means that there is enough evidence to reject the null hypotheses that
the average energy consumed per epoch is the same for the base mode
and for the other ones.

Like for accuracy, the prediction precision is tested via 12-fold cross-
validation, estimating the regression lines with the data from 11 dataset
trainings and performing inference on the last one. Whenever there
are previous epochs with the same training mode, the predicted value
is the average energy consumption of those epochs. On the event of
a training mode change, the average consumption on the base mode
on that branch and the average change estimated with the 11 other
datasets are used to retrieve the prediction. This model achieved a SSE
of 1.008 × 10−4, a MSE of 2.508 × 10−8, and a MRE of 14.3%.

The final prediction model for energy consumption is then the
average registered energy consumption for the epochs in the same TM
as the one to be predicted and, in the case that there are none, that
same average multiplied by a precomputed factor to account for the
change in TM. This model achieves a prediction precision of 85.7%.
Visualizations of the predictions by this model can also be seen in
Annex C

4.2.3. Trade-off maximization
Finally, the trade-off score defined as the ratio between accuracy

and energy is predicted using both previous models jointly. The pre-
dicted accuracy for next epoch can be used as it is, but the predicted
energy must be added to the cumulative energy consumed up to each
epoch following its branch from the training tree. This prediction
model is tested using the same cross-validation methodology as for the
previous ones, and yields a SSE of 59723.5, a MSE of 14.99084 and a
MRE of 8.95%.

This score model is used to predict the optimal branch of the
training tree, as explained in Section 3. From epoch 6 onwards, as the
model needs 5 epochs to perform predictions on accuracy, the score
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from the next 10 epochs is predicted in an auto-regressive fashion, fit
to a function of form 𝑆𝑐𝑜𝑟𝑒 ≈ 𝑐

𝑒𝑝𝑜𝑐ℎ+𝑏 via non-linear least squares, and
the optimal epoch is predicted by the point where the local derivative
of this function equals −1. If this optimal epoch is the current one or
any previous one, the training is stopped. For any bifurcation node in
the training tree (that is, every 10 epochs), the score achieved at the
optimal epoch for each TM is compared, and the branch selected is
the one with the TM that has the highest optimal score. The optimal
node from the 12 training trees is selected following this methodology,
using for each one the data from the 11 other datasets as training for
the model. On average, the optimal node consumed 56.5% less energy
than the final node (50 epochs) on the base TM, achieving a relative
2.38% increase on validation accuracy by avoiding overfitting.

Findings for RQ2 (accuracy and energy consumption predic-
tion):

Finding 2.1: Validation accuracy can be predicted using a fixed
effects model, using the previous 4 values and the previous training
mode, with an accuracy of 91.6%.

Finding 2.2: Energy consumption can be predicted by retrieving
the average energy consumption measured up to that point, or
a compensated average using a precomputed relationship across
training modes, with an accuracy of 85.7%.

Finding 2.3: Trade-off score can be predicted by using the
mentioned accuracy and energy predictions, with an accuracy of
91.1%.

Finding 2.4: Trade-off score can be maximized by predicting
this score for future epochs for different TMs, choosing the one
with highest score at the optimal epoch and stopping at such epoch,
defining it as the point where the derivative of the trade-off score
equals to −1. This method can reduce energy consumption by
56.5% and increase validation accuracy by 2.38%.

5. Discussions

In this section we will analyze and interpret the findings of the
study, its implications, the limitations that could threaten the validity
of it, and the ways we mitigated the threats, paving the way for future
works related to improving the energy efficiency of neural networks.

5.1. Implications

In this study, we empirically investigated the impact that layer
freezing, model quantization, and early stopping can have when ap-
plied at different moments during the training phase. It is clear that
there is plenty of room for energy savings in traditional DL training,
without compromising accuracy or even improving it. Our study also
provides a framework for reducing the environmental impact of AI
model training through the intelligent application of the mentioned
techniques layer freezing, model quantization, and early stopping. By
empirically demonstrating the benefits of using past and future data
for decision-making, we offer a method that not only maintains but
can also improve model accuracy while significantly reducing en-
ergy consumption. This addresses the critical environmental impact of
the growing carbon footprint of AI training by offering a practical,
evidence-based approach that AI practitioners can adopt.

Early stopping was an already widespread technique utilized to
reduce the time of training, as it was also well known that the rate of
increase in validation accuracy slows down over time, or even declines
due to overfitting later in the training. However, it is usually performed
following heuristics defined prior the start of the training by using
past data and is applied automatically. We showed the improvement
of using past and future data with the help of simulation and what if
analysis in order to take a more informed and accurate decision.
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Fig. 12. Average energy consumed per epoch for base mode against freeze and
quantization modes, with the identity line in blue and the regression lines for the 2
alternative modes, with the intercept fixed to 0. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Similarly layer freezing was often applied on two phases, one of
full training and one of fine tuning, with lengths defined a priori based
on estimations. The ability of deciding when to perform it by using
past and also future data has been proven to at times even improve
the accuracy obtained with a base training while at the same time
reducing energy consumption. In addition, layer freezing also reduces
time and power requirements, making its application beneficial even
from a deployment perspective that disregards green AI concepts.

Model quantization did not show any significant impact under
our research setup. Nevertheless there are other setups to be tested,
e.g. having a different number of trainable layers or training a different
NN architecture. There are also plenty of other methods that could
benefit from the possibility of performing them intelligently based on
previously collected data that allows to perform predictions into the
future. This could be extended not only to other training methods, but
also to other phases of the DL deployment, such as hyperparameter
search. In fact, hyperparameter search usually involves retraining the
same model over and over by slightly tweaking some variables to
find the best configuration in a trial-and-error fashion, with very few
heuristics to finalize variables without actually testing them first.

As general conclusion, each one with their own characteristics, there
are multiple methods that can be used in order to limit the environ-
mental footprint of training DL models. We encourage AI practitioners
to consider possible methods to do so during the design of their work,
focusing on early stopping, the simplest of the methods and the one
that reported bigger energy savings, with no drawbacks in accuracy
if applied properly. We also recommend to include an auto-regressive
prediction model on the performance with the available data, and
enable it to decide the optimal moment to apply the design decisions.
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With that purpose, we encourage AI researchers to continue on this line
of investigation, by not only analyzing the effects of different energy
saving methods but also the effects of the moment of intervention,
and what makes certain moments optimal, in order to facilitate this
task for practitioners. Those methods should be defined and included
in the training process design prior to its start. The intelligent de-
cisions on how to apply those methods are not possible without an
energy profiling tool. Recent studies have shown the inaccuracies of
current system-level profilers [71], and given the environmental con-
cerns raised in the last years related to AI, including a reliable energy
monitorization method into the most popular frameworks is an overdue
task. For that reason, we call for the industry, especially the flagships
development endeavours such as TensorFlow and PyTorch, to include
reliable energy profiling tools, preferably with prediction or simulation
capabilities.

Even though this work focuses on the computer vision datasets, any
other energy-consuming AI field could apply the guidelines proposed
in this study: Prior to starting the training, find appropriate methods to
reduce the energy consumption of the utilized algorithms and investi-
gate the effects they have on the energy reduction and model accuracy.
During the execution, monitor constantly the energy and accuracy and
enable a prediction model when possible. Use the predicted energy
and accuracy to apply the best possible strategy to the algorithm in
order to utilize the pareto optimal solution considering both energy
efficiency and accuracy. The possible decisions do not have to limit to
only the epoch at which the method is applied, but can also define other
hyperparameters of such method, as the already mentioned number of
layers to freeze or the numerical precision of the weights, related to the
methods used in this work.

5.1.1. Energy consumed for this study
In order to comply with and promote the energy transparency

defended by multiple green AI researchers, we want to report the
energy consumption and carbon emissions caused by this study. As doc-
umented in the dataset EAT-IT reports, all the trainings and inferences
performed to collect the data sum up to 3.24 kWh of energy consumed,
according to the Nvidia-SMI measurements. The energy consumed is
equivalent to approximately 3 h electric consumption in an average
household in the USA. The documented energy consumed for this study
underlines the energy efficiency of the computer where the training
was performed, as collecting the data required 24.15 h compute time
with an average of 12% of GPU utilization. The economical cost of this
computation was of 368e, a low budget compared to typical works
in AI, that makes this study easily replicable to other research groups
with limited budget. We conclude that the carbon footprint of this
work can be considered as relatively low, and we expect that it can be
compensated by the potential savings in energy that can be achieved
by applying the findings of this study in practice.

5.2. Threats to validity

As all works, this study has limitations that might have hindered
the reliability of our findings. It is vital to acknowledge such threats to
assert the strengths and weaknesses of the study design, and to address
them with the intent of mitigating them. That way, we can strengthen
the confidence in conclusions reached and point the direction onto
future work to try to overcome such limitations. As recently pointed
out, threats to validity and their mitigation should not be considered
only as an afterthought, but should be actively dealt with during the
research design [72]. As further clarified below, while reported towards
the end of the study, threats were considered from the first research
stages of this work.

The main limitation of the study was the amount of compute power
at our disposition, limiting the amount of data we could create for
our dataset EAT-IT. We tried to mitigate this threat by reducing
the amount of redundant data with the design of a training tree,
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although we could still only manage to get one repetition per dataset
on our budget. The most threatened analysis by this fact would be
on the effect of different datasets on the measurements, and for that
reason we kept it out of the focus of the study and did not report
it, although we took it into account when analyzing the effect of the
other independent variables to mitigate potential threats to conclusion
validity. We opted for using 12 different datasets instead of repeating
12 times the experiment on the same dataset to encompass a wide
variety of fields and tasks and strengthen the external validity. For
the analysis on the effect of the other independent variables, it could
be seen as having 12 repetitions of the same experiment, albeit this
would be assuming no interaction of treatments between dataset and
the other variables, which has not been tested. Still, each repetition
of such experiment contains 9 training branches and 350 epochs in
total, which we considered a considerable amount of data to guarantee
internal validity, especially for the conclusions drawn on the energy
consumption, as it has been shown to be temporally independent. In
any case, further replication work should be performed by utilizing
different datasets to strengthen the external validity of this study.

Other limitations on the study design caused by the computational
budget were the number of models that we tested, the number of layers
on the model that we trained, and the resolution of the input images.
We mitigated this threat to external validity by referring to previous
researches that proved that accuracy achieved in low resolution, fine
tuning, or only one model can be used as a predictor for accuracy
achieved in under other settings. Still, the conclusions of this work
should be taken cautiously when applying them to other setups. We
encourage the replication of the study in other settings, by expanding
the building blocks of the study design, varying datasets and tasks, in
order to further strengthen the external validity of this investigation.

Regarding the prediction model developed, we chose the models
that suited the best the nature of the data we were observing and
measuring, but there are still plenty of other prediction methods that
could be used. This could lead to a potential model selection bias,
which would suppose a threat to the statistical conclusion validity.
We tried to minimize this threat by correctly justifying the decisions
made on the design of the prediction models and how the selected
methods were suitable to the data. We still tried to propose a variety
of methods and test them all to get a representative sample of models,
as proposing pooled OLS, fixed effects and random effects models to
predict the accuracy. We also tested possibly preconceived ideas about
the data, like the temporal independence of the energy consumption, to
avoid confirmation bias in the model selection. Replication of the study
could be performed testing different prediction methods to potentially
achieve more precise predictions, which could lead to bigger savings in
energy consumption.

6. Conclusions

In this work, we studied three methods to improve the energy
efficiency of neural network training, namely, early stopping, layer
freezing, and model quantization. We not only analyzed the effect
of them in the final accuracy and energy consumption achieved by
models, but also the variation of this effect depending on when it is
performed during the training phase. On top of that, we studied how
predictable this effect is, even when utilizing data collected by train-
ings a different dataset. For this purpose, we created a novel dataset
containing information on the learning curves of a convolutional neu-
ral network trained on 12 different image datasets, including power
measurements at the temporal granularity of one second. The analysis
is performed with the intention to show the potential of including
these results, or the ones from equivalent analysis, into a DL pipeline
following the guidelines presented in Section 5. Estimating in advance
the accuracy obtained and the energy needed for different training
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modes and trying to optimize it can potentially lead to models more
environmentally sustainable with marginal decreases of accuracy.

Using the data collected, we studied not only the effects that layer
freezing, model quantization and early stopping have on the model
accuracy and energy consumption, but how the timing of the appli-
cation of these methods during the training process influences such
impact. We showed that layer freezing affects accuracy at any point
of the training, although for it to reduce the energy consumed it must
be applied before epoch 27 out of 50. Similarly, early stopping can
reduce drastically the energy consumption proportional to the amount
of epochs saved, and does not affect accuracy after epoch 17 out
of 50. We did not find a significant difference on either accuracy
or energy consumption when applying model quantization. Although
those findings might vary depending on the setup used, they give an
intuition on the behavior of these methods.

An essential part of the framework is to predict future accuracy
and energy consumed whether the different methods are applied or not
during all the training. We showed that accuracy can be treated as panel
data and predicted by fitting a fixed effects model on it, reaching more
than 90% of precision in the predictions. On the other hand, energy
measures can be treated as temporally independent and predicted by
reporting its average, reaching more than 85% of precision. The trade-
off score defined as the ratio between accuracy and energy consumed
can be predicted by using the previous models reaching more than 90%
of precision. This score can be maximized by predicting it for future
epochs for different TMs, estimating the point where its derivative
equals to −1 for each TM, choosing the one with the highest score at
that point to continue the training and stopping at that point. We also
showed that using this method can reduce the energy consumed to less
than half and have marginal increases in accuracy with respect to the
baseline.

Since the inception of the work, we designed the study on build-
ing blocks composed by different elements that can be changed or
expanded, in order to enable software reuse of our replication package
in possible future work. More datasets, models, training decisions,
and measuring instruments can be tested to extend the findings and
capabilities of the interactive training framework. We discussed the
effect on the elements chosen for those building blocks on this study
in the previous section. Another direction of work is in developing a
system to fully include monitoring, prediction and intelligent decisions
into the DL development process, to be capable to use these findings to
reduce environmental impact of current DL projects.
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Appendix A. Visualization of data collected

In Fig. 13 we provide some visualizations of the novel dataset
created. Each visualization is divided in 12 for each of the 12 original
datasets, represented individually, and codifies the other 3 independent
variables as follows: The training mode is codified by color (blue for
base mode, green for layer freezing mode, blue for model quantization
mode), the epoch is codified in the 𝑥 axis, and the epoch of intervention
is codified as where the branch of the data point starts. That way, the
12 training trees are reconstructed, and showing in the 𝑦 axes one of
the dependent variables of interest. The energy values are the ones
measured by Nvidia-SMI. It is necessary to note that in a printed version
those graphics could not look optimal, but they are properly vectorized
so that they can be seen in high resolution on a digital version zoomed
in.

Appendix B. Distribution tests for energy measures

In Fig. 14 we provide figures related with the tests for the distri-
bution of the energy measures, as stated in Section 4. Apart from just
testing temporal independence, those figures also account for tests of
normality. The hypothesis of the data following a normal distribution
was rejected, although that does not suppose a problem to the rest of
the study. Again, blue for base mode, green for layer freezing mode,
blue for model quantization mode.

Appendix C. Visualization of the predictions

In Fig. 15 we provide a visualization for the three auto-regressive
prediction models developed. Simulating a use case scenario, when
wanting to train on a new dataset, the training tree would not be
computed entirely, just one branch of it. For that reason, here we
show only one branch in every plot, which also helps the visualization.
We only show training branches with an EoI of 20 or 30 to favor
visualization as the interventions are made close to the middle of the
training. We show branches diverging to both LF and MQ mode. For
each combination of EoI and training mode, we show the corresponding
branches of two datasets selected at random.

Each one of the plots follows the same methodology as explained
in Section 4.2, trying to simulate the real use case scenario: For predic-
tions over one dataset, the training data points available before starting
are the ones corresponding to the other 11 datasets. For each epoch
of the training branch to predict, the data points from that branch of
previous epochs to the one being predicted are also available for the
model to elaborate its predictions. Dots represent ground truth and
lines represent the prediction for that epoch. Note that there is no
prediction for the first epochs of each branch, as not enough data has
been collected to perform a prediction.

https://doi.org/10.5281/zenodo.13371442
https://doi.org/10.5281/zenodo.13371442
https://doi.org/10.5281/zenodo.13371442
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Fig. 13. Visualization of the training tree for different dependent variables. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 14. Visualization of various tests regarding the distribution of the energy consumed per epoch. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 15. Visualization of the predictions of the three models on various training branches.
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