CLAm: a Lightweight Approach to Identify Microservices in
Dockerized Environments

Roberto Verdecchia
University of Florence
Florence, Italy

Kevin Maggi
University of Florence
Florence, Italy
kevin.maggi@unifi.it

ABSTRACT

Background: Over the past decade, microservices have surged in
popularity within software engineering. From a research viewpoint,
mining studies are frequently employed to assess the evolution
of diverse microservice properties. Despite the growing need, a
validated static method to swiftly identify microservices seems to
be currently missing in the literature.

Aims: We present CLAIM, a lightweight static approach that ana-
lyzes configuration files to identify microservices in Dockerized
environments, specifically designed with mining studies in mind.
Method: To validate CLAIM, we conduct an empirical experiment
comprising 20 repositories, 160 microservices, and 13k commits.
A priori and manually defined ground truths are used to evaluate
CraIM’s microservice identification effectiveness and efficiency.
Results: CLamm detects microservices with an accuracy of 82.0%,
reports a median execution time of 61ms per commit, and requires in
the worst case scenario 125.5s to analyze the history of a repository
comprising 1509 commits. With respect to its closest competitor,
CLAIM shines most in terms of false positive reduction (-40%).
Conclusions: While not able to reconstruct a microservice archi-
tecture in its entirety, CLAIM is an effective and efficient option to
swiftly identify microservices in Dockerized environments, and
seems especially fitted for software evolution mining studies.

KEYWORDS

Microservices, Static Analysis, Repository Mining, Docker

ACM Reference Format:

Kevin Maggi, Roberto Verdecchia, Leonardo Scommegna, and Enrico Vicario.
2024. CLAaM: a Lightweight Approach to Identify Microservices in Docker-
ized Environments. In Proceedings of The 28th International Conference on
Evaluation and Assessment in Software Engineering (EASE 2024). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Over the past decade, microservices have gained significant popu-
larity in software engineering academic literature [4, 12, 14]. This
surge in interest seems to stem from the numerous benefits offered

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EASE 2024, 18-21 June, 2024, Salerno, Italy

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Leonardo Scommegna

roberto.verdecchia@unifi.it leonardo.scommegna@unifi.it

Enrico Vicario
University of Florence
Florence, Italy
enrico.vicario@unifi.it

University of Florence
Florence, Italy

by microservices, such as their scalability, flexibility, and indepen-
dence throughout the development lifecycle. However, alongside
these advantages, microservices also present challenges, such as
the additional effort required for integration and system testing.

In the context of empirical software engineering research, in-
quiries often adopted repository mining and source code analysis to
quantitatively study different aspects of microservice architectures
(MSA), e.g., their evolution goal [2], microservice coupling [5], or
quality evolution [13].

Despite the increasing demand for lightweight and scalable meth-
ods to identify microservices for large-scale repository mining stud-
ies, it seems as if current mining studies have to rely on either
manual analyses [2] or unvalidated ad-hoc heuristics [3].

In order to fill this gap, in this work we present CLAIM, a static
approach designed to identify microservices based on the analysis
of Docker configurations files. In brief, CLaIM identification method
relies on redacting a list of Docker services and matching them to
the files originating the images. CLaIM then applies a set of a priori
defined heuristics to determine which services are actual microser-
vices, and which are instead other architectural components (e.g.,
databases or utility services).

From the empirical experimentation conducted as part of this
study, which comprises 20 repositories for a total of 13k commits
and 160 microservices, CLAIM results to be able to identify microser-
vices with an accuracy of 82.0%, requiring a median of 61ms to
analyze a commit, and in the worst case scenario a total of 125.5s
to analyze the history of a repository with 1509 commits.

The main contributions of this paper are:

o A detailed description of the approach;

o A ready to be used implementation of the approach;

e An empirical evaluation of the approach;

e A comprehensive replication package! of the experiments,
including the entirety of the source artefacts used, accompa-
nied by the intermediate data and final results.

2 RELATED WORK

By considering the literature on microservice-based architecture
recovery, it seems as if no tool was yet developed with the specific
goal of effectively and efficiently identifying microservices. In fact,
approaches mostly aim at recovering microservice architectures in
their entirety, by considering not only microservice identification
but also the reconstruction of the dependencies between them and
their relation with other infrastructural elements, e.g., databases
and gateways. Due to the encompassing goal considered, MSA re-
covery methods proposed in the literature need to rely on dynamic
analyses or, in some cases, a combination of static and dynamic

!https://figshare.com/s/bbf23e6b252d233fFbe3

https://orcid.org/0009-0001-0651-805X
https://orcid.org/0000-0001-9206-6637
https://orcid.org/0000-0002-7293-0210
https://orcid.org/0000-0002-4983-4386
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://figshare.com/s/bbf23e6b252d233ffbe3

EASE 2024, 18-21 June, 2024, Salerno, Italy

ones. For this reason, while identifying microservices via such ap-
proaches is feasible, the effort required to run such approaches
results suboptimal to identify microservices for mining studies, due
to the recurrent need of an ad-hoc configuration per repository,
and/or considerable execution times required per commit.

The method first utilized by Baresi et al. [3] to identify microser-
vices appears to be the only one in the current literature that relies
exclusively on static analysis. This approach constitutes the inspira-
tion of this work, with CLaIM being a refinement and extension of it.
In particular, CLAIM is based on the same intuition of the approach
used by Baresi et al. [3], namely the identification and parsing of
Docker compose files to identify microservices. The key difference
of Cram lies in the strategy used to identify the original source of
data, namely compose files (Step 1, Section 3), and the additional use
of Dockerfiles in order to improve the microservice identification
accuracy (Step 3, Phase 1-3, Section 3). Given the common goal
of efficient microservice identification shared by Craim and the
approach of Baresi et al. 3], this latter approach is used as a means
of comparison for the empirical evaluation of Craim. The experi-
mental comparison, relying on pre-defined and manually identified
ground truths, also serves as a first evaluation of the efficacy and
effectiveness of the two approaches.

By considering MSA recovery approaches which rely on dynamic
analyses, we consider as most closely related the ones utilizing
also a static process. The remainder of this section is dedicated to
discussing the MSA recovery approaches of such hybrid nature, i.e.,
the ones relying simultaneously on static and dynamic analysis.

Soldani et al. [8, 11] present MINER, a tool using a hybrid static-
dynamic approach to reconstruct the microservice topology of
MSAs. The strategy used by uMINER relies on the static identification
of microservices via parsing. However, differently from Craim,
[IMINER relies on Kubernetes manifest files as input, rather than
Docker compose file. This implies that it is not usable for the analysis
of applications that do not use Kubernetes, a characteristic quite
common in smaller or less structured projects which are often
targeted by mining studies. In a subsequent dynamic phase, yMINER
executes the MSA to collect interactions among components by
sniffing the network to generate the final microservice topology. As,
differently from pyMINER, CLAIM relies exclusively on static analysis,
our approach might be a more fitted option for mining studies
considering thousands of commits and repositories, i.e., inquiries
requiring efficiency in their microservice mining processes.

Alshuqayran et al. [1] identify the core architectural elements to
construct a MSA metamodel via a mix of static dynamic analyses.
In a preliminary static step, similar to CLAIM, the approach analyses
compose files and Dockerfiles to identify microservices. In contrast to
Craim however, this step also requires, among others, the analysis
of Maven files, YAML configurations, and Java source code. Apart
from the language independence of Craim and more lightweight
input requirements, the static portions of Alshuqgayran et al. [1]’s
approach does not appear to mention implementing strategies to
identify compose files, nor complementing compose file information,
a strategy characteristic of CLAIM (see Section 3).

Similar to Alshuqayran et al. [1], the approach by Rademacher
et al. [9] also relies on statically analyzing compose file and Dock-
erfiles by complementing the analysis through Java source code
analysis. The static microservice identification technique used by

Kevin Maggi, Roberto Verdecchia, Leonardo Scommegna, and Enrico Vicario

Rademacher et al. [9] relies on the specific Java programming lan-
guage semantic and related framework constructs, which are used
by the approach in order to identify the microservice endpoint. In
contrast, CLAIM is by design independent of the specific program-
ming language used to implement the MSA under analysis.

Finally, Granchelli et al. [6] developed MicroART, a tool imple-
menting a hybrid static-dynamic semi-automatic method for MSA
reconstruction. In this case, similar to CLAIM, their static analysis
step collects information from compose file and Dockerfiles. How-
ever, differently from Craim, the static analysis of MicroART fo-
cuses exclusively on gaining an overview of component interaction,
which necessitates also a subsequent dynamic analysis.

3 APPROACH

In this section, we document a detailed description of the CLamm
approach. CLAIM is based on three main phases, namely the compose
file identification (Phase 1), compose file parsing (Phase 2), and
microservice identification (Phase 3). An overview of CLAIM is
depicted in Figure 1.

As background information, in MSA relying on Docker, the com-
pose file is used to list Docker services, which in turn constitute the
architectural backbone of the MSA. Dockerfiles instead are the mech-
anism to generate the Docker service images, i.e., the mechanism
allowing to spin up the architectural components of the MSA.

Intuitively, during Phase 1 Cramm identifies the compose file
where the microservices of a MSA under analysis are listed. Dur-
ing Phase 2, the Docker services potentially corresponding to a
microservice are extracted. Finally, during Phase 3, the services are
categorized as either microservices or infrastructural elements (e.g.,
servers, gateways, databases, and monitors).

3.1 Phase 1: Compose File Identification

Albeit standardized guidelines are provided by the Docker plat-
form?, the common use of compose files often deviates from the
predicated standards. By considering the syntactic liberty the plat-
form itself provides, multiple compose files can be defined at the
same time, each with its different scope. For example, commonly,
separate compose files are used to define different development en-
vironments, e.g., production and staging. Additionally, the Docker
semantic allows to use ad hoc configuration files to specify in-
frastructural components and/or define specific override settings.
Therefore, in order to identify the compose file listing the microser-
vices of a MSA, all compose files need to be considered, including
the ones presenting non-standard names.

Cramm deals with this task by first collecting all potential com-
pose files of a MSA, and subsequently selecting the ones containing
in the filepath exclusively keywords associated to Docker elements
(e.g., docker or compose), source code (e.g., src or services), de-
velopment phases (e.g., dev, test, or release), and configuration
keywords of more general nature (e.g., devops, setup, or iac).

The selected compose files are then ordered based on the likeli-
hood of them being the compose file that lists the microservices of
the MSA. This process is conducted by assigning a weight to each
keyword used to identify the compose files in the previous step, and
subsequently sorting the filepaths in decreasing lexicographical

2https://docs.docker.com/compose/. Accessed 29th February 2024

https://docs.docker.com/compose/

CrAim: a Lightweight Approach to Identify Microservices in Dockerized Environments

EASE 2024, 18-21 June, 2024, Salerno, Italy

2]
(4] =]a]
Lo 0]
Dockerfiles 963@
e AN A Y
., Q
B Identifying Parsing _ Detecting L8
"62‘ compose file compose composefile |_services = mijcroservices , &

Q

AR

Figure 1: CLAIM workflow for the identification of microservices

order. Possible ties are resolved by adopting an additional ordering
step on the filenames, by utilizing keywords commonly used to
define compose files (e.g., services or base). In case the selection
process terminates with more compose files showcasing the same
priority, a deterministic selection is made by considering the file
with the shortest filename. Compose files mentioning infrastructure
elements or override settings (i.e., containing the keyword infra
and override) are discarded, as with high likelihood they are not
used to list microservices. The output of Phase 1 is the identified
compose file listing the microservices of the MSA.

3.2 Phase 2: Compose File Parsing

During this phase, the compose file is analyzed in order to extract
the information necessary to identify the microservices in Step 3.

Specifically, information regarding (i) the image run by the ser-
vice, (ii) the build information of the image, and (iii) the name of the
service container, are extracted from the compose file by following
the Docker semantic reported in the official documentation.

As potential challenge of this phase, Docker may finalize the
information to be collected during this phase at runtime, i.e., the
information may not be encoded in plain format in the compose file,
but is rather dynamically constructed during the Docker execution.

To statically bypass this potential impediment, CLAIM uses three
different strategies by leveraging the Docker compose semantic.
First, CLAIM conducts variable interpolation to reconstruct infor-
mation defined across multiple environments. Second, external
compose files are included by recursively analyzing dependency
declarations. Third, the inheritance tree of Docker services is recon-
structed in order to include other possibly left implicit information.

The output of Phase 2 is the list of the Docker services of the
MSA under analysis, complemented with information regarding
their images, builds, and containers.

3.3 Phase 3: Microservices Detection

The final phase of CLAIM consists of identifying the microservices
of the MSA under analysis. Specifically, based on the list of Docker
services gathered in the previous phase, in Phase 3 CLAIM makes a
distinction between the Docker services corresponding to microser-
vices and the ones corresponding to infrastructural components.
The distinction is based on the intuition that, for a Docker ser-
vice to be a microservice, the microservice source code needs to
be copied from a location of the repository under analysis to the
filesystem of the container. If not, this would imply that, rather than
implementing a microservice, the container is utilized for a utility
purpose (e.g., the Dockerfile is used to configure a third party image).

Overall, Phase 3 is constituted by three main steps, namely (i)
Dockerfiles search, used to identify all Dockerfiles of the repository,
(ii) Dockerfiles match, necessary to map a Docker service to a Dock-
erfile if not explicit, and (iii) Dockerfiles check, used to assess if the
source code is actually copied to the container.

3.3.1 Phase 3 - Step 1: Dockerfiles Search. In this initial phase, the
Dockerfiles of the MSA under analysis are identified by selecting
all files containing in their name Dockerfile. False positives, most
commonly consisting of scripts used to hard code build parameters,
are discarded by considering the file extensions (e.g., . sh and . ps1).
Additional false positives corresponding to third-party services
and demos are discarded by considering the presence of related
keywords in the filepath (e.g., vendor, external, example, and
demo). The output of this step is a list of all Dockerfiles of the MSA
under analysis.

3.3.2 Phase 3 - Step 2: Dockerfiles Match. The second step of
Phase 3 consists of matching the Docker services provided as output
to Phase 2 to the Dockerfiles identified in Phase 3 - Step 1.

In the most trivial case, the Docker service is explicitly mapped
to a Dockerfile in its definition, and hence it can be simply used as is.
An additional process is instead required when a Docker service is
not explicitly mapped to a Dockerfile, i.e., developers use a custom
workflow for building the image and deploying it on a registry from
which the compose file then pulls it. In this latter case, based on
the images and containers identified in Phase 2, CLAIM attempts to
infer the microservice names. This process consists of leveraging
different naming conventions commonly used for Dockerfiles and
images to generate tentative names, and subsequently trying to
match the tentative name to the list of Dockerfiles generated in
Phase 3 - Step 1. If a match cannot be found, it means that the
considered Docker service cannot be linked to a Dockerfile. In this
situation, CLAIM categorizes the Docker service as not being a
microservice. Essentially, if the Dockerfile responsible for generating
the image does not exist, with high likelihood it is a third-party
service. The output of this step is a list of Docker services mapped
to their Dockerfile.

3.3.3 Phase 3 - Step 3: Dockerfiles Check. After all Docker ser-
vices are mapped to their Dockerfile, during the last step of Cram,
we check if the Dockerfile actually copies source code into the
filesystem of the container. In order to do so we assess if, via the
instructions provided in the Dockerfile, source code files other than
the ones used for configuration are copied into the container. Con-
figuration files, in this case, are excluded based on their extension
(e.g.,, .xml, .yaml, and . config files).

EASE 2024, 18-21 June, 2024, Salerno, Italy

The final output of CrAm is the list of microservices identified
in the MSA under analysis.

4 EXPERIMENT

In order to evaluate the effectiveness and efficiency of Craim, we
conduct an empirical experiment as part of this study. The experi-
ment is designed to answer two research questions (RQs), namely:

RQq: [Effectiveness] What is the effectiveness of CLAIM in terms of
microservice identification?

With RQ1, we aim to evaluate the extent to which CLam is able
to identify the microservices of a MSA under analysis. In order to
answer this research question, we consider as evaluation metrics
true positives (i.e., microservices identified as such), false positives
(i.e., components other than microservices which are identified
as such), false negatives (i.e., microservices which are identified
as other components), and true negatives (i.e., non-microservice
components identified as such). Derived metrics, namely precision,
recall, and accuracy, are also utilized to discuss the results.

RQy: [Efficiency] What is the efficiency of CLAIM in terms of execution
time and memory consumption?

With RQ2, we aim to evaluate the efficiency of CrAIMm, in terms of
its execution time and memory consumption requirements. In order
to answer this second RQ, we consider as evaluation metrics the
time required to analyze a single commit of a MSA under analysis,
the time required to analyze the entire commit history, and the
volatile memory (RAM) required to run the approach®.

4.1 Research Setting

We consider as experimental objects 20 open-source repositories,

comprising a total of 160 microservices, 13k commits, and 1.7M SLOC.

An overview of the repository demographics is presented in Ta-
ble 1. The repositories are subdivided in two groups, according
to how the ground truth, i.e., the list of microservices contained
in the repository, is established. As a ground truth regarding the
compose files listing microservices of MSA repositories does not
appear to be present in the literature, for both groups compose files
are determined via a manual repository inspection.

4.1.1 Repositories with a priori Defined Microservice Ground Truth.
Repositories in this group present official documentation of the
microservices they contain (e.g., in their README or wiki). All
repositories are selected starting from the curated dataset of Rah-
man et al. [10], by using as inclusion criteria the presence of the
microservice list in the repositories, and subsequently selecting the
ones already used in related work (e.g., [1] and [2]). The selection
process leads to including 6 repositories with an a priori defined
ground truth, for a total of 67 microservices, and 1.9k commits.

4.1.2 Repositories with Manually Determined Microservice Ground
Truth. Repositories belonging to this group are the ones for which a
ground truth is specifically determined for this evaluation through
a manual process. In this case, the ground truth is determined
by manually inspecting the source code of the repositories, and
categorizing architectural components as either microservices or

3As CLamu does not leverage heavy use of read-only memory (ROM), such metric is
disregarded for RQ;

Kevin Maggi, Roberto Verdecchia, Leonardo Scommegna, and Enrico Vicario

ID Repository SLOC #MS #Comm.

Microservice ground truth defined a priori

S01 EdwinVW/pitstop 97k 7 397
S02 FudanSELab/train-ticket 344k 44 132
S03 ewolff/microservice 4k 3 140
S04 microservices-patterns/ftgo-application 21k 6 295
S05 spring-petclinic/spring-petclinic-microservices 15k 3 727
S06 sqshq/PiggyMetrics 20k 4 233
Manually determined microservice ground truth
S07 1-Platform/one-platform 417k 8 1.5k
S08 OpenCodeFoundation/eSchool 5k 5 273
S09 OpenLiberty/liberty-bikes 33k 3 591
S10 ThoreauZZ/spring-cloud-example 7k 3 279
S11 abpframework/eShopOnAbp 257k 7 1319
S12 aliyun/alibabacloud-microservice-demo 27k 9 422
S13 asc-lab/micronaut-microservices-poc 39k 9 384
S14 geoserver/geoserver-cloud 63k 7 1.3k
S15 instana/robot-shop 6k 7 377
S16 jvalue/ods 219k 4 1.4k
S17 learningOrchestra/mlToolKits 7k 9 1.2k
S18 microsoft/dotnet-podcasts 22k 5 728
S19 open-telemetry/opentelemetry-demo 53k 13 697
S20 vietnam-devs/coolstore-microservices 70k 4 680
TOTAL 1.7M 160 13k

Table 1: Repository demographics (#MS = number of mi-
croservices, #Comm. = number of commits)

infrastructural elements. To mitigate the considerable manual effort
required by this task, only commits involving changes to Docker
configuration files are considered in this process.

Repositories are selected from GitHub according to six inclusion
criteria, namely, (I1) being implemented in one of the most used
languages used for MSA, namely Java, Python, Go, C#, TypeScript,
and JavaScript®, (I2) being tagged with the topic “microservice*”,
(I3) possessing at least 20 stars, (I4) having at least 5 contributors,
(I5) presenting a history of at least 250 commits, and (I6) utilizing
Docker, as it is a prerequisite for using CLAaIM. Academic demos,
examples, templates for MSA, and repositories presenting a single
microservice are discarded. The selection process ends with the
inclusion of 14 repositories with a manually defined ground truth,
for a total of 93 microservices and 11k commits.

4.1.3 Comparison Microservice Identification Approach. To gain
further insight into CLAIM microservice detection capabilities, we
compare its efficiency and effectiveness with what to the best of our
knowledge is the only other purely static approach presented in the
literature, namely the one of Baresi et al. [3] (see Section 2). As part
of an ongoing work, we present such comparison as a preliminary
result, while leaving a comparison with approaches using dynamic
analyses as part of the future work (see also Section 6).

4.1.4 Experiment Execution. Regarding RQ1, for each repository,
both approaches are run to identify the compose file on all the com-
mits history of the main branch and secondary branches already
merged into the main, as suggested by Kovalenko et al. [7]. Given
the outcome of this task can vary only if compose files are changed,
commits are grouped in chunks where the set of compose files is
unchanged. Results are then analyzed to see if the approaches select

4https://www.jetbrains.com/Ip/devecosystem-2022/microservices. Accessed 11 March
2023

https://github.com/EdwinVW/pitstop
https://github.com/FudanSELab/train-ticket
https://github.com/ewolff/microservice
https://github.com/microservices-patterns/ftgo-application
https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/sqshq/PiggyMetrics
https://github.com/1-Platform/one-platform
https://github.com/OpenCodeFoundation/eSchool
https://github.com/OpenLiberty/liberty-bikes
https://github.com/ThoreauZZ/spring-cloud-example
https://github.com/abpframework/eShopOnAbp
https://github.com/aliyun/alibabacloud-microservice-demo
https://github.com/asc-lab/micronaut-microservices-poc
https://github.com/geoserver/geoserver-cloud
https://github.com/instana/robot-shop
https://github.com/jvalue/ods
https://github.com/learningOrchestra/mlToolKits
https://github.com/microsoft/dotnet-podcasts
https://github.com/open-telemetry/opentelemetry-demo
https://github.com/vietnam-devs/coolstore-microservices
https://www.jetbrains.com/lp/devecosystem-2022/microservices

CrAim: a Lightweight Approach to Identify Microservices in Dockerized Environments

the right compose file. In negative case, the correct one is subse-
quently selected to measure the microservice detection capabilities,
as this latter task evaluates the approaches on their ability of iden-
tifying microservices starting from the correct compose file. Only
commits with a valid compose file are considered to evaluate the
microservice identification, corresponding to 10,411 total commits.
Regarding RQ>, the approaches are executed in their entirety
(i.e., both their compose file and microservices identification func-
tionalities) to comprehensively measure their execution times and
memory usage. To provide as realistic as possible measurements,
execution times consider the analysis of entire repository histories,
and include the time and memory required to checkout commits.
Memory usage is masured via the Scalene memory profiler®.

4.1.5 Hardware setup. All experiments are executed on a 2023
MacBook Pro equipped with a M3 Pro 12-Core Chip, 18GB Uni-
fied RAM, 494.38GB SSD, running macOS Sonoma 14.2.1 (23C71),
connected to the internet with a 194Mbps download speed.

4.1.6 Replication Package. A replication package with all scripts
used to define the datasets, implement the approaches, and exe-
cute the experiment, jointly with all raw data and results, is made
available for scrutiny and replication purposes (see Section 1).

4.2 Results and Discussion

In this section, we present the results of our empirical experiment,
accompanied by a discussion on their potential interpretation.

4.2.1 Results RQ; [Effectiveness]: Compose File and Microservice
Identification. Concerning the ability of identifying the correct
compose file, i.e., the one listing the microservices of the MSA under
analysis, CLAIM results to be notability accurate, showcasing a
success rate of approximately 99.2%. The competitor approach [3]
presents a slightly lower success rate of 94.8%. From post hoc manual
scrutiny, we identify this lower accuracy to be mainly due to one
project (S15), for which the approach of Baresi et al. [3] never
correctly identifies the compose file.

Regarding CLAIM’s microservice identification effectiveness, an
overview of the results collected from the empirical experiment
are reported in the form of a confusion matrix in Figure 2. From
the figure we can observe that CLAIM is relatively accurate, re-
porting an overall accuracy of 82%. CLAIM’s precision results to
be lower (73.8%) due to the relatively high number of false posi-
tives (15.4%), which from manual inspection result to be mostly due
to custom implementations of infrastructural elements (e.g., gate-
ways). In terms of recall, i.e., how well CLaiM identifies all relevant
positive instances, the approach behaves notably well (94.5%).

The approach of Baresi et al. [3] in comparison results to be
less accurate (71.0%), reporting also a considerably lower precision
(61.2%), while showcasing a marginally better recall value (95.0%).
The main gains of CLAIM results to be due to its ability to detect
a much lower rate of false positives (-40%) thanks to the filtering
process used to categorize a Docker service as a microservice.

Shttps://github.com/plasma-umass/scalene. Accessed 29th February 2024

EASE 2024, 18-21 June, 2024, Salerno, Italy

Actual values

Infrastructural
element

Microservice

True
positives

Microservice

43.5%

False True
negatives negatives

Predicted values

2.5% 38.5%

Infrastructural
element

Figure 2: CLAIM microservice identification confusion matrix

RQ; [Effectiveness] CLamm correctly identifies the compose
file listing microservices in the vast majority of cases (99.2%).
The overall accuracy of CLAIM in identifying microservices and
infrastructural elements is 82%. Infrastructural elements are at
times erroneously identified (15.4%), while microservices are not
identified as such at a much lower rate (2.4%). With respect to
its closest competitor [3], CLAIM shines most in terms of false
positive reduction (-40%).

4.2.2 Results RQ, [Efficiency]: Execution Time and Memory Us-
age. Regarding execution time, from the empirical experiment we
observe that CLAIM requires a median execution time of 61ms to
analyze a commit, while requiring in the worst case scenario 266ms
(S13) and in the best case scenario 23ms (S09).

By considering the total time required to analyze the complete
history of a repository, CLaiM takes on median 30.7s to run the
analysis (S12 and S17), while requiring in the worst case scenario
125.55 (S07) and in the best case scenario 3.8s (S03). The distribution
of total execution times, compared with the ones of the approach of
Baresi et al. [3] is documented in Figure 3. From a post hoc analysis,
the most time-intensive task results to be the file search involved
in Phase 1 and Phase 3 (see Section 3.1-3.3), which results to be
especially tolling to analyze repositories of larger size, e.g., S07.

Execution time

120

100

80

60

Seconds

20

CLAIM Baresi et al.

Figure 3: Total time execution

By comparing the efficiency results with the ones measured for
the approach of Baresi et al. [3], we note that this latter approach is
faster, displaying a median execution time of 38ms (S12) to analyze a
commit and 25.4s (S17) to analyze the entire history of a repository.

https://github.com/plasma-umass/scalene

EASE 2024, 18-21 June, 2024, Salerno, Italy

Overall, albeit the Baresi et al. [3] outperforms CrLAM in the
worst case scenario, given the comparable median execution time
values, the overall limited time required to analyze a repository, and
the considerable effectiveness gains of CLAIM (see Section 4.2.1),
we deem CLAIM as a valuable option for mining studies involving
repositories in the order of the hundreds.

Concerning memory consumption, CLAIM requires a limited
amount of RAM, namely 20MB on median. From post hoc scrutiny,
the most memory-intense task results to be the compose file loading
of Phase 2 (see Section 3.2), which is more tolling for repositories
with large compose files that load a high number of components, e.g.,
in the case of S19. Overall, by considering modern hardware speci-
fications, we deem the memory requirements of CLAIM minimal,
and hence fitted for the vast majority of hardware setups.

By comparing memory consumption with Baresi et al. [3], we
note that this latter approach requires a slightly larger amount of
RAM (30MB on median), while displaying a more stable consump-
tion, which fluctuates more for CLaM according to the number of
Docker services in the MSA under analysis.

O RQ; [Efficiency] CLAIM requires on median 61ms to analyze
a commit, and takes in the worst case scenario 125.5s to analyze
the commit history of a repository comprising 1.5k commits.
RAM required by Craim is minimal, fluctuating around 20MB
throughout its entire execution.

4.3 Threats to Validity

The results of the empirical experiment need to be interpreted in
light of potential validity threats, as further discussed below.

Internal Validity. The results may be influenced by the experi-
mental subjects selection. As mitigation strategy, we consider repos-
itories obtained from a curated dataset et al. [10], or select them via
a priori defined criteria. Potential internal validity threats bound to
the subjectivity of the manual processes involved for the ground
truth establishment are mitigated by involving two researchers,
with an additional researcher revising the procedure outcomes.

External Validity. Albeit measures are taken to ensure the hetero-
geneity an representativeness of the experimental objects, further
experimentation is needed to strengthen the external validity of the
results. As part of an ongoing research, additional experimentation
are needed to understand how the static approach compares to the
ones incorporating dynamic analyses (see Section 2).

Reliability. To ensure results can be independently reproduced
and verified, all experimental material is available (see Section 1).

5 LIMITATIONS

Cram is designed to detect microservices exclusively in Dockerized
environments. Careful considerations need therefore to be taken
at research design time if CLAIM is to be used, as it may pose a
considerable threat to validity, especially the external one.

CraM faces inherent challenges due to its static analysis nature.
Unlike dynamic methods, which can benefit from additional data
(e.g., inter-component communication), CLAIM relies on Docker
service names and Dockerfile paths. Consequently, architectural
details are inferred using solely empirical rules based on common
conventions. In an adversarial scenario, CLAIM can be led to include

Kevin Maggi, Roberto Verdecchia, Leonardo Scommegna, and Enrico Vicario

false positives and negatives by not adhering to common Docker
configuration practices (e.g., by utilizing a completely custom com-
pose file naming convention). From the experiment conducted, this
however does not appear to empirically be a sizable limitation.
Finally, microservice detection via CLAIM may experience delays
if developers postpone adding microservice entries to the com-
pose file until finalizing a working version. Similarly, temporarily
removing microservices in the compose file may impact accuracy.

6 CONCLUSION AND FUTURE WORK

In this research, we present Cram, a lightweight microservice
identification approach primarily designed for repository mining
studies. The underlying ambition of this work is to provide an
empirically evaluated scalable option for microservice identification.
As the results of this study show, the microservice identification of
CraM is not perfect. However, we hope this research contribution
can constitute an inspiration and stepping stone towards developing
both efficient and effective microservice identification techniques
from which the repository mining community can profit.

As future work, we plan to optimize the accuracy of Cramm
while burdening as little as possible its efficiency. In addition, we
plan to conduct an extensive empirical comparison by considering
microservice identification approaches using also dynamic analyses.

REFERENCES

[1] N. Alshuqayran, N. Ali, and R. Evans. 2018. Towards Micro Service Architecture
Recovery: An Empirical Study. In 2018 IEEE International Conference on Software
Architecture (ICSA). 47-4709.

[2] W. Assungao, J. Kriiger, S. Mosser, and S. Selaoui. 2023. How do microservices
evolve? An empirical analysis of changes in open-source microservice reposito-
ries. Journal of Systems and Software 204 (2023), 111788.

[3] L. Baresi, G Quattrocchi, and D. A. Tamburri. 2022. Microservice Architec-
ture Practices and Experience: a Focused Look on Docker Configuration Files.
arXiv:2212.03107 [cs.SE]

[4] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann. 2019. Microservices in
Industry: Insights into Technologies, Characteristics, and Software Quality. In Pro-
ceedings of the IEEE International Conference on Software Architecture Workshops
(ICSAW). 187-195.

[5] D.A.d’Aragona, L. Pascarella, A. Janes, V. Lenarduzzi, and D. Taibi. 2023. Microser-
vice Logical Coupling: A Preliminary Validation. In 2023 IEEE 20th International
Conference on Software Architecture Companion (ICSA-C). 81-85.

[6] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A.
Di Salle. 2017. MicroART: A Software Architecture Recovery Tool for Maintaining
Microservice-Based Systems. In 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). 298-302.

[7] V.Kovalenko, F. Palomba, and A. Bacchelli. 2018. Mining file histories: Should we
consider branches?. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. 202-213.

[8] G. Muntoni, J. Soldani, and A. Brogi. 2021. Mining the Architecture of
Microservice-Based Applications from their Kubernetes Deployment. In Ad-
vances in Service-Oriented and Cloud Computing. Springer, 103-115.

[9] F. Rademacher, S. Sachweh, and A. Zindorf. 2020. A Modeling Method for
Systematic Architecture Reconstruction of Microservice-Based Software Systems.
In Enterprise, Business-Process and Information Systems Modeling. Springer.

[10] M.I. Rahman, S. Panichella, and D. Taibi. 2019. A curated Dataset of Microservices-
Based Systems.

[11] J. Soldani, G. Muntoni, D. Neri, and A. Brogi. 2021. The pTosca toolchain: Mining,
analyzing, and refactoring microservice-based architectures. Software: Practice
and Experience 51, 7 (2021), 1591-1621.

[12] J. Soldani, D. A. Tamburri, and WJ. Heuvel. 2018. The Pains and Gains of
Microservices: A Systematic Grey Literature Review. Journal of Systems and
Software 146 (2018), 215-232.

[13] R. Verdecchia, K. Maggi, L. Scommegna, and E. Vicario. 2024. Tracing the

Footsteps of Technical Debt in Microservices: A Preliminary Case Study. Post-

proceedings of the European Conference on Software Architecture (2024).

A. Villa, J. O. Ocharan-Hernandez, J. C. Pérez-Arriaga, and X. Limén. 2022. A

Systematic Mapping Study on Technical Debt in Microservices. In International

Conference in Software Engineering Research and Innovation. 182-191.

[14

https://arxiv.org/abs/2212.03107

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Phase 1: Compose File Identification
	3.2 Phase 2: Compose File Parsing
	3.3 Phase 3: Microservices Detection

	4 Experiment
	4.1 Research Setting
	4.2 Results and Discussion
	4.3 Threats to Validity

	5 Limitations
	6 Conclusion and Future Work
	References

