
Racing Against the Clock: Exploring the Impact of Scheduled
Deadlines on Technical Debt

Joshua Aldrich Edbert
joshua.edbert@usask.ca

University of Saskatchewan
Saskatoon, Canada

Zadia Codabux
zadiacodabux@ieee.org

University of Saskatchewan
Saskatoon, Canada

Roberto Verdecchia
roberto.verdecchia@unifi.it

University of Florence
Florence, Italy

ABSTRACT
Background: Technical Debt (TD) describes suboptimal software
development practices with long-term consequences, such as de-
fects and vulnerabilities. Deadlines are a leading cause of the emer-
gence of TD in software systems. While multiple aspects of TD have
been studied, the empirical research findings on the impact of dead-
lines are still inconclusive.Aims: This study investigates the impact
of scheduled deadlines on TD. It analyzes how scheduled deadlines
affect code quality, commit activities, and issues in issue-tracking
systems. Method: We analyzed eight Open Source Software (OSS)
projects with regular release schedules using SonarQube. We ana-
lyzed 12.3k commits and 371 releases across these eight OSS projects.
The study combined quantitative metrics with qualitative analyses
to comprehensively understand TD accumulation under scheduled
deadlines. Results: Our findings indicated that some projects had
a clear increase in TD as deadlines approached (with above 50%
of releases having increasing TD accumulation as deadlines ap-
proached), while others managed to maintain roughly the same
amount of TD. Analysis of commit activities and issue tracking
revealed that deadline proximity could lead to increased commit
frequency and bug-related issue creation. Conclusions: Our study
highlights that, in some cases, impending deadlines have a clear im-
pact on TD. The findings pinpoint the need to mitigate last-minute
coding rushes and the risks associated with deadline-driven TD
accumulation.

CCS CONCEPTS
• Software and its engineering→ Software evolution.

KEYWORDS
Technical Debt, Static Analysis, Open Source, Software Evolution

ACM Reference Format:
Joshua Aldrich Edbert, Zadia Codabux, and Roberto Verdecchia. 2025. Rac-
ing Against the Clock: Exploring the Impact of Scheduled Deadlines on
Technical Debt. In Proceedings of The 29th International Conference on Evalu-
ation and Assessment in Software Engineering (EASE 2025). ACM, New York,
NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2025, 17–20 June, 2025, Istanbul, Türkiye
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Technical Debt (TD), first introduced by Ward Cunningham in
1992 [24], refers to the non-ideal outcomes stemming from par-
ticular design and implementation decisions made for short-term
gains that may lead to complications in the maintenance and future
development of a software project [36]. While TD can arise at any
stage of the software development process, it predominantly affects
the maintenance phase [6]. If not properly managed, TD can lead to
escalated costs and diminished product quality, impeding the sus-
tained progress of software development efforts [45]. Consequently,
TD is recognized as a significant issue within the field of software
engineering [71].

There has been a notable focus on managing scheduling and
temporal concerns within software engineering [38]. Deadlines in
software development scheduling are a top cause of the emergence
of quality issues and TD in software systems [25, 60, 72]. Schedule
constraints are often linked to highly detrimental consequences,
including the creation of a chaotic work environment, high-stress
levels for developers, and the emergence of stress-induced health
problems, ultimately decreasing team productivity and effective-
ness [17, 37].

Despite deadlines being one of the top reasons developers ac-
cumulate TD in their software projects, no previous studies have
analyzed how deadlines affect TD in software projects with regular
release schedules. The empirical research findings on the impact of
deadlines are still inconclusive [10]. Investigating TD can enhance
internal software quality attributes by detecting recurring code vi-
olations [34]. For instance, by examining the patterns of TD values
for each commit, alongside other software metrics, such as commit
frequency or the bug types recorded in the issue tracking system,
we can identify the specific factors contributing to recurring code
violations, allowing for a clearer understanding how scheduled
deadlines cause TD within the development process. This analysis
can also reveal whether TD accumulates steadily over time or inten-
sifies at certain points, such as near impending project deadlines,
helping teams monitor and predict high-risk periods for quality
issues. Additionally, examining the impact of deadlines in software
development can help maintain a balanced workload for developers,
prevent burnout, and consequently enhance the performance of
each team member [39]. Hence, this research contributes to the
broader discourse of deadlines in software development, specifically
on TD. Our study provides concrete empirical evidence on how
scheduled deadlines impact TD in software projects.

This paper investigates the impact of scheduled deadlines on
TD in Open Source Software (OSS) projects. The study analyzed
projects using SonarQube1 to assess the code quality regarding

1sonarsource.com

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Joshua Aldrich Edbert, Zadia Codabux, and Roberto Verdecchia

TD. This approach provides a quantifiable measure of the TD ac-
cumulated over the lifecycle of a project and how it fluctuates
concerning regular release deadlines. The research also examined
the influence of impending project deadlines on development com-
mit activities and issues created. Information such as code churn,
commit frequency, issue creation and closing date, and issue labels
were scrutinized to discern patterns that may emerge as deadlines
approached. The scope of our analysis in this study is solely on
code debt, a specific category of TD [44]. We acknowledge the
existence of various types of TD, such as architectural or design
debt. We focused only on code debt, as it is the most studied TD
type [44]. This focus allows us to delve deeper into the nuances of
code quality issues under scheduled deadlines, providing a more
detailed exploration within a constrained scope. Note that code
debt and TD are used interchangeably in this paper.

This study is the first to describe the impact of scheduled dead-
lines on TD accumulation, contributing to a comprehensive un-
derstanding of how scheduling influences code quality. Our key
contributions are:

(1) We provide the first concrete empirical data on how sched-
uled deadlines impact TD accumulation in software projects,
filling a critical gap in the existing literature. This infor-
mation enables teams to anticipate and mitigate high-risk
periods for quality issues.

(2) Our study offered insights into software project commit
activities under deadlines to better understand how devel-
opment teams adjust their workflow as deadlines approach.
This insight helps identify operational patterns that could
lead to an increase in TD, providing a foundation for more
strategic planning in software projects.

(3) We improved the understanding of software project issue
management under scheduled deadlines. This investigation
reflects the immediate responses of development teams to
deadlines and how such conditions may rush or neglect the
resolution of critical issues, contributing to the accumulation
of TD.

(4) A comprehensive replication package2 of the study.

2 RELATEDWORK
Technical Debt Evolution Studies.Maggi et al. [47] explored how
code debt changed over time within 13 microservice-based projects.
Their study used SonarQube to analyze TD, applied statistical meth-
ods to detect trends in TD, and followed upwith amanual inspection
of commits. They found that TD generally grew over time, although
periods of stability did occur. Molnar et al. [52] analyzed the evo-
lution and characteristics of TD in three Java-based open-source
applications. Using SonarQube for a detailed analysis of 110 ver-
sions, the study identified crucial versions pivotal in accumulating
or reducing TD. Openja et al. [54] explored the distribution and
evolution of TD in quantum software and how they correlated with
the emergence of faults. They conducted an empirical study of 118
open-source quantum projects sourced from GitHub, organized into
ten distinct categories. They found that quantum software projects
commonly face challenges related to code convention breaches, er-
ror handling issues, and design flaws. Lenarduzzi et al. [40] studied
2https://zenodo.org/records/14782835

how shifting from a traditional monolithic system to a microser-
vices framework affected TD. The analysis involved a combination
of TD measurement using SonarQube and interviews with com-
pany members. The findings revealed that although initially, there
was an increase in TD following the introduction of microservices,
this trend reversed over time. Digkas et al. [27] analyzed sixty-six
Java OSS projects within the Apache ecosystem, examining the
evolution of TD. Their results indicated an overall increase in TD
and source code metrics across most systems. When normalized to
the system’s size, TD declined over time in most cases. Mamun et
al. [2] delved into TD evolution, employing a novel “technical debt
density trend" metric to assess debt changes against code growth.
Analyzing 21 OSS projects via SonarQube revealed that TD initially
grew with smaller code volumes but lessened as the code expanded.

Time-Constraints in Software Engineering Studies. Austin
[7] utilized an agency framework to explore the impact of time
pressure on software development quality, focusing on developers’
behavior under deadline constraints. It analyzed the trade-off be-
tween maintaining product quality and meeting deadlines, suggest-
ing that developers may resort to shortcuts that compromise quality.
The research findings suggested that aggressive deadline-setting
might prevent shortcut-taking by maintaining high time pressures.
Basten et al. [10] evaluated the impact of time pressure on software
quality through two experiments, testing a game-theoretical model
that posits high levels of time pressure can deter developers from
taking shortcuts, thus improving software quality. The first experi-
ment involved abstract decision-making with financial trade-offs,
while the second focused on actual programming tasks under varied
deadline conditions. The findings supported the model, showing
that higher probabilities of unrealistic deadlines led to higher soft-
ware quality. Mäntylä et al. [50] conducted a controlled experiment
to investigate the effects of time pressure on the efficiency and
effectiveness of software engineering tasks, specifically test case
development and requirements review. They utilized 97 observa-
tions from 54 subjects. Results indicated a significant increase in
efficiency under time pressure without a corresponding decrease in
effectiveness or negative impacts on motivation or frustration. The
study suggested that moderate time pressure could enhance produc-
tivity in well-defined software engineering tasks. Salman et al. [64]
explored how time constraints affected confirmation bias in func-
tional software testing. Forty-two graduate students were asked to
create functional test cases with or without time pressure. The find-
ings revealed that although participants tended to create test cases
that confirmed their beliefs, time pressure did not notably increase
this tendency. Shah et al. [65] investigated outsourced offshored
global software testing practices to understand its unique chal-
lenges. Over two months, researchers used ethnographic methods,
including interviews and observations. Key findings showed that
test engineers’ motivation and recognition significantly impacted
testing quality. The study also found that pressures increased with
intermediate onshore teams. Malgonde et al. [49] explored the roots
and impacts of time pressure on agile methods and used Extreme
Programming as a case study for its adaptive strategies. Interviews
with project managers about handling increased time pressures
aim to validate these controls’ effectiveness in agile environments,
offering insights into adapting agile practices under tight timelines.
Fehrenbacher et al. [28] examined the effects of time pressure and

https://zenodo.org/records/14782835


Racing Against the Clock: Exploring the Impact of Scheduled Deadlines on Technical Debt EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

justification requirements on software acquisition decision-making.
It used eye-tracking to study how these factors influenced cognitive
and behavioral responses. The findings revealed that time pressure
increased discomfort and reduced time spent on information anal-
ysis. Importantly, requiring justification under time pressure led
to a more thorough examination of information. Lohan et al. [46]
explored how different types of time pressure and the cohesiveness
of a group influenced the quality of decisions made in software
development teams. The authors surveyed 119 software develop-
ers to assess the effects of challenge-based and hindrance-based
time pressures on the quality of decision-making, measured by the
confidence and consensus of teams in their decisions. The results
indicated that decision-making quality was positively influenced
by challenge time pressures and the cohesion of the group, while
hindrance time pressure had no notable effect.

Technical Debt Management Studies. Tan et al. [69] inves-
tigated the management of TD across issue trackers and software
repositories, aiming to understand the lifecycle from TD introduc-
tion to resolution. They analyzed 3000 issues from five projects,
focusing on 300 issues with TD and tracking 312 TD items. Key
findings included that TD identification often took about a year,
but resolution times were shorter when the same developer was
involved throughout the TD lifecycle. Chatzigeorgiou et al. [21]
aimed to investigate the development of bad smells or software
design problems in object-oriented programming. They also sought
to understand whether bad smells were resolved naturally over
time or required specific intervention. The study analyzed histori-
cal code versions from two OSS systems, focusing on three types of
bad smells. Tan et al. [70] analyzed TD remediation in 44 Python
projects from the Apache Software Foundation, focusing on the
types and volume of debt addressed. Analysis of extensive data
showed that most efforts were made to target testing, documenta-
tion, complexity, and duplication issues, with over half of the TD
being short-term and resolved within two months. Digkas et al. [26]
analyzed how TD was managed in fifty-seven Java OSS projects
under the Apache Software Foundation, mainly focusing on the
issues addressed and the amount of debt repaid. The study discov-
ered that only a few issues accounted for most TD repayments. It
explored several aspects of TD management, including differences
in issue resolution rates among projects, the frequency of fixes for
various issue types, the distribution of effort in addressing different
types of debt, and the timeframe for debt repayment. They found a
substantial portion of issues, nearly 20%, are fixed within a month
of detection, with more than half resolved within a year.

Summary: Unlike most prior research that explored time con-
straints or software quality independently, our study took a distinct
approach to empirically investigate the interplay between deadlines
and software quality, focusing on TD. We applied ASAT to obtain
quantifiable, time-based measures of TD accumulation. These anal-
yses allowed us to observe how software quality evolved regarding
scheduled deadlines based on software development activities. No
previous study has analyzed how TD was accumulated with regard
to scheduled deadlines using empirical data, nor have trend-based
analyses been conducted to examine the temporal dynamics of TD
around release deadlines.

3 METHODOLOGY
This section outlines the study methodology, detailing the goal,
research questions, data collection, and analysis.

3.1 Goal and Research Questions
The aim of this study is (articulated using the Goal-Question-Metric
approach [18]):

Purpose: To investigate
Issue: the impact
Object: of scheduled deadlines on technical debt
Viewpoint: from the software engineering researchers’
perspective

RQ1 What is the impact of scheduled deadlines on TD
accumulation?

Rationale: The rationale behind investigating the impact of
scheduled deadlines on TD accumulation lies in understanding
how regular deadlines compel teams to take shortcuts or rush their
work, potentially increasing TD. This insight is vital as it provides
a data-driven perspective of the risks associated with deadlines for
TD management. Furthermore, it contributes to the broader body of
software engineering knowledge by providing empirical evidence
on the dynamics of TD and scheduled deadlines.

RQ2 What is the impact of scheduled deadlines on the
development commit activities?

Rationale: The investigation into the impact of scheduled dead-
lines on development activities aims to shed light on developer
behavior under deadlines, revealing whether changing code churn,
commit frequency, or file changes occur as deadlines approach.
The insights could reveal whether teams tend to work more inten-
sively and make more changes as regular deadlines approach [3, 19].
Understanding these trends could help plan future projects more
effectively. If specific patterns consistently led to increased TD, they
could be addressed early in the project lifecycle.

RQ3 What is the impact of scheduled deadlines on the
project issues?

Rationale: In modern software development projects, issue track-
ers have emerged as vital tools for collaboration [13]. Issue trackers
monitor new feature requests, development tasks, and bugs [35]. By
analyzing patterns in issue creation, closing dates, and issue labels,
our study aims to understand how scheduled deadlines influence
issue management in software projects. This aspect is crucial as
it directly reflects how teams respond to and resolve issues under
scheduled deadlines. Patterns in issue management could reveal
whether deadlines led to a hurried resolution of issues, potentially
leaving some issues inadequately addressed or ignored, thus con-
tributing to the accumulation of TD.

3.2 Data Collection
3.2.1 Project Selection. The initial step of our study is cloning OSS
projects with regularly scheduled releases. We followed several
criteria to maximize the variety and representativeness of our se-
lected projects and reduce potential external validity threats, as
established by previously published studies [22, 42]. Specifically,
(1) we considered Patton’s “criterion sampling" approach [57], se-
lecting projects that were older than four years, had more than 500
commits, contained over 100 classes, and recorded more than 100



EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Joshua Aldrich Edbert, Zadia Codabux, and Roberto Verdecchia

Table 1: The OSS Projects Selected in this Study

Home As-
sistant

GitLab Django Kubernetes Jenkins Eclipse Go Ansible

Project Size (LOC) 2,348,208 9,098,312 656,302 4,645,775 342,060 802,165 2,255,066 240,188
Project Age (Months) 137 161 237 129 221 288 639 156
Contributors (People) 4,021 6,976 2,614 3,757 795 180 2,168 5,566
Stars, Forks 75.6k, 31.9k 5.3k, - 81.8k, 32k 112k, 40k 23.5k, 8.9k 88, 115 125k, 17.8k 63.6k, 23.9k
Classes 12,821 35,030 12,919 20,204 8,587 10,904 14,003 2,112
Repository Commits 120,451 434,834 33,153 127,317 35,713 44,263 61,914 54,746
Language Python Ruby, Go,

JavaScript
Python Go, Shell,

PowerShell
Java Java Go Python

Domain Home Au-
tomation

Version
Control
System

Web Devel-
opment

Container Server Au-
tomation

IDE Language IT Au-
tomation
Platform

Release Schedule First
Wednes-
day of each
month

22nd
of each
month

Every
month

Three
times a
year

Every Tues-
day

December,
March,
June, Sep-
tember

August and
February

November
and May

issues in their issue tracking system, (2) following the guidance
of Nagappan et al. [53], we ensured diversity in the selection by
considering projects of varying ages, sizes, and domains. More-
over, we applied the following Selection Criteria (SC) from previous
work [73]: SC1: The use of real applications. This criterion helps
exclude toy projects and demos. SC2: The number of times the
repository is forked and starred. This criterion provides assurance
about the quality and popularity of the repository. SC3: The number
of commits to the repository. This ensures the project is represen-
tative of a long-lived application. Our selection process resulted in
eight projects, namely Home Assistant, Django, Kubernetes, Jenk-
ins, Eclipse, Go, Ansible, and GitLab, as summarized in Table 1.
Notably, we selected eight OSS projects, which is more than the
number of projects typically considered in similar studies [22, 52],
underscoring the comprehensiveness of our approach.

3.2.2 SonarQube Analysis (RQ1). We focused on understanding
the impact of scheduled deadlines on TD accumulation. For each of
the selected projects, a daily snapshot of the project codebase was
taken, specifically analyzing the last commit of each day.We utilized
the time of the last commit on a given day as a purposive sampling
strategy [51] to limit the number of samples to be analyzed to a
feasible magnitude while allowing us to gain a systematic overview
of how TD varied in time. We considered the last commit of each
day for the SonarQube analyses, which allowed us to study the
evolution of TD throughout a wide temporal range (e.g., years)
while maintaining the number of data points to be collected at a
feasible value. This constitutes a tradeoff between construct validity
and the feasibility of this study. Section 7 further discusses this
limitation of our study.

We analyzed 12.3k commits and 371 releases across the eight
selected OSS projects. SonarQube, a tool for static code analysis, was
used to detect TD induced by the developers on the daily snapshot
of the projects. SonarQube was chosen as it identifies and measures

TD and has been widely used in various studies [4, 5, 40, 52, 74].
Furthermore, the TD metrics provided by SonarQube have been the
most frequently employed in empirical evaluations within academic
research [8]. For each snapshot, SonarQube version 9.9 LTS and
SonarScanner3 for Linux version 5.0.1 were used to examine every
change. This procedure gathered the SQALE index metric [43]. The
SQALE4 index is defined as “A measure of effort to fix all code smells.
The measure is stored as minutes". To prevent subjective tool setting
tempering, the standard SonarQube rules setup was utilized for TD
measurement, as suggested by a previous study [73].

3.2.3 Commit Activity (RQ2). The second research question aimed
to examine the impact of scheduled deadlines on the development
of commit activities, such as the commit frequency of the selected
projects’ developers. Pydriller [67] is a Python framework designed
formining information fromGit repositories, commonly used in pre-
vious studies [14, 19, 56, 59]. It facilitates the retrieval of data from a
Git repository, including commit frequency, file change count, and
code churn. We used Pydriller to analyze the eight selected projects
over their lifespan, extracting metrics such as commit frequency,
files changed, and code churn. Each day’s commits were traversed
to calculate these metrics for each project. The results captured
aggregated daily summaries of the metrics. Our approach provided
a detailed temporal view of repository activity, enabling insights
into patterns like increased activity near deadlines or consistent
development trends.

3.2.4 Issue Tracking System (RQ3). A systematic analysis of the
project issue-tracking system was conducted to examine the impact
of scheduled deadlines on the issues arising. Our focus was on
extracting comprehensive metadata associated with each issue,
which provides insights into how the frequency, severity, or nature

3docs.sonarsource.com/sonarqube/9.9/analyzing-source-code/scanners/
sonarscanner/ Accessed on May 6, 2024
4docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/

docs.sonarsource.com/sonarqube/9.9/analyzing-source-code/scanners/sonarscanner/
docs.sonarsource.com/sonarqube/9.9/analyzing-source-code/scanners/sonarscanner/


Racing Against the Clock: Exploring the Impact of Scheduled Deadlines on Technical Debt EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

of these issues might change as deadlines approached. We began
our data collection by interfacing with the project issue-tracking
system, ensuring access to all the relevant issues since the inception
of the project. We utilized the APIs provided by GitHub, GitLab,
and Jira, which allowed for an automated and efficient extraction
of issue data for all our selected projects, excluding Django. For
Django, they made their issue tracker data readily downloadable
as a CSV file on their website. For each issue, we extracted the
following metadata: the unique issue number, the timestamp when
the issue was created, its closure, and the associated labels.

3.3 Data Analysis
We analyzed the derivatives of the SQALE index values, which
indicated the rate at which the SQALE index value increased or
decreased daily. We extracted the SonarQube SQALE index values
of the project at the last commit of each day. Our approach to
analyzing the derivatives of the SQALE index values indicates how
much the SQALE index value, a measure of effort (in minutes) to
fix all code smells, is accumulated as deadlines approach instead of
the SQALE index value, providing a nuanced understanding of the
dynamics of TD accumulation in relation to scheduled deadlines.
We acknowledged the potential single-metric bias of relying solely
on the SQALE index for TD evaluation. Another limitation is the
analysis of the derivatives of the SQALE index values without
normalizing them against a size-related metric, such as LOC. Our
decision was deliberately made, as Graf-Vlachy and Wagner [30]
indicated that ratios could be problematic when used as dependent
variables [20]. Both threats will be further discussed in Section 7.

We plotted the SQALE index derivative trends for all projects
as a time series for visualization and analysis. However, we only
included a few plots in this paper due to space limitations, with
the remaining data readily available in the replication package. Fig-
ure 1 presents the trend for only one project as an example. This
figure illustrates the SQALE index derivative trends over time for
the Home Assistant project during 2022, providing a clear view of
the temporal evolution of TD. The red dashed vertical lines in the
plot represent the scheduled release deadlines, offering a contextual
timeline to examine how TD accumulates and evolves around these
scheduled deadlines. We qualitatively analyzed the temporal trends
of the SQALE index derivative values across different projects, fol-
lowing the time-windowing guidelines from previous work [48].
We defined a “window" as the interval between two consecutive
deadlines within a project, during which we observed and analyzed
the evolution of the derivatives of the SQALE index values to deter-
mine the TD accumulation trends. To systematically categorize and
understand these trends in each window, we employed the provi-
sional coding technique [63] from the trends reported by Malavolta
et al. [48], whose work also involved manually evaluating trends.
We used provisional coding to develop an organized classification of
the SQALE index derivative trends, enabling us to discern patterns
indicating how TD accumulation evolved in relation to project dead-
lines. Table 2 defines the TD accumulation evolution pattern we
used in our manual window characterization. Initially, we adopted
the trend definitions provided by Malavolta et al. [48] as the foun-
dation for our categorization protocol, given their relevance and
similarity to our objectives. Subsequently, we expanded on these

definitions by introducing additional trend categories to capture
the nuances observed in our data better. One author categorized
the derivatives of the SQALE index trend per window for each
project. Another author examined the categorization by the other
to verify the correctness of the coding process. Any discrepancies
were jointly discussed. This process was repeated for all windows
across all projects to ensure comprehensive coverage. We obtained
a very strong agreement between the two authors (Cohen’s Kappa
= 0.936).

Our decision to adopt provisional coding, rather than relying
on statistical tests, was intentional and aligned with the goal of
this study. First, we focused on providing qualitative insights into
TD evolution. While valuable for identifying correlations, tradi-
tional statistical approaches lack the contextual granularity needed
to understand the nuanced patterns present in our data. More-
over, the shape and trajectory of TD accumulation trends, such
as Double Hills, carry interpretive meaning that statistical coef-
ficients alone cannot convey. The same method was applied in
earlier research [48], further reinforcing our confidence in its use
and suitability for our study.

RQ2 and RQ3 metrics were aggregated and analyzed over de-
fined periods surrounding each deadline. Specifically, we examined
whether notable spikes in the metrics’ data occurred Exactly on the
Deadlines (Ex), Right Before (Bf), Right After (Af), or No Spikes at All
Around the Deadlines (Ot). For the Bf and Af categories, we used a
7-day window on either side of the deadline, inspired by a previous
study [9].

4 RESULTS
4.1 RQ1: The Impact of Scheduled Deadlines on

TD Accumulation

20
22

-01

20
22

-02

20
22

-03

20
22

-04

20
22

-05

20
22

-06

20
22

-07

20
22

-08

20
22

-09

20
22

-10

20
22

-11

20
22

-12

20
22

-12

version

100

0

100

200

300

Figure 1: Example of the SQALE Index Derivative Trends
Over Time for the Home Assistant Project

In this section, we reported the results of RQ1. This analysis
explored the derivatives of the SQALE index trends and patterns.
Figure 1 visualizes the SQALE index derivative trends over time
for the Home Assistant project throughout 2022. The red dashed
vertical lines indicate the scheduled release deadlines, providing
a timeline for understanding how TD accumulated in relation to
these releases. Table 3 summarizes the result of our manual window
coding to come up with an organized classification of the SQALE
index derivative trends across the projects. The table is organized
by several columns representing different trend categories, such as



EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Joshua Aldrich Edbert, Zadia Codabux, and Roberto Verdecchia

Table 2: Taxonomy of the SQALE Index Derivatives Evolution Trends

Trend Category Description

Increase (I) The trend generally shows an upward direction, although it may include brief periods of decline.

Increasing Plateau (IP) The density levels out at plateau(s) after an increasing trend that generally does not decline.

Plateau Increasing (PI) The trend initially remains steady and then exhibits growth over time.

Decrease (D) This is the opposite of I, showing a general downward trend.

Decreasing Plateau (DP) This trend is the inverse of IP, where the trend eventually stabilizes after showing an initial decreasing trend.

Plateau Decreasing (PD) This trend starts steadily and then shows a decline throughout the observation, serving as the opposite of PI.

Hill (H) The trend starts at lower levels, ascends to a peak, and then descends, resembling the shape of a hill.

Valley (V) This is the counterpart to H, where the trend dips to a low point and then rises, forming a valley-like shape.

Valley Hill (VH) The initial trend descends, reaching a bottom dip, before it ascends to achieve a peak, and then it descends
again, resembling a valley followed by a hill.

Hill Valley (HV) The trend begins with an ascent to a peak, then a descent to a low point, and rises again, mimicking a hill
followed by a valley.

Double Hills (HH) The density exhibits two peaks separated by a valley, indicating a pattern of increase to a peak, decrease, and
then another increase to a second peak.

Constant (C) The trend line remains flat over time, indicating no change in the measured density.

Anomalous (A) This category is reserved for trends that do not fit into any of the predefined patterns above.

Table 3: Summary of RQ1 Results

Projects V H VH HV HH I IP PI D DP PD C A

HomeAsst 56.3% 9.4% 0 0 0 12.5% 0 0 3.1% 3.1% 0 0 15.6%
GitLab 50.0% 22.7% 4.5% 2.3% 0 9.1% 0 0 2.3% 0 0 0 9.1%
Django 20.6% 42.6% 1.5% 1.5% 0 19.1% 1.5% 0 8.8% 0 0 2.9% 1.5%
Kubernetes 7.4% 74.1% 3.7% 3.7% 3.7% 0 0 0 0 0 0 7.4% 0
Jenkins 12.0% 5.4% 0 0 0 17.4% 0.7% 0.7% 16.8% 0 2.0% 43.0% 2.0%
Eclipse 8.0% 8.0% 4.0% 0 8.0% 16.0% 0 0 0 0 4.0% 4.0% 48.0%
Go 5.6% 22.2% 0 0 27.8% 5.6% 5.6% 11.1% 0 0 11.1% 0 11.1%
Ansible 50.0% 16.7% 33.3% 0 0 0 0 0 0 0 0 0 0

valley (V) and hill (H), resulting from our manual window character-
ization process in Section 3.3. The table displays the corresponding
percentages of the total windows analyzed for each project.

For Home Assistant, a significant majority of the windows were
classified as valley, accounting for 56.3% of the windows, followed
by anomalous at 15.6% and increase at 12.5%. Notably, this project
has 56.3% of the windows indicating more TD is accumulated as
deadlines approach. Similarly, the results of GitLab emphasized
more on valley patterns at 50.0%, which also means that this project
has 50.0% of the windows indicating that more TD is accumulated
as deadlines approach. Django showed a distinct preference for hill
patterns, making up 42.6% of its total windows, with a significant
number of valley at 20.6% and increase at 19.1%. The result for the
Django project is characterized by intense activity mid-deadline,
avoiding last-minute TD accumulation. Kubernetes displayed an
overwhelming majority of hill patterns at 74.1%, marking it as the
project with the highest concentration of single-pattern types. Un-
like the Django project, the hill pattern we observed for Kubernetes

is characterized by peaks close before the deadlines. Hence, our
results for Kubernetes suggested a cyclical pattern where more TD
accumulated as regularly scheduled deadlines approached. Jenkins,
the project with the highest total windows, presented a diverse
range of patterns, with constant patterns dominating at 43.0%. It
also showed a notable number of increase and decrease patterns at
17.4% and 16.8%, respectively, indicating significant fluctuations
and stable TD accumulation over time in its dataset. A significant
portion of the windows (48.0%) in the Eclipse project were catego-
rized as anomalous. For the Go project, a significant proportion of
the windows fell under hill (22.2%) and double hills (27.8%), similar
to our results for Django. The Ansible project exhibited half of the
windows in the valley category.

4.2 RQ2: The Impact of Scheduled Deadlines on
the Development Commit Activities

In this section, we described the results of RQ2. RQ2 aims to inves-
tigate the impact of scheduled deadlines on development commit



Racing Against the Clock: Exploring the Impact of Scheduled Deadlines on Technical Debt EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Table 4: Summary of RQ2 Results

Projects Commit Frequency Code Churn Files Changed
Ex Bf Af Ot Ex Bf Af Ot Ex Bf Af Ot

HomeAsst 28% 53% 19% 9% 16% 9% 66% 100%
GitLab 5% 63% 16% 16% 5% 29% 7% 59% 2% 50% 23% 25%
Django 26% 26% 48% 6% 10% 16% 68% 20% 22% 9% 49%
Kubernetes 7% 48% 30% 15% 4% 30% 18% 48% 4% 26% 15% 55%
Jenkins 13% 19% 6% 62% 4% 16% 20% 60% 30% 24% 8% 38%
Eclipse 0% 38% 4% 58% 0% 0% 17% 83% 8% 12% 17% 63%
Go 5% 39% 39% 17% 0% 17% 22% 61% 11% 22% 39% 28%
Ansible 100% 100% 100%

20
22

-01

20
22

-02

20
22

-03

20
22

-04

20
22

-05

20
22

-06

20
22

-07

20
22

-08

20
22

-09

20
22

-10

20
22

-11

20
22

-12

20
22

-12

Date

20

30

40

50

60

70

80

Figure 2: Example of the Commit Frequency Trends Over
Time for the Home Assistant Project

activities, focusing on daily metrics such as commit frequency, code
churn, and files changed in relation to impending project deadlines.
The three daily metrics were analyzed during different periods
around the deadlines to understand how development activities
adjusted under scheduled deadlines. Figure 2 visualizes the com-
mit frequency trends over time for the Home Assistant project
throughout 2022. The red dashed vertical lines indicate the sched-
uled release deadlines, providing a timeline for understanding how
commit frequency accumulates in relation to the deadlines. Table 4
summarizes the results of RQ2.

Home Assistant showed a significant portion of deadlines having
commit frequency spikes occurring right before deadlines (53%),
with all of the release deadlines (100%) having files changed oc-
curring exactly on deadlines. The GitLab data illustrated a heavy
concentration of deadlines having commit frequency (63%) and files
changed (50%) spikes right before deadlines. Django presented a
more balanced distribution with a slight emphasis on activities right
after deadlines (48% of deadlines in commit frequency). Kubernetes
and Jenkins showed diverse patterns of the daily metrics in relation
to deadlines. Kubernetes demonstrated a relatively even distribu-
tion across phases, whereas Jenkins showed a significant portion
of activity outside the scope of deadlines (62% in commit frequency
and 60% in code churn). Similarly, most activities in Eclipse occured
outside the scope of the deadlines. Go exhibited a balanced distri-
bution in commit frequency right before and after the deadlines
(both 39%). Ansible was unique in that all activities were exclusively
categorized in Ot, reflecting 100% across all metrics.

4.3 RQ3: The Impact of Scheduled Deadlines on
the Project Issues

Table 5: Summary of RQ3 Results (Issue Creation and Closed
Dates)

Projects Issue Creation Dates Issue Closed Dates
Ex Bf Af Ot Ex Bf Af Ot

HomeAsst 6% 85% 9% 75% 22% 3%
GitLab 2% 50% 9% 39% 5% 68% 18% 9%
Django 3% 37% 40% 20% - - - -
Kubernetes 33% 56% 11% 44% 56%
Jenkins 19% 24% 34% 23% 10% 11% 11% 68%
Eclipse 8% 17% 0% 75% 0% 33% 0% 67%
Go 0% 0% 32% 68% 0% 5% 32% 63%
Ansible 0% 14% 0% 86% 0% 14% 0% 86%

Table 6: Summary of RQ3 Results (Issue Labels)

Projects Labels Ex Bf Af Ot
HomeAsst bugfix 31% 69%

code-quality 3% 53% 28% 16%
breaking-change 9% 47% 35% 9%

GitLab type::feature 77% 23%
type::bug 4% 66% 30%
type::maintenance 2% 52% 30% 16%

Django Bug 1% 34% 31% 34%
Cleanup/optimization 9% 26% 28% 37%

Kubernetes kind/bug 4% 63% 26% 7%
kind/cleanup 26% 59% 15%

Jenkins Bug 100%
Eclipse bug 100%

help wanted 100%
Go NeedsInvestigation 5% 16% 11% 68%

NeedsFix 0% 5% 32% 63%
help wanted 100%

Ansible bug 14% 29% 0% 57%
needs_revision 0% 86% 0% 14%
has_issue 0% 14% 29% 57%



EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Joshua Aldrich Edbert, Zadia Codabux, and Roberto Verdecchia

20
22

-0
1-
01

20
22

-0
3-
01

20
22

-0
5-
01

20
22

-0
7-
01

20
22

-0
9-
01

20
22

-1
1-
01

20
23

-0
1-
01

Date

40

50

60

70

80

90

100

110

Figure 3: Example of the Issue Creation Trends Over Time
for the Home Assistant Project

Here, we described the results of RQ3, summarized in Tables
5 and 6. RQ3 focuses on understanding the impact of scheduled
deadlines on project issues, specifically analyzing issue tracker data
regarding the creation, closure dates, and labels of issues around
project deadlines. This analysis involved collecting daily metrics of
issue tracker metadata and examining trends in relation to project
deadlines. Figure 3 visualizes the issue creation trends over time
for the Home Assistant project throughout 2022. The red dashed
vertical lines indicate the scheduled release deadlines, providing a
timeline for understanding how issue creation trend accumulates
in relation to these releases. However, it is essential to note the
limitations encountered during our analysis. Specifically, due to the
unavailability of data regarding the closure dates of issues within
the Django project, we could not present results for the trend of
issue closure for Django.

Across several projects, a significant number of deadlines pre-
sented a spike in issue creation right after the deadlines. Home
Assistant and Kubernetes showed that a substantial proportion
(85% and 56%, respectively) of the deadlines have spikes in issues
created right after deadlines. The closure of issues also reflects
interesting patterns, particularly in Home Assistant and GitLab,
where 75% and 68%, respectively, of the deadlines have spikes right
before the deadlines. However, Kubernetes exhibited a balanced clo-
sure rate before and after deadlines. For Jenkins, there were spikes
in issue creation right after the deadlines (34% of deadlines). For
Eclipse, Go, and Ansible, issue creation and closure predominantly
occurred not close to the deadline proximity (67–86% of deadlines),
with minimal or no activity observed exactly on, before, or after
deadlines, indicating that their issue creation and closure trends
were not closely aligned with the deadline proximity.

Table 6 further depicts the results of RQ3, focusing on the impact
of scheduled deadlines on project issues, specifically through the
lens of issue labels. Issue labels provide insights into the nature of
issues (e.g., bug fixes, feature requests, and maintenance tasks) and
how their management is influenced by project deadlines. In the
analysis of RQ3, we specifically selected issue labels that describe
the nature of the tasks, such as those related to bugs or maintenance.
This targeted selection was used to provide a clearer understanding
of how different types of tasks were influenced by approaching
deadlines. Each row in the table represents data for a different
project, categorizing issues by their labels, andwe observedwhether

there were spikes Exactly on the Deadlines (Ex), Right Before (Bf),
Right After (Af), or No Spikes (Ot).

For HomeAssistant, the labels analyzed were bugfix, code-quality,
and breaking-change. A notable trend is that a significant portion
of deadlines (69%) have spiked bugfix issues reported right af-
ter the deadlines. In contrast, issues labeled as code-quality and
breaking-change showed a balanced distribution, with a consider-
able number addressed right before the deadlines. GitLab results
strongly emphasized addressing feature-related and bug-related
issues right before the deadlines, with 77% of deadlines having
feature-related issues (type::feature), 66% of deadlines having bug-
related issues (type::bug), and 52% of deadlines having maintenance-
related issues (type::maintenance) being created right before dead-
lines. Django issue creation patterns, as seen through the labels Bug
and Cleanup/optimization, indicated a fairly even distribution of
issue creation across different timeframes relative to deadlines. In
Kubernetes, there was a notable emphasis on addressing bug-related
issues right before the deadlines (63%). However, cleanup-related is-
sues showed a majority (59% of deadlines) being handled right after
the deadlines. For Jenkins, Eclipse, and Go, most data fell in the Ot
category (63–100%), indicating that the creation of those labels was
not close to the deadlines. In Ansible, labeled issues creation was
also predominantly not close to deadlines, with limited creation
activity spiking right before the deadlines for the needs_revision
label.

5 DISCUSSION
Complex Dynamics of Scheduled Deadlines and Technical
Debt. Our study revealed no definitive patterns linking scheduled
deadlines to TD accumulation across the selected OSS projects.
While half of the selected OSS projects demonstrated clear increases
in TD as deadlines approached, others showed no significant change.
Importantly, we found no evidence of causality between scheduled
deadlines and TD across all projects, suggesting the influence of con-
founding factors. These factors may include scrupulous project man-
agement practices, project complexity, team size, resource avail-
ability, and individual developer practices, such as postponing the
resolution of To-Do items or failing tests for later sessions. Such
elements could heavily impact working patterns, making it difficult
to draw a direct correlation between TD and scheduled deadlines.
Our results indicated a potential correlation rather than causation,
leaving room for potential unaccounted influences. Future research
should investigate more direct or composite measures of scheduled
deadlines and their relationship with TD in software development
environments to understand this complex dynamic better.

Technical Debt Accumulates as Scheduled Deadlines Ap-
proach in Some Projects. For the Home Assistant, GitLab, and
Ansible projects, we observed a majority of the windows being
classified as Valley in relation to TD accumulation. For the Ku-
bernetes project, it exhibited a significant tendency towards Hill
patterns, with 74.1% of the analyzed windows showing this trend
as deadlines approached. Unlike the Django project, the Hill pat-
tern we observed for Kubernetes is characterized by peaks close to
the deadline. Hence, our results suggested a cyclical pattern where
more TD is accumulated as regularly scheduled deadlines approach



Racing Against the Clock: Exploring the Impact of Scheduled Deadlines on Technical Debt EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

for some projects. This result can be attributed to the fact that con-
tinuously keeping software production running puts immediate
pressure on developers [12]. Under deadline pressure, developers
take shortcuts when developing software, making decisions to stay
on schedule, which may not be in the best interests of the project
quality and whose potential adverse consequences are often not
fully understood [7].

Commit Frequency Accumulate Near Deadlines in Some
Projects. Our results revealed that a significant portion of deadlines
have commit frequency spikes right before deadlines. Toward the
end of a software development cycle, there is a natural surge in
development activities to finalize features or fix bugs that must be
completed for the release [55]. The spike in commit frequency prior
to deadlines corresponds with the integration phase, where develop-
ers merge branches and ensure that their code works with the main
branch codebase. However, commit frequency spikes right before
deadlines indicate that developers deal with increasingly intensive
and challenging work at the last minute, closer to deadlines [19].
Dealing with such intensive and challenging tasks at the last minute
makes developers incur suboptimal software practices [11, 29]. This
result explains more TD accumulated as deadlines approached.

Bug-related Issues Accumulate Near Deadlines in Some
Projects. Reporting and resolving bugs are key activities in soft-
ware development [58]. Our study revealed that some deadlines have
spikes in bug-related issues right before deadlines. Modern software
development is a cooperative effort by self-managing, multidisci-
plinary teams [31, 33, 68]. Release deadlines prompt the integration
of various features or components that multiple developers have
developed in parallel. The integration process can expose compat-
ibility issues, leading to a spike in reported bug-related issues as
different components interact within the unified system. The pre-
deadline spikes in bug-related issues demonstrate a proactive push
to resolve critical bugs for the release [1]. However, developers in-
troduce suboptimal software development practices when making
last-minute fixes [11, 29], contributing to TD accumulation.

Scheduled Deadlines Have No Significant TD Accumula-
tion Impact inMature Projects.Our findings revealed interesting
insights into the impact of scheduled deadlines on TD accumulation,
particularly in mature software projects. Contrary to the assump-
tion that time constraints lead to rushed decisions and more TD
accumulation [32, 41], our analyses of Django, Jenkins, Eclipse,
and Go suggested a different narrative. We observed no clear pat-
tern of increased TD accumulation as deadlines approached in
these projects. From Table 1, it is evident that all four projects
are over 200 months in age, making them considerably older than
the other projects analyzed in this study. The study by Molnar et
al. [52] showed that as software projects mature, they no longer
introduce as much debt. Additionally, Digkas et al. [27] stated that
development teams increasingly emphasize repaying accumulated
TD, maintaining and enhancing code quality as software projects
mature. This culture is especially true for OSS projects that are
recognized and of high quality within the open-source community.
Hence, scheduled deadlines do not significantly impact TD accumu-
lation in mature software projects.

The Impact of Team Size on TD Accumulation with Up-
coming Deadlines We observed that TD tends to accumulate as
deadlines approached in software projects with more developers (i.e.,

Home Assistant, GitLab, Kubernetes, and Ansible). As the number
of contributors grows, so does the complexity of communication,
integration, and collaboration [15]. Previous work has also shown
that larger software teams produce software with more defects and
higher complexity [16].

The Impact of Deadline Timelines on TD Accumulation
Our analysis revealed that the relationship between scheduled dead-
lines and TD accumulation is inconsistent across projects, even among
those with similar release schedules. For instance, projects like Home
Assistant and GitLab, which follow a monthly release schedule,
exhibited clear patterns of increased TD accumulation as deadlines
approached. In contrast, Django, which also follows a monthly
schedule, did not display such trends. These inconsistencies suggest
that TD accumulation dynamics may be shaped by project-specific
practices rather than by the frequency of scheduled releases [23],
highlighting the importance of contextual factors in understanding
the impact of deadlines on code quality.

6 IMPLICATIONS
For Researchers. Our study observes an increased trend of TD ac-
cumulation as the deadlines approach, marked by commit frequency
and bug-related issues spiking prior to deadlines. Accumulation
of TD is due to a last-minute deal with increasingly intensive and
challenging work, as well as a last-minute proactive push to re-
solve critical bugs for the release. This finding suggests a need to
study which effective development strategies within the industry
can mitigate last-minute coding rushes and the associated quality
compromises. Researchers should focus on developing strategies
to prevent developers from working on tasks at the last minute.
Effective strategies from such research could guide teams on better
practices, helping maintain code quality even under deadlines.

For Practitioners. Our findings indicate that while mature
projects are less affected by scheduled deadlines, younger projects
struggle with TD accumulation under scheduled deadlines. This dis-
parity suggests that the industry needs to better support less mature
projects by adopting practices that have proven effective in more
established projects, such as increasingly emphasizing the repay-
ment accumulated TD and maintaining code quality. Practitioners
should look into established frameworks, such as the framework by
Wiese et al. [75], for better project management practices that avoid
end-of-cycle rushes and provide education on TD management to
all team members. Moreover, creating a culture that values early
and continuous attention to quality and regular debt repayment
could help mitigate the impact of scheduled deadlines on project
quality. Practitioners could also benefit from tools that provide
real-time feedback on code quality to prevent TD accumulation.

7 THREATS TO VALIDITY
In line with the classification system proposed by Runeson et al. [62]
in their work on validity threats, we examined various elements
that pose potential risks to this research. Additionally, we outlined
the appropriate measures we implemented to mitigate these risks.

Construct Validity concerns the suitability of our operational
measures in addressing our research questions. In our study, we
relied solely on SonarQube to detect TD accumulated by the devel-
opers. Our study’s validity depends solely on the accuracy of code



EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Joshua Aldrich Edbert, Zadia Codabux, and Roberto Verdecchia

debt measured by SonarQube. Any errors or biases, such as false
positives in detecting code debt, in the SonarQube analysis could
affect the study findings. To address this concern, we only selected
the tool that, to the best of our knowledge, is the most extensively
used in academia and industry for calculating TD over any other
tool. This choice is based on the premise that a widely adopted
and recognized tool would provide more reliable and consistent
measurements of TD, thereby helping to ensure that our study accu-
rately reflects its aim. Our methodology to analyze the last commit
of each day for the SonarQube analyses presents a tradeoff between
construct validity and the feasibility of the study. While this ap-
proach assumes that the last commit of a day is representative of the
overall daily development efforts and codebase quality, we deemed
this strategy necessary given the timespan of several development
years per project. The last commit of the day is a logical point to
assess the codebase since it includes all the changes finalized by
the end of the working day. By focusing only on the last commit of
each day, our study also establishes a consistent temporal marker
for data collection. Moreover, given the observed fluctuations in TD
across the projects, this design choice likely did not significantly
impact the results. A potential threat to the validity of our study
is analyzing SQALE index derivatives without normalizing them
by size-related metrics, such as LOC. This was a deliberate choice
that we consciously made in the research design phase. The SQALE
index naturally increases in larger projects. Without normalization,
we risked misjudging the true impact of scheduled deadlines on TD
accumulation. However, according to Graf-Vlachy andWagner [30],
ratios could be problematic when used as dependent variables [20].
Therefore, unlike earlier studies, they chose not to calculate TD
measures by dividing by the difference in LOC. A potential threat
lies in the manual categorization performed by the authors. While
the two authors reviewed the categorization collaboratively, there
is still a possibility of subjective bias. Future work could consider
defining clear thresholds for categorization to improve the manual
categorization process. Lastly, we acknowledge the potential single-
metric bias of relying solely on the SQALE index for TD evaluation.
We chose the SQALE index metric, as it is the most commonly used
and validated metric to quantify TD5. Prior works have utilized the
SQALE index as a primary measure to quantify TD [61, 66]. This
metric makes it particularly suitable for our longitudinal analysis
of TD accumulation around scheduled deadlines, allowing us to
capture the rate of TD accumulation over time. We did not account
for other metrics, such as the number or severity of individual code
smells, as they were outside the scope of this study. Future work
could incorporate more metrics to provide a more comprehensive
understanding of software quality issues under scheduled deadlines.

Internal Validity pertains to the degree to which the observed
outcomes can be attributed to the “treatment" rather than to other
variables. In our research, as Alfayez et al. [4] suggested, we avoided
manual techniques and subjective assessments for determining TD
to minimize bias and errors. Instead, we depended on SonarQube
to measure TD, ensuring that all the systems we studied were
evaluated under a consistent set of criteria. Another threat is the
unavailability of closure date data for issues within the Django
project, which prevented us from analyzing trends related to the

5https://docs.sonarsource.com/sonarqube-server/10.4/user-guide/metric-definitions/

timing of issue resolutions for Django, which could have provided
further insights into how scheduled deadlines impact the resolu-
tion practices within this project. Another primary concern is the
potential confounding factors influencing the perceived deadline
pressure. These factors include but are not limited to the other
contributor’s work activities, the project complexity, the team size,
resource availability, and individual developer practices and prefer-
ences, such as leaving to-do items or failing tests to be addressed in
subsequent work sessions. These elements could affect developers’
working patterns, complicating the association between TD and
scheduled deadlines.

External Validity concerns the level to which our findings
can be generalized. One limitation of our study is the sample size.
We only used data from eight OSS projects for our analysis. Our
results and conclusions were drawn only from examining these
projects, potentially affecting the generalizability of our findings.
Although there is a potential for confirmation bias, the collected
results provide an initial empirical demonstration of what could
intuitively be expected. Expanding the sample size and variety
would allow for more robust conclusions across different project
environments. Another limitation is our exclusive focus on OSS
systems, which limits the generalizability of our findings to closed-
source or commercial projects. However, this study represents a
preliminary exploration of a new topic. We focused on large OSS
projects with years of active development. The scale and complexity
of the selected projects provided valuable insights that could serve
as a foundation for further research. Moreover, we selected OSS
projects supported by actual companies that are popular within
their respective domains.

8 CONCLUSION AND FUTUREWORK
This study investigated the impact of scheduled deadlines on TD ac-
cumulation, analyzing the eight OSS projects through TD, commit
activities, and issue tracker systems analyses. Key findings high-
lighted varying trends in TD accumulation across projects, with
significant spikes in commit activities and specific issue reporting
around release deadlines.

Future research should expand the variety of projects analyzed,
including closed-source projects with strict deadlines. Examining
data from closed-source projects would offer a more complete in-
sight into the connection between TD accumulation and scheduled
deadlines. Analyzing more TD metrics is another critical area, as
relying solely on the SQALE index limits the scope of analysis.
Lastly, a particularly promising area of research involves developer
profiling to understand how individual behaviors and coding prac-
tices contribute to TD accumulation, which could lead to a more
personalized understanding of TD accumulation. Understanding
these individual developer behaviors would provide more practical
insights and inform better management practices.

ACKNOWLEDGMENTS
This study is partly supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), RGPIN-2021-04232
and DGECR-2021-00283, and an NSERC Collaborative Research
and Training Experience (CREATE) grant on Software Analytics at
the University of Saskatchewan.



Racing Against the Clock: Exploring the Impact of Scheduled Deadlines on Technical Debt EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

REFERENCES
[1] BramAdams and ShaneMcIntosh. 2016. Modern release engineering in a nutshell–

why researchers should care. In 2016 IEEE 23rd international conference on software
analysis, evolution, and reengineering (SANER), Vol. 5. IEEE, 78–90.

[2] Md Abdullah Al Mamun, Antonio Martini, Miroslaw Staron, Christian Berger,
and Jörgen Hansson. 2019. Evolution of technical debt: An exploratory study. In
2019 Joint Conference of the International Workshop on Software Measurement and
the International Conference on Software Process and Product Measurement, IWSM-
Mensura 2019, Haarlem, The Netherlands, October 7-9, 2019, Vol. 2476. CEUR-WS,
87–102.

[3] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I Maletic. 2008. What’s a typical
commit? a characterization of open source software repositories. In 2008 16th
IEEE international conference on program comprehension. IEEE, 182–191.

[4] Reem Alfayez, Pooyan Behnamghader, Kamonphop Srisopha, and Barry Boehm.
2018. An exploratory study on the influence of developers in technical debt. In
Proceedings of the 2018 international conference on technical debt. 1–10.

[5] Reem Alfayez, Robert Winn, Wesam Alwehaibi, Elaine Venson, and Barry Boehm.
2023. How SonarQube-identified technical debt is prioritized: An exploratory
case study. Information and Software Technology 156 (2023), 107147.

[6] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de Mendonça, Rodrigo O. Spínola,
Forrest Shull, and Carolyn Seaman. 2016. Identification and Management of
Technical Debt. Inf. Softw. Technol. 70, C (feb 2016), 100–121. https://doi.org/10.
1016/j.infsof.2015.10.008

[7] Robert D Austin. 2001. The effects of time pressure on quality in software
development: An agency model. Information systems research 12, 2 (2001), 195–
207.

[8] Paris C Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Arcelli
Fontana, Terese Besker, Alexander Chatzigeorgiou, Valentina Lenarduzzi, An-
tonio Martini, Athanasia Moschou, Ilaria Pigazzini, et al. 2020. An overview
and comparison of technical debt measurement tools. Ieee software 38, 3 (2020),
61–71.

[9] Natarajan Balasubramanian, Jeongsik Lee, and Jagadeesh Sivadasan. 2018. Dead-
lines, workflows, task sorting, and work quality. Management Science 64, 4 (2018),
1804–1824.

[10] Dirk Basten, Marcel Müller, Marion Ott, Oleg Pankratz, and Christoph
Rosenkranz. 2021. Impact of time pressure on software quality: A laboratory
experiment on a game-theoretical model. Plos one 16, 1 (2021), e0245599.

[11] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on self-
admitted technical debt. In Proceedings of the 13th international conference on
mining software repositories. 315–326.

[12] Kent Beck. 2000. Extreme programming explained: embrace change. addison-
wesley professional.

[13] Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. 2010. Commu-
nication, collaboration, and bugs: the social nature of issue tracking in small,
collocated teams. In Proceedings of the 2010 ACM conference on Computer supported
cooperative work. 291–300.

[14] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated
collection of vulnerabilities and their fixes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics
in Software Engineering. 30–39.

[15] Joseph Blackburn, Michael A Lapre, and Luk N Van Wassenhove. 2006. Brooks’
law revisited: Improving software productivity by managing complexity. Avail-
able at SSRN 922768 (2006).

[16] BDT Bodaragama, DMHD Vipulasiri, De Silva DI, TWSL JayakodY, et al. 2023.
Exploring the Impact of Team Size on Software Quality. Authorea Preprints
(2023).

[17] Markus Borg, Vahid Garousi, AnasMahmoud, ThomasOlsson, andOskar Stålberg.
2019. Video game development in a rush: A survey of the global game jam
participants. IEEE Transactions on Games 12, 3 (2019), 246–259.

[18] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. 1994. The goal
question metric approach. Encyclopedia of software engineering (1994), 528–532.

[19] Enzo Camuto, Andrea Fornaia, Leonardo Pelonero, and Emiliano Tramontana.
2021. A suite of Process Metrics to Capture the Effort of Developers. In 2021 10th
International Conference on Software and Computer Applications. 131–136.

[20] S Trevis Certo, John R Busenbark, Matias Kalm, and Jeffery A LePine. 2020.
Divided we fall: How ratios undermine research in strategic management. Orga-
nizational research methods 23, 2 (2020), 211–237.

[21] Alexander Chatzigeorgiou and Anastasios Manakos. 2010. Investigating the
evolution of bad smells in object-oriented code. In 2010 Seventh International
Conference on the Quality of Information and Communications Technology. IEEE,
106–115.

[22] Zadia Codabux and Christopher Dutchyn. 2020. Profiling developers through
the lens of technical debt. In Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–6.

[23] Zadia Codabux, Byron JWilliams, Gary L Bradshaw, andMurray Cantor. 2017. An
empirical assessment of technical debt practices in industry. Journal of Software:
Evolution and Process 29, 10 (2017), e1894.

[24] Ward Cunningham. 1992. The WyCash portfolio management system. ACM
Sigplan Oops Messenger 4, 2 (1992), 29–30.

[25] Rodrigo Rebouças De Almeida, Christoph Treude, and Uirá Kulesza. 2023. What’s
behind tight deadlines? Business causes of technical debt. In 2023 IEEE/ACM
16th International Conference on Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE, 25–30.

[26] Georgios Digkas, Mircea Lungu, Paris Avgeriou, Alexander Chatzigeorgiou, and
Apostolos Ampatzoglou. 2018. How do developers fix issues and pay back
technical debt in the apache ecosystem?. In 2018 IEEE 25th International Conference
on software analysis, evolution and reengineering (SANER). IEEE, 153–163.

[27] Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou, and Paris Avgeriou.
2017. The evolution of technical debt in the apache ecosystem. In Software
Architecture: 11th European Conference, ECSA 2017, Canterbury, UK, September
11-15, 2017, Proceedings 11. Springer, 51–66.

[28] Dennis Fehrenbacher and Stephen Smith. 2014. Behavioural affect and cognitive
effects of time-pressure and justification requirement in software acquisition:
Evidence from an eye-tracking experiment. InAmericas Conference on Information
Systems.

[29] Jernej Flisar and Vili Podgorelec. 2019. Identification of self-admitted technical
debt using enhanced feature selection based on word embedding. IEEE Access 7
(2019), 106475–106494.

[30] Lorenz Graf-Vlachy and Stefan Wagner. 2023. The Type to Take Out a Loan? A
Study of Developer Personality and Technical Debt. In 2023 ACM/IEEE Interna-
tional Conference on Technical Debt (TechDebt). IEEE, 27–36.

[31] Isabella Graßl, Gordon Fraser, Stefan Trieflinger, and Marco Kuhrmann. 2023.
Exposing software engineering students to stressful projects: does diversity
matter?. In 2023 IEEE/ACM 45th International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, 210–222.

[32] Yuepu Guo, Carolyn Seaman, Rebeka Gomes, Antonio Cavalcanti, Graziela Tonin,
Fabio QB Da Silva, Andre LM Santos, and Clauirton Siebra. 2011. Tracking tech-
nical debt—An exploratory case study. In 2011 27th IEEE international conference
on software maintenance (ICSM). IEEE, 528–531.

[33] Claudia Hilderbrand, Christopher Perdriau, Lara Letaw, Jillian Emard, Zoe
Steine-Hanson, Margaret Burnett, and Anita Sarma. 2020. Engineering gender-
inclusivity into software: ten teams’ tales from the trenches. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 433–444.

[34] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.

[35] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. 2015. Issue dynamics in github
projects. In Product-Focused Software Process Improvement: 16th International Con-
ference, PROFES 2015, Bolzano, Italy, December 2-4, 2015, Proceedings 16. Springer,
295–310.

[36] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Technical Debt: From
Metaphor to Theory and Practice. IEEE Software 29, 6 (2012), 18–21. https:
//doi.org/10.1109/MS.2012.167

[37] Marco Kuhrmann and Jürgen Münch. 2016. When teams go crazy: An environ-
ment to experience group dynamics in software project management courses. In
Proceedings of the 38th International Conference on Software Engineering Compan-
ion. 412–421.

[38] Miikka Kuutila, Mika Mäntylä, Umar Farooq, and Maelick Claes. 2020. Time
pressure in software engineering: A systematic review. Information and Software
Technology 121 (2020), 106257.

[39] Miikka Kuutila, Mika V Mäntylä, Maëlick Claes, and Marko Elovainio. 2017.
Reviewing literature on time pressure in software engineering and related profes-
sions: computer assisted interdisciplinary literature review. In 2017 IEEE/ACM 2nd
International Workshop on Emotion Awareness in Software Engineering (SEmotion).
IEEE, 54–59.

[40] Valentina Lenarduzzi, Francesco Lomio, Nyyti Saarimäki, and Davide Taibi. 2020.
Does migrating a monolithic system to microservices decrease the technical
debt? Journal of Systems and Software 169 (2020), 110710.

[41] Valentina Lenarduzzi, Teemu Orava, Nyyti Saarimäki, Kari Systa, and Davide
Taibi. 2019. An empirical study on technical debt in a finnish SME. In 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM). IEEE, 1–6.

[42] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The technical
debt dataset. In Proceedings of the fifteenth international conference on predictive
models and data analytics in software engineering. 2–11.

[43] Jean-Louis Letouzey. 2012. The SQALE method for evaluating technical debt.
In 2012 Third International Workshop on Managing Technical Debt (MTD). IEEE,
31–36.

[44] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193–220.

[45] Erin Lim, Nitin Taksande, and Carolyn Seaman. 2012. A Balancing Act: What
Software Practitioners Have to Say about Technical Debt. IEEE Software 29, 6
(2012), 22–27. https://doi.org/10.1109/MS.2012.130

[46] Garry Lohan, Thomas Acton, and Kieran Conboy. 2014. An investigation into
time pressure, group cohesion and decision making in software development

https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/MS.2012.130


EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Joshua Aldrich Edbert, Zadia Codabux, and Roberto Verdecchia

groups. ACIS.
[47] Kevin Maggi, Roberto Verdecchia, Leonardo Scommegna, and Enrico Vicario.

2025. Evolution of code technical debt in microservices architectures. Journal of
Systems and Software 222 (2025), 112301.

[48] Ivano Malavolta, Roberto Verdecchia, Bojan Filipovic, Magiel Bruntink, and
Patricia Lago. 2018. How maintainability issues of android apps evolve. In 2018
IEEE international conference on software maintenance and evolution (ICSME).
IEEE, 334–344.

[49] Onkar Malgonde, Rosann Collins, and Alan Hevner. 2014. Applying emergent
outcome controls to mitigate time pressure in agile software development. In
Proceedings of Americas Conference on Information Systems. 1–7.

[50] Mika V Mäntylä, Kai Petersen, Timo OA Lehtinen, and Casper Lassenius. 2014.
Time pressure: a controlled experiment of test case development and require-
ments review. In Proceedings of the 36th International Conference on Software
Engineering. 83–94.

[51] Martin N Marshall. 1996. Sampling for qualitative research. Family practice 13, 6
(1996), 522–526.

[52] Arthur-Jozsef Molnar and Simona Motogna. 2020. Long-term evaluation of
technical debt in open-source software. In Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). 1–9.

[53] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity
in software engineering research. In Proceedings of the 2013 9th joint meeting on
foundations of software engineering. 466–476.

[54] Moses Openja, Mohammad Mehdi Morovati, Le An, Foutse Khomh, and Mouna
Abidi. 2022. Technical debts and faults in open-source quantum software systems:
An empirical study. Journal of Systems and Software 193 (2022), 111458.

[55] Ruben Ortega, Mark Guzdial, and Daniel Reed. 2010. Software development and
crunch time; and more. Commun. ACM 53, 7 (2010), 10–11.

[56] Indranil Palit, Gautam Shetty, Hera Arif, and Tushar Sharma. 2023. Automatic
refactoring candidate identification leveraging effective code representation. In
2023 IEEE International Conference on SoftwareMaintenance and Evolution (ICSME).
IEEE, 369–374.

[57] Michael Quinn Patton. 1990. Qualitative evaluation and research methods. SAGE
Publications, inc.

[58] Quentin Perez, Pierre-Antoine Jean, Christelle Urtado, and Sylvain Vauttier.
2021. Bug or not bug? That is the question. In 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC). IEEE, 47–58.

[59] Aida Radu and Sarah Nadi. 2019. A dataset of non-functional bugs. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
IEEE, 399–403.

[60] Robert Ramač, Vladimir Mandić, Nebojša Taušan, Nicolli Rios, Sávio Freire, Boris
Pérez, Camilo Castellanos, Darío Correal, Alexia Pacheco, Gustavo Lopez, et al.
2022. Prevalence, common causes and effects of technical debt: Results from
a family of surveys with the IT industry. Journal of Systems and Software 184
(2022), 111114.

[61] Mikel Robredo, Nyyti Saarimaki, Rafael Peñaloza, Davide Taibi, and Valentina
Lenarduzzi. 2024. Comparing Multivariate Time Series Analysis and Machine

Learning Performance for Technical Debt Prediction: The SQALE Index Case.
In Proceedings of the 7th ACM/IEEE International Conference on Technical Debt.
45–46.

[62] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14
(2009), 131–164.

[63] Johnny Saldaña. 2021. The coding manual for qualitative researchers. (2021).
[64] Iflaah Salman, Burak Turhan, and Sira Vegas. 2019. A controlled experiment on

time pressure and confirmation bias in functional software testing. Empirical
Software Engineering 24 (2019), 1727–1761.

[65] Hina Shah, Mary Jean Harrold, and Saurabh Sinha. 2014. Global software testing
under deadline pressure: Vendor-side experiences. Information and Software
Technology 56, 1 (2014), 6–19.

[66] Miltiadis Siavvas, Dimitrios Tsoukalas, Marija Jankovic, Dionysios Kehagias,
Alexander Chatzigeorgiou, Dimitrios Tzovaras, Nenad Anicic, and Erol Gelenbe.
2019. An empirical evaluation of the relationship between technical debt and
software security. In 9th International Conference on Information society and
technology (ICIST), Vol. 2019.

[67] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Pydriller: Python
framework for mining software repositories. In Proceedings of the 2018 26th ACM
Joint meeting on european software engineering conference and symposium on the
foundations of software engineering. 908–911.

[68] Margaret-Anne Storey, Neil A Ernst, CourtneyWilliams, and Eirini Kalliamvakou.
2020. The who, what, how of software engineering research: a socio-technical
framework. Empirical Software Engineering 25 (2020), 4097–4129.

[69] Jie Tan, Daniel Feitosa, and Paris Avgeriou. 2023. The lifecycle of Technical Debt
that manifests in both source code and issue trackers. Information and Software
Technology 159 (2023), 107216.

[70] Jie Tan, Daniel Feitosa, Paris Avgeriou, and Mircea Lungu. 2021. Evolution of
technical debt remediation in Python: A case study on the Apache Software
Ecosystem. Journal of Software: Evolution and Process 33, 4 (2021), e2319.

[71] Edith Tom, AybüKe Aurum, and Richard Vidgen. 2013. An Exploration of Tech-
nical Debt. J. Syst. Softw. 86, 6 (jun 2013), 1498–1516. https://doi.org/10.1016/j.
jss.2012.12.052

[72] Roberto Verdecchia, Philippe Kruchten, Patricia Lago, and Ivano Malavolta. 2021.
Building and evaluating a theory of architectural technical debt in software-
intensive systems. Journal of Systems and Software 176 (2021), 110925.

[73] Roberto Verdecchia, KevinMaggi, Leonardo Scommegna, and Enrico Vicario. 2023.
Tracing the Footsteps of Technical Debt in Microservices: A Preliminary Case
Study. International Workshop on Quality in Software Architecture (QUALIFIER)
(2023).

[74] Roberto Verdecchia, Kevin Maggi, Leonardo Scommegna, and Enrico Vicario.
2024. Tracing the Footsteps of Technical Debt in Microservices: A Preliminary
Case Study. Post-proceedings of the European Conference on Software Architecture
(2024).

[75] MarionWiese, Matthias Riebisch, and Julian Schwarze. 2021. Preventing technical
debt by technical debt aware project management. In 2021 IEEE/ACM International
Conference on Technical Debt (TechDebt). IEEE, 84–93.

https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1016/j.jss.2012.12.052

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Goal and Research Questions
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	4.1 RQ1: The Impact of Scheduled Deadlines on TD Accumulation 
	4.2 RQ2: The Impact of Scheduled Deadlines on the Development Commit Activities 
	4.3 RQ3: The Impact of Scheduled Deadlines on the Project Issues

	5 Discussion
	6 Implications
	7 Threats to Validity
	8 Conclusion And Future Work
	Acknowledgments
	References

