
Architectural Views: The State of Practice in
Open-Source Software Projects

Sofia Migliorini1, Roberto Verdecchia1, Ivano Malavolta2,
Patricia Lago2, and Enrico Vicario1

1 University of Florence, Italy
sofia.migliorini@edu.unifi.it,{roberto.verdecchia,enrico.vicario}@unifi.it

2 Vrije Universiteit Amsterdam, The Netherlands
{i.malavolta,p.lago}@vu.nl

Abstract. Context: Architectural views serve as fundamental artefacts for
designing and communicating software architectures. In the context of collabora-
tive software development, producing sound architectural documentation, where
architectural views play a central role, is a crucial aspect for effective teamwork.
Despite their importance, the use of architectural views in open-source projects
to date remains only marginally explored.
Goal: We aim at conducting a comprehensive analysis on an extensive corpus of
open-source architectural views. The goal is to understand (i) what the “history”
of architectural views is, (ii) how architectural views are represented, and (iii)
what architectural views are used for in the context of open-source projects.
Methods: We leverage a software repository mining process to systematically
construct a dataset of 15k architectural views. Then, we perform (i) a quan-
titative analysis on the metadata of all 15k views and (ii) a qualitative analysis
on a statistically-relevant sample of 373 views.
Results: Most projects rely on a single architectural view, which is often used
to document a medium or high level description of the architecture. Views are
usually created at either the beginning or at the end of a project, are rarely
updated, and tend to be maintained by a single contributor. Views usually
adopt an informal colored notation without a supporting legend and frequently
report technologies used. Deployment and control flow are the most recurrent
viewpoints, and commonly cover concerns related to software maintainability
and functional suitability.
Conclusion: The state of the practice about architectural views in open-source
software systems seems to favor informal descriptions. Despite this, the effort
needed to create views might hinder keeping views up to date, and a common
syntactic ground between viewpoints seems hard to find. To address current
needs, we speculate that a solution could lie in defining and popularizing version-
able, templateable views that can be integrated in collaborative programming
environments.

Keywords: Architectural Views · Architectural Documentation · Repository
Mining · Open Source Software

1 Introduction

In the vast landscape of software development, architecture plays a key role as a bridge
between requirements and implementation [4]. A robust architecture has the potential



2 S. Migliorini et al.

to guarantee that a system will meet essential quality requirements in such areas as
performance, reliability, portability, scalability, and interoperability [8]. One of the
primary methodologies to design and communicate software architectures is through
the use of architecture viewpoints and architectural views [6]. Different stakeholders
generally have drastically differing mental models based on their experiences with a
software-intensive system, and may only primarily focus on certain aspects of it [27].
By quoting Rozanski and Woods: “A view is a representation of one or more structural
aspects of an architecture that illustrates how the architecture addresses one or more con-
cerns held by one or more of its stakeholders [23]. A software architecture is a complex
entity that defies a basic one-dimensional description. With the help of views, which
enable the separation of concerns, we can break down the multidimensional structure
into a number of, hopefully, engaging and comprehensible system representations [4].

In the domain of collaborative software development, GitHub is one of the leading
platforms for open-source software projects [11]. With 420 million total projects at the
end of 20233, GitHub actively promotes collaboration, enables transparent communica-
tion, and empowers developers to contribute to open-source projects globally. Although
documentation is essential to the open-source ecosystem, as it helps developers learn
about projects and, consequently, choose which ones to contribute to [31,28], open-source
documentation is frequently regarded as inadequate, sparsely written, outdated, or
nonexistent [9]. In the year 2000, IEEE introduced a standard for architecture documen-
tation (the latest version updated in 2022 [2]) that advocates creating personalized views
that best address the stakeholders and their concerns associated with the system to
be represented. Although there are studies to identify different types of documentation
provided in software repositories [21,12], none of them focuses on software architecture
views. This work aims to fill this void by focusing on an extensive corpus of architectural
views, intending to investigate their adoption within the context of open-source projects.

The main contributions of this study can be summarized as follows:

– A publicly-available dataset of 15k software architecture views extracted from 12.2k
GitHub projects, supported by repository and view commit history metadata.

– A quantaitive analysis of the collected data, casting light on the practice of software
architecture views in open-source practice.

– An in-depth manual categorization of a statistically representative sample of 373
views, conducted by studying both their syntactic and semantic properties.

– A comprehensive replication package of the study (see Section 8).

2 Related work

To the best of our knowledge, this study represents the first analysis of an extensive
corpus of software architecture views extracted from open-source projects.
The most similar large-scale study, conducted by Hebig et al. [12], focuses on the

analysis of UML usage in open-source projects, involving a systematic mining of GitHub
repositories. In addition, Buchgeher et al. [5] proposed a study on the adoption of
architecture decision records (ADRs) in projects hosted on GitHub. Both studies aim at
characterizing current practices of file creation and maintenance over time of either UML
models or ADRs, without specifically focussing on software architecture views. Our
study extends the research by also analyzing the visualization techniques and contents
of software architecture views, without being confined to a specific language or format.

3 https://github.blog/2023-11-08-the-state-of-open-source-and-ai

https://github.blog/2023-11-08-the-state-of-open-source-and-ai


Architectural Views: The State of Practice in Open-Source Software Projects 3

Expanding the perspective, Ding et al. [7] proposed a comprehensive investigation of
2k projects from four major open-source software sources, identifying 108 projects with
documented software architecture. Their goal is to analyze what type of information is
documented and how it is described. Similarly, Muszynski et al. [18] examine software
architecture documentation practices in six large popular open-source software systems;
the focus of this study is the classification of architectural views. Malavolta et al. [17] ana-
lyzed 335 open-source robotics projects and mined how roboticists document the software
architecture of their system, which types of views are used and how they are represented
(e.g., textually or visually). Unlike these studies, which examine a limited number of
open-source projects, our investigation targets architectural views extracted from 12.2k
repositories. Furthermore, instead of presenting a general overview, we focus on a par-
ticular type of software architecture documentation, namely software architecture views.
A classification of software architecture visualization techniques reported in the

literature is presented by Shahin et al. [25]. A similar review of recent and key literature
on software architecture visualization is performed by Ghanam and Carpendale [10].
Additionally, Alshuqayran et al. [3] presented a systematic mapping study on mi-
croservices architectures and their implementation, offering insights on architectural
views/diagrams used. Rather than focusing on visualization techniques, our study aims
at classifying software architecture views by analyzing both the languages syntax and
views contents. In addition, we based our research on the practical use of software
architecture views in open-source repositories, instead of relying on exsisting literature.

Several surveys have been conducted to understand the perspectives of practitioners
on software architecture documentation and related tools. Rost et al. [22] investigated
problems and wishes for the future with industrial participants. Ozkaya [19] studied the
level of knowledge and experience in software architectures among practitioners from
both industry and academia. Malavolta et al. [16] examined the use of architectural
languages in industry by interviewing practitioners from 40 different IT companies.
Differently from such surveys, our research does not focus exclusively on industrial
practices, but rather extracts data from GitHub repositories, characterizing the state of
practice of software architecture views in the context of open-source software projects.
Moreover, the main results of these surveys focus on architectural notations; our research
also covers the contents of architecture documentation practices.

A more specific survey by Ozkaya and Erata [20] aims at understanding the usage
of UML diagrams for modeling from different viewpoints. Additionally, a case study
on the selection of viewpoints in projects from three different telecom-area software
organizations was held by Smolander [26] to clarify how the conceptions of architects
about architectural viewpoints differ, based on the prevalent situation and characteristics
in an organization and in the project at hand. Unlike these studies that focus on a
particular architectural language or a limited number of case studies, our analysis
encompasses the usage of viewpoints across numerous software architecture views,
without relying on any specific architectural language.

3 Research Methodology

3.1 Goal and Research Questions

The goal of this research is to characterize the state of practice of software architecture
views in open-source projects. This study aims to answer, in the context of open-source
software, the following research questions:



4 S. Migliorini et al.

RQ1: What is the history of architectural views? This research question aims at
understanding the timing of views introduction in repositories, how they evolve over
time, and who contributes to this evolution.

RQ2: How are architectural views represented? With this question we aim at identifying
the main characteristics of the notations used to describe architectural views.

RQ3: What architectural information has been represented in the views? This research
question constitutes the core of the study. By answering it, we aim at characterizing
our view dataset in terms of topics focused on, quality requirements considered,
architectural styles, and technologies employed.

3.2 Research Process

Figure 1 shows an overview of the research process of this study. The details of each
step are provided in the remainder of this section.

Step 1
Mining 

Architectural View 

Step 2
Data Filtering

Step 3
Mining View 

Commit History

Step 4
Data Sampling

Step 5
Manual Coding

Step 6
Data Synthesis

GitHub

RQ1

RQ2 RQ3

Preliminary View
 Dataset 
(40.7k)

Final View
 Dataset 

(14k)

Statistically Relevant
View Sample

(373)

Coded
Views

View
Commit History

Fig. 1: Research Process Overview

Step 1: Mining Architectural Views. The objective of this mining step is to
identify on GitHub images reporting an architectural view. In order to do so, we first
automatically identify all files containing the substring “architect” in the filename that
are linked in any of the README.md and CONTRIBUTING.md files hosted in a GitHub
repositories (including the ones located in subfolders). This process is executed by
sending requests to the Search Code endpoint of the GitHub REST API4. Below a
list of the restrictions applied for this search:
– R1: Consider only the default branch of the repository,
– R2: Search for files smaller than 384 KB,
– R3: Search for repositories with fewer than 0.5M files,
– R4: Search for repositories that have had activity or have been returned in search

results in the last year,
– R5: Do not include repository forks.

R1-R4 are forced by the Search code endpoint5, whereas R5 is a choice that we make
for our study in order to avoid duplication. Regarding R2, we observe that this limitation
does not compromise our data collection as the file retrieval stops long before reaching the
imposed limit. The mining phase was carried out between September and October 2023.
For each extracted URL, we also gather relevant metadata about the repository that

4 https://docs.github.com/en/rest. Accessed 9th April 2024.
5 https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28#
search-code. Accessed 9th April 2024

https://docs.github.com/en/rest
https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28#search-code
https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28#search-code


Architectural Views: The State of Practice in Open-Source Software Projects 5

contains the file. At the end of this extraction phase, a duplicate removal is performed
based on the image URL, and a dataset of 40.7k architectural views is produced.

Step 2: Data Filtering. After the first mining phase, a filtering process follows to
ensure the quality of the mined views. The exclusion criteria applied are the following:

– E1: Views or repositories referring in their name to demos, examples, or exams,
– E2: Views contained in a repository with less than 10 commits,
– E3: Views contained in a repository with less than 2 stars,
– E4: URLs linking to GitHub badges, such as “img.shields.io”,
– E5: Non-downloadable images.

E1 serves to target real projects: We define a set of regular expressions and a view
is discarded if either the repository name, the repository description, or the image
URL matches any regular expression [17]. E2 and E3 are used to avoid inactive or
non-maintained projects [17,15]. From a quick sample analysis of the dataset, we also
identify a set of URLs that point to some GitHub badges, which are removed from
the dataset (E4). Finally, we exclude views that produce an error in the downloading
phase, pointing to views that are no longer available (E5). At the end of this filtering
phase, we establish a dataset comprising 15k views. An example of view developed
by the Google Cloud Platform6 taken from the dataset is documented in Figure 2.

Fig. 2: Example of Mined Architectural View6

Step 3: Mining View Commit History. For each view file we extract (i) the number
of commits, (ii) the number of distinct contributors, (iii) the number of days between
the first commit of the repository and the first commit adding the file representing the
view, (iv) the total number of commits prior to the introduction of the view file, and
(v) the number of commits between the first and last view update. The commit history
is extracted for 14.2k views, as 6% of identified views resulted to be inaccessible (e.g.,
images no longer in the repository, spelling errors, path errors). The data collected in
this step is used to answer RQ1.

Step 4: Data Sampling. In order to answer RQ2 and RQ3 we need to extract a
statistically significant sample from our dataset. For this purpose, an additional data fil-

6 https://github.com/GoogleCloudPlatform/reg-reporting-blueprint

https://github.com/GoogleCloudPlatform/reg-reporting-blueprint


6 S. Migliorini et al.

tering step is performed to consider exclusively one architectural view for each repository,
leading to selecting 12.2k views. With the dataset of 12.2k views, to ensure 5% margin
of error and 95% confidence level, we randomly sample 373 views. With a preliminary
analysis of the first extracted sample, we can conclude that our dataset presents about
23% of false positives. In particular, the main categories of rejected views represent: the
internal architecture of machine learning algorithms (e.g., the layers of a deep neural
network), with 59 views (15.8%), hardware architectures (9 views, 2.5%), network archi-
tectures (5 views, 1.3%), and logos (5 views, 1.3%). Views containing text in languages
other than English are retained and automatically translated for subsequent analysis.

Step 5: Manual Coding. Three data exploration sessions follow, where researchers
discuss the characteristics of the views that are relevant to answering RQ2 and RQ3,
leading to the consolidation of the data extraction framework used for this study. The
sample dataset is then thoroughly analyzed via iterative coding sessions. For scrutiny
and replication purposes, detailed explanations of the codes used as coding guide are
available in the replication package (see Section 8).

Given that RQ2 addresses the syntax of the visualization techniques employed, to
answer it, we extract the following fields: (i) architectural notation employed, i.e.,,
informal, semiformal or formal [6] (ii) shapes used, e.g., rectangles or circles, (iii) use
of color, (iv) presence of a legend, (v) presence of nested components, (vi) presence
of explicit ports/interfaces between components, (vi) presence of explicit connectors,
i.e., lines connecting components, and (vii) connectors direction, i.e., unidirectional,
bidirectional, non-explicit or bus.
In order to answer RQ3, we take a step further and proceed to study the content

of the views by considering the following fields: (i) architecture scope, i.e., if the view
represents a part of the system, the entire system, or the entire system plus how it
interfaces with other systems, (ii) architectural style(s) used in the view, (iii) concern(s)
addressed, e.g.,, deployment or connectivity, (iv) behavior, i.e., if the view represents
static, dynamic properties of the architecture, or both, (v) quality attribute(s) considered
(first level of the ISO/IEC 25010:2023 classification [13]), (vi) granularity of the system
representation, i.e., high, medium, or low, (vii) components nature, e.g., servers or
databases, (ix) connectors nature, (x) technologies reported (classification at the level
of the software provider, e.g., AWS and not AWS Lambda), and (xi) design overlays,
e.g., textual descriptions or code snippets [1].

Regarding the coding of Architecture Scope and Granularity, we use magnitude
coding in order to capture the intensity of the feature considered. We use provisional
coding [24] to classify the Quality Attributes, Behavior, Connectors Direction, and all the
yes/no fields. For all other fields, we use open coding [14] to identify recurrent concepts.
Two researchers independently analyzed 186/187 views, with weekly discussions used
to revise, homogenize, and align the coding process. When necessary, doubts and
disagreement points were resolved by involving a third researcher. The data gathered
through this step is used to answer RQ2 and RQ3.

Step 6: Data Synthesis. To answer RQ1, which is purely quantitative, the extracted
data are analyzed and interpreted by simple statistical means, such as data plotting
and basic summary statistics. To answer RQ2 and RQ3, the codes obtained from the
labeling process are first examined to see if any can be removed or merged with others
due to a lack of representativeness. Then, the resulting ones are presented with different
plots according to the information that we want to describe. For the discussion section,



Architectural Views: The State of Practice in Open-Source Software Projects 7

a phase of cross-matching results is added to extract potential interesting relationships
among the various aspects analyzed.

4 Results

In this section, we present the results collected to answer our RQs (see Section 3.1).

4.1 Results RQ1: History of Architectural Views

Architectural Views Creation. Figure 3(a) illustrates the moment of the view
introduction in the repository in terms of days passed since the start of the project,
which is represented by the initial commit in the repository. Outliers are identified and
excluded from the plot to enhance visualization. Our collected data reveals a tendency
to introduce architectural views at the project start: the project’s age when the view
is introduced is on average 222.51 days, with a median of 39 days, while projects have
an average duration of 1570.19 days, with a median of 1456 days.

The maximum value (9316 days) is recorded for the repository PolarDB7, a cloud-
native database developed by Alibaba Cloud active since 1996, which is characterized
by 56 contributors, 2.6k stars and 427 forks. At the beginning, the repository contained
the source code distribution of the PostgreSQL database management system. In 2021,
it changes its subject to PolarDB and a complete new README.md file is introduced
by a new contributor, including an architectural view.

However, the level of activities can highly vary throughout the lifespan of open-source
projects. In order to place the view introduction relatively to other development ac-
tivities of the project, Figure 3(b) illustrates the distribution of views based on the
percentage of repository commits done when the view is introduced. This figure presents
a much more balanced perspective, showing that architectural views are introduced
in repositories along all active phases of the projects, with peaks in the initial and final
ones. The median and mean of the percentage of overall commits done when the view
is introduced are 50% and 49.34%, respectively.

(a) Project’s age in days at the moment of the
view introduction in the repository (without
outliers)

(b) Percentage of overall repository commits
done when the view is introduced

Fig. 3: Views Creation

Architectural Views Maintenance. Our results show that the vast majority of
views with a retrieved commit history (10.6k out of 14.2k) remains unchanged. Yet,
we found that around 25% of them (3.5k out of 14.2k) are updated one or more times.

7 https://github.com/ApsaraDB/PolarDB-for-PostgreSQL Accessed 14th April 2024.

https://github.com/ApsaraDB/PolarDB-for-PostgreSQL


8 S. Migliorini et al.

Figure 4 summarizes the distribution of views by number of commits. Outliers are
excluded from the plot for a better visualization.

Fig. 4: Distribution of views by number of commits (without outliers)

When a view is updated, the number of commits is on average 3 (2 updates), with
a median of 2 (1 update). The maximum number of commits on a view is 27 for a
view that is updated over time by the same user8, even though the repository has a
total of seven contributors.
We have also conducted an analysis of the time span between the first and last

commit targeting a view within a repository. This time span, shown in Figure 5(a),
is expressed as a percentage of overall commits of the repository. The maximum time
span observed is 100% of repository commits, while the mean time span is 6.98%. The
majority of projects seem to concentrate the view introduction and updating activities
within a relatively short period, with a median of 33 days, without interspersing them
with other substantial development tasks. The high frequency of 0% cases is due to
the predominance of views with just 1 commit. Updating activities extend beyond 10%
of the project’s commits only in a minority of repositories.

(a) Time passed between first and last view
commit expressed as percentage of overall
repository commits

(b) Percentage of overall repository commits
dedicated to the view updates

Fig. 5: Views Maintenance

Figure 5(b) shows a focus on the percentage of repository commits dedicated to
the view creation and updating, with a mean of 2.91% and a median of 1.54%. The
maximum of 66.67% is reached for a repository that has exclusively the purpose of
describing the documentation of the project9.

8 https://github.com/digitaltwinconsortium/ManufacturingOntologies/blob/main/
Docs/architecture.png. Accessed 15th April 2024.

9 https://github.com/gridsuite/documentation. Accessed 15th April 2024.

https://github.com/digitaltwinconsortium/ManufacturingOntologies/blob/main/Docs/architecture.png
https://github.com/digitaltwinconsortium/ManufacturingOntologies/blob/main/Docs/architecture.png
https://github.com/gridsuite/documentation


Architectural Views: The State of Practice in Open-Source Software Projects 9

Contributors. More than 92% of views (13.2k out of 14.2k) have just one contributor,
while the remaining 8% are updated by more than one user, with a maximum of 5. In par-
ticular, 72% of views that have at least one update are modified by the same contributor.
An additional analysis is conducted on the percentage of contributors editing the

view. The median and mean are 50% and 57% of total contributors, respectively, that
is due to the presence of many repositories with just 1 contributor. The minimum is
0.22% of repository contributors.

RQ1: Architectural Views History. Architectural views tend to be introduced
either at the beginning or at the very end of open-source projects. 75% of views
are never updated. Activities on views are concentrated in short periods, without
interspersing them with other significant development tasks. When updated, 71%
of views are edited by the same user.

4.2 Results RQ2: Architecture Representation

Architectural Notation. Out of the statistically relevant sample considered to answer
RQ2 (373 views), the vast majority of views use informal notations (96%), notably
boxes and lines. Only a much smaller fraction (4%) employs a semiformal notation, in
particular UML, mainly focussing on low-level aspects of the architecture. There is no
evidence for the use of formal notations. Out of the views utilizing informal notations,
seven resulted to be manual sketches.

Shapes. Figure 6 presents a distribution of views in terms of what kind of shapes are
used in the views. The most popular shapes employed are rectangles (79%), and icons
(46%), which mostly depict the icon of a technology. These primary shapes mainly
appear as the only shape in the view, whereas all other shapes are always combined with
each other or used as auxiliary shapes for specific elements, e.g., cylinders for databases.

Fig. 6: Number of views per shape

Architectural views are mainly mapped to more than one shape. We observe the
presence of a small group of 3-dimensional images (2%) generated by the Cloudcraft plat-
form10, which appears to be used also in a considerable number of bidimensional views.

Connectors. Most views use explicit connectors between architecture elements (92%).
Different types of connectors may coexist in the same view, but we observe that when

10 https://www.cloudcraft.co. Accessed 15th April 2024.

https://www.cloudcraft.co


10 S. Migliorini et al.

connectors are used, their direction is mostly unidirectional (74%). The presence of
bidirectional connectors is detected in almost a third of the views (29%). We remark that
sometimes bidirectional connections are shown as two unidirectional ones. Only three
views present a bus (1%), while few more do not show explicit connector directions (5%).

Further Properties. Regarding further view properties, we noted that 81% of views
are colored, even if the specific meaning of colors appears to be seldom defined, both
for components and connectors. Only 8% of views include a legend to provide further
explanations about the employed notations.

In terms of structural complexity, the use of nested components is slightly more fre-
quent than unidimensional representations (56%), indicating a preference for hierarchical
organizations within architectural views.

Regarding the presence of explicit ports or interfaces between architectural compo-
nents, only a fraction of views show them (8%).

RQ2: Architectural Views Syntax. Most views use an informal notation (96%),
while only a minor portion (4%) a semiformal one (UML). Rectangles and icons are the
most widely used shapes. Unidirectional connections are the most represented (74%).
Views often use colors (81%), but only 7% of them include a legend documenting the
color use. Explicit ports or interfaces between components are rarely documented (8%).

4.3 Results RQ3: Architectural Views Contents

Architecture Scope. Regarding the representation level of the architectural views,
in most cases, the entire architecture of the system is represented (53%), instead of
focusing only on a part of it (24%). A considerable fraction of the considered views (23%)
also documents interactions between the system considered and other external systems.

Architectural Styles. The most recurrent architectural styles documented in the
views are client-server (20%), layered (20%), service-oriented (15%), and event-driven
(12%). Out of the views reporting service-oriented architectures, 35% of them focus
specifically on microservices. Event-driven architectures instead often result to manage
events with serverless functions, most notably AWS Lambda11.

Concerns. Regarding the topics addressed by architectural views, we note various
recurring subjects. Views can be mapped to more than one concern, with 20% of the
total covering simultaneously more than one concern. A considerable portion of the
views focus on general architectural documentation (30%), i.e., rather than focusing
on a specific topic, they adopt a broad and neutral technological viewpoint.
The second most recurrent concern covered by views is deployment (30%), with a

recurrent focus on cloud and virtualization aspects. Following closely are control flow
views (29%), used to document functional aspects of architectures. connectivity among
architecture components and sub-systems is another recurrent concern (16%), followed
by data flow (8%), and a smaller number of security views, considering mostly message
cryptography and authentication mechanisms. Performance concerns are depicted only
3% of the views, and often illustrate architectural aspects related to load balancers and
distributed systems. Finally, architectural viewpoints regarding scheduling are adopted
in 1% of the views.

11 https://aws.amazon.com/lambda. Accessed 10th April 2024

https://aws.amazon.com/lambda


Architectural Views: The State of Practice in Open-Source Software Projects 11

Granularity. In terms of granularity of the system representation, the majority of
views exhibit either a high granularity one (53%), reporting a very coarse architectural
representation, e.g., just the architectural layers, or a medium granularity (37%), e.g.,
considering the main sub-systems and key technologies used. A much smaller portion
of views use a low level of granularity granularity (9%), and are mostly used to reason
about source code implementation details, such as functions or attributes in addition
to broader system components.

Behavior. Regarding the architecture behavior depicted, approximately half of the views
consider static properties of architectures (49%). A smaller number instead considers dy-
namic properties (42%), such as the system control flow, are represented in a smaller por-
tion of views. Finally, a subset of views considers both static and dynamic aspects (9%).

Quality Attributes. Maintainability is the most recurrent quality attribute considered
in the views (68%), reflecting the high recurrence of the general concern of the views
previously documented. Functional suitability is the second most recurrent concern
(32%), and is mostly mapped to viewpoints detailing step-by-step use case executions
through architectures. Least addressed QAs are instead performance efficiency (35%),
security (9%), flexibility (8%), interaction capability (7%), compatibility (2%) and
reliability (2%). As for the concerns category previously presented, a view may address
more than one QA. Out of all ISO/IEC 25010 characteristics, safety is the only quality
attribute that is not considered in the views.

Components Nature. Regarding the nature of components represented in the views,
Figure 7 documents the frequency of the different identified components across views.
The most frequent components are technologies (present in 36% of the views). Other
recurrent component types are, in order of frequency, databases (32%), sub-systems
(24%), clients (24%). The others category reported in Figure 7 includes components
utilized only in one or two views, e.g., virtual machines, firewalls, and coroutines.

Fig. 7: Frequency of the different components across views

Connectors Nature. Regarding the interpretation of explicit connectors, it was
possible to classify their nature in 91% of the dataset. In particular, 8% of views do
not show explicit connectors, while for 1% of them the meaning of connectors does
not emerge from the views’ analysis. Control flow are the most used connectors type
(28%), and are frequently used in combination with numerical indicators highlighting
sequential operations transversing architectures at runtime. General communication
among components, frequently used to highlight communication channels or protocols,



12 S. Migliorini et al.

are also recurrent (27%). Views with data flow connectors are a bit less frequent
(25%), and commonly co-appear in views along database components. Least recurrent
connector types are dependencies (12%), function calls (5%), inheritance dependencies
(3%), API calls (2%) and composition relations (1.3%). As for other studied properties,
a single view may incorporate multiple types of connectors, reflecting the complex
interactions and relationships within the software system.

Technologies. Figure 8 documents the ten most frequently mentioned technologies
in the architectural views12.
The overall high recurrence of cloud-based and virtualization technologies, e.g.,

Amazon Web Services (16%), Kubernetes (7%), and Docker (7%), may be attributed
to the current growing adoption of cloud-native serverless applications.

Reporting at least a technology in the views results to be a rather widespread practice
(35%). The median number of reported technologies per view is one and the mean is
two, while the maximum number of technologies reported in a single view is ten.

Fig. 8: Number of views per technology (top 10)

Design Overlays. Additional information to support the views is utilized in approx-
imately a fifth of all views (18%). The majority of the overlays report complementary
architectural information in form of textual descriptions (45% of views using overlays),
which is primarily used to specify system or components functionalities. When screen-
shots are employed (17%), they mainly depict the user interface of an application or
website. miniviews are instead less frequently used to zoom-in on particular aspects of
the architecture (12%), e.g., to document a data transformation process. Other informa-
tion such as URLs (10%), code snippets (9%), and configuration parameters (7%) are
also, but less frequently, used to highlight connection or low-level implementation details.

12 The complete list of technologies and their recurrence is reported for completeness in the
replication package of this study



Architectural Views: The State of Practice in Open-Source Software Projects 13

RQ3: Architectural Views Content. 75% of views consider architectures in their
entirety. Client-server is the most used architectural style (25%), followed by layered
(20%), service-oriented (15%) and event-driven (12%) architectures. General architec-
ture documentation, followed by deployment and control flow are the most recurrent
topics covered. Views mostly consider a high or medium granularity level (91%). Static
and dynamic aspect are equally represented. The most considered quality attribute is
maintainability (68%), followed by functional suitability (33%). Around 65% of views
explicitly report the technologies used, with AWS being the most recurrent one (25%).

5 Discussion

From the data collected a clear picture regarding the use of views in open-source
practice emerges. Most software projects rely on a single, seldom updated view, which
mostly utilizes an informal notation to outline the high level architectural structure. A
common syntactic ground among viewpoints is very hard to be found.
Despite the importance of views for software documentation [23], their intuitive

support for onboarding processes, and their potential to stimulate new contributions
in collaborative environments such as GitHub, architectural view documentation in
the open-source community does not seem to be a well established practice. As step
forward, we ask ourselves: What can we do to ease the adoption of architectural views
in open-source practice, and how can we systematize the documentation of views?

A potential answer to this question lies in making views versionable. In fact, to date,
the process required to create and update architectural views on GitHub seems quite
cumbersome. More specifically, editing an architectural view commonly relies on utilizing
external tools which are not integratable with GitHub, and hence require first to update
the view via ad-hoc standalone tools, and subsequently push an unmodifiable version of
the view in shared repository. In addition to making views versionable, another aspect
crucial for the adoption of view documentation in open-source could be to allow views to
be automatically rendered in the web interfaces of repositories, in a similar fashion with
which README.md files are currently visualized on GitHub websites. This would further
support to move away from hard-coded immutable view image files in open-source
repositories, while still providing a swift and intuitive graphical representation of views.
Singular efforts striving to provide versionable web-friendly views, such as Mermaid13,
which allows to create various versionable diagrams on GitHub, e.g., C4 and UML,
should be therefore incentivized and given more visibility. Providing support and
exposure to such projects would allow to move view documentation in open-source
from a small community endeavors to mainstream, consolidated, and well integrated
open-source practices. As related consideration, similar to current trends pushing for
the standardization of architectural decision records in open-source14, the community
could spend efforts to establish reusable templates to represent architectural views.

We speculate that providing versionable, templateable views that can be integrated in
collaborative programming environments would allow to further establish architectural
view documentation practices in open-source. Through virtuous cycles, this could lead to
further cascading effects, e.g., the inclusion of GitHub Actions15 dedicated to software
architecture, and the rise of dedicated ARCHITECTURE.md documentation.

13 https://github.com/mermaid-js/mermaid. Accessed 24th April 2024.
14 https://adr.github.io. Accessed 24th April 2024.
15 https://github.com/features/actions. Accessed 24th April 2024

https://github.com/mermaid-js/mermaid
https://adr.github.io
https://github.com/features/actions


14 S. Migliorini et al.

6 Threats to Validity

We document the study threats by following to the categorization proposed by
Wholin et al. [30] and considering common pitfalls in assessing threats to validity [29].

Construct Validity. To ensure that the dataset of views addresses our research
questions, we defined a priori the concept of software architectural view by relying on
established definitions [2,6]. The entirety of the study is conducted by following such def-
inition. Via a set of a priori defined inclusion criteria used during the mining phase, and
a subsequent manual process based on a coding guide, views deviating from our construct
definition were discarded to ensure adherence of the collected results to our research goal.

Internal Validity. A potential internal validity threat lies in the formulation of the
search query used in the mining process (see Section 3, Step 1). To mitigate this threat,
the query was refined over more iterations through a set of exploratory query trials.
Another potential internal threat regards subjective biases that could have influenced the
manual coding process (see Section 3, Step 6). To mitigate this threat, two annotators
were involved in the process, weekly meetings were held to align the labeling process by
discussing doubts and examples, and a third researcher was involved whenever necessary.
The automated translation accuracy of non-English views could have also potentially
influenced the internal validity of the study. However, given their low recurrence (2%),
we do not deem it could have majorly influenced our results. Exclusion criteria E1 (see
Section 3.2) could had led to the inclusion of demo projects in our dataset. However,
as no toy project was found in the manually scrutinized sample (see Section 3.2), we
do not deem this threat majorly influenced our results.

External Validity. Albeit our best efforts, the automated mining process (see Section 3,
Step 1) needed to rely on a keyword-based search of files linked in the README.md. While
the search made it possible to identify a considerable number of views (14k), views that
did not explicitly contain the substring “architect” in their filename could not be identi-
fied. In addition, albeit used as main source of GitHub repository documentation [21,28],
files not linked to README.md or CONTRIBUTING.md files could not be identified. This
choice constituted a tradeoff between internal and external validity, which made it possi-
ble to automatically identify views while limiting the number of potential false positives.
In future work, this threat could be addressed by using a more sophisticated view identifi-
cation strategy, e.g., by training an image classification model on the dataset constructed
for this research, and automatically classify views from a more extensive pool of images.

Reliability. To ensure the reproducibility and verifiability of our results, we make
a comprehensive replication package of the study available online (see Section 8).

7 Conclusions and Future Work

In this research we present an investigation on the architectural views state of practice
in open-source projects. The study uses repository mining to build a dataset of 15k
views, which are then analyzed both quantitatively and qualitatively.

From our study a clear picture on the use of architectural views in open-source project
emerges. Views are used to intuitively convey in an informal manner key architectural con-
cepts, are seldom updated, and are a single-contributor responsibility. A shared syntactic
ground between views seems hard to be found, with ad hoc viewpoints being a widespread
norm. Informally, the sole exception might be the general-purpose architectural set
of icons and connectors supported by the AWS Architecture Center16, that seems to be

16 https://aws.amazon.com/architecture/icons. Accessed 17th April 2024.

https://aws.amazon.com/architecture/icons


Architectural Views: The State of Practice in Open-Source Software Projects 15

shared by a minority of the analyzed views. Overall, it appears as if the effort needed to
create views, combined with the potential lack of intuitive yet structured set of viewpoints,
hinders utilizing more than one view, and even keeping that single view up to date.

As future work, the topic of views in projects could be further investigated, e.g., by
conducting a survey with repository contributors. This would allow to further understand
what influences view selection, how relying on a single view affects system understanding
and evolution, and what are the current requirements for new viewpoints. Building
further on this study, we envision also to conduct research to automatically identify
and classify architectural views, and characterize the contributors involved in editing
architectural views. Paving the way for future research, our ultimate goal is to define
and popularize versionable, templateable views that can be integrated in collaborative
programming environments. Given its practical nature, such goal can be achieved solely
through empirical evidence and close collaboration with open-source communities, in
order to define views promoting simplicity, adoption, and consistency across projects.

8 Data Availability

To support reproducibility and verifiability, we make all data used in this study,
scripts, settings, coding guide, and results available in a replication package online17. To
encourage open science, the replication package is shared under open-source MIT license.

References
1. IEEE Standard for Information Technology–Systems Design–Software Design Descriptions.

IEEE STD 1016-2009 pp. 1–35 (2009)
2. International Standard for Software, systems and enterprise Architecture description.

ISO/IEC/IEEE 42010:2022(E) pp. 1–74 (2022)
3. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice

architecture. In: International Conference on Service-Oriented Computing and Applications.
pp. 44–51. IEEE (2016)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional, 4 edn. (2021)

5. Buchgeher, G., Schöberl, S., Geist, V., Dorninger, B., Haindl, P., Weinreich, R.: Using archi-
tecture decision records in open source projects–an msr study on github. IEEE Access (2023)

6. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord,
R., Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-Wesley
(2011)

7. Ding, W., Liang, P., Tang, A., Van Vliet, H., Shahin, M.: How do open source communities
document software architecture: an exploratory survey. In: André, É., Zhang, L. (eds.)
Proceedings - 19th International Conference on Engineering of Complex Computer Systems,
ICECCS 2014. pp. 136–145. IEEE, Institute of Electrical and Electronics Engineers (2014)

8. Garlan, D.: Software architecture: a roadmap. In: ICSE ’00: Proceedings of the Conference
on The Future of Software Engineering. pp. 91–101. Association for Computing Machinery,
New York, NY, United States (2000)

9. Geiger, R., Varoquaux, N., Mazel-Cabasse, C., et al.: The Types, Roles, and Practices of
Documentation in Data Analytics Open Source Software Libraries. Computer Supported
Cooperative Work 27, 767–802 (2018)

10. Ghanam, Y., Carpendale, S.: A survey paper on software architecture visualization.
University of Calgary, Tech. Rep p. 17 (2008)

11. Gousios, G., Vasilescu, B., Serebrenik, A., Zaidman, A.: Lean GHTorrent: GitHub Data on
Demand. In: Proceedings of the 11th Working Conference on Mining Software Repositories.
p. 384–387. MSR 2014, Association for Computing Machinery, New York, NY, USA (2014)

17 https://figshare.com/s/a796b8b414bbc7d09fe2. Accessed 24th April 2024.

https://figshare.com/s/a796b8b414bbc7d09fe2


16 S. Migliorini et al.

12. Hebig, R., Quang, T.H., Chaudron, M.R.V., Robles, G., Fernandez, M.A.: The Quest for
Open Source Projects That Use UML: Mining GitHub. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems. p.
173–183. MODELS ’16, Association for Computing Machinery, New York, NY, USA (2016)

13. ISO/IEC 25010: Systems and software engineering — systems and software quality
requirements and evaluation (square) — system and software quality models (2023)

14. Jenner, B., Flick, U., von Kardoff, E., Steinke, I.: A companion to qualitative research.
Sage (2021)

15. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D., Damian, D.: An
in-depth study of the promises and perils of mining GitHub. Empirical Software
Engineering 21 (5), 2035–2071 (2016)

16. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs from
architectural languages: A survey. IEEE Transactions on Software Engineering 39(6),
869–891 (2012)

17. Malavolta, I., Lewis, G.A., Schmerl, B., Lago, P., Garlan, D.: Mining guidelines for
architecting robotics software. Journal of Systems and Software 178, 110969 (2021)

18. Muszynski, M., Lugtigheid, S., Castor, F., Brinkkemper, S.: A Study on the Software
Architecture Documentation Practices and Maturity in Open-Source Software Development.
In: IEEE International Conference on Software Architecture. pp. 47–57 (2022)

19. Ozkaya, M.: What is software architecture to practitioners: A survey. In: International Con-
ference on Model-Driven Engineering and Software Development (MODELSWARD) (2016)

20. Ozkaya, M., Erata, F.: A survey on the practical use of UML for different software
architecture viewpoints. Information and Software Technology 121, 106275 (2020)

21. Prana, G., Treude, C., Thung, F., et al.: Categorizing the Content of GitHub README
Files. Emp Software Eng 24, 1296–1327 (2019)

22. Rost, D., Naab, M., Lima, C., von Flach Garcia Chavez, C.: Software architecture doc-
umentation for developers: A survey. In: Software Architecture: 7th European Conference,
ECSA 2013, Montpellier, France, July 1-5, 2013. Proceedings 7. pp. 72–88. Springer (2013)

23. Rozanski, N., Woods, E.: Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives. Addison-Wesley Professional (2005)

24. Saldaña, J.: The coding manual for qualitative researchers. Sage (2021)
25. Shahin, M., Liang, P., Babar, M.A.: A systematic review of software architecture

visualization techniques. Journal of Systems and Software 94, 161–185 (2014)
26. Smolander, K.: What is included in software architecture? a case study in three software

organizations. In: Proceedings Ninth Annual IEEE International Conference and Workshop
on the Engineering of Computer-Based Systems. pp. 131–138 (2002)

27. Tu, Q., Godfrey, M.: The build-time software architecture view. In: Proceedings IEEE
International Conference on Software Maintenance. ICSM 2001. pp. 398–407 (2001)

28. Venigalla, A.S.M., Chimalakonda, S.: What’s in a github repository?–a software
documentation perspective. arXiv preprint arXiv:2102.12727 (2021)

29. Verdecchia, R., Engström, E., Lago, P., Runeson, P., Song, Q.: Threats to validity in
software engineering research: A critical reflection. Information and Software Technology
164, 107329 (2023)

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wessĺen, A.:
Experimentation in software engineering. Springer Science & Business Media (2012)

31. Zagalsky, A., Feliciano, J., Storey, M.A., Zhao, Y., Wang, W.: The Emergence of GitHub
as a Collaborative Platform for Education. In: ACM Conference on Computer Supported
Cooperative Work & Social Computing. Association for Computing Machinery (2015)


	Architectural Views: The State of Practice in Open-Source Software Projects

