
Estimating Energy Impact of Software Releases and
Deployment Strategies: the KPMG Case Study

Roberto Verdecchia∗†, Giuseppe Procaccianti †, Ivano Malavolta†, Patricia Lago†, Joost Koedijk‡
∗Gran Sasso Science Institute, L’Aquila, Italy - roberto.verdecchia@gssi.it

†Vrije Universiteit Amsterdam, The Netherlands - { g.procaccianti | i.malavolta | p.lago }@vu.nl
‡KPMG, The Netherlands - koedijk.joost@kpmg.nl

Abstract—Background. Often motivated by optimization objec-
tives, software products are characterized by different subsequent
releases and deployed through different strategies. The impact
of these two aspects of software on energy consumption has still
to be completely understood and can be improved by carrying
out ad-hoc analyses for specific software products.
Aims. In this research we report on an industrial collaboration
aiming at assessing the different impact that releases and deploy-
ment strategies of a software product can have on the energy
consumption of its underlying hardware infrastructure.
Method. We designed and performed an empirical experiment
in a controlled environment. Deployment strategies, releases and
use case scenarios of an industrial third-party software product
were adopted as experimental factors. The use case scenarios
were used as a blocking factor and adopted to dynamically
load-test the software product. Power consumption and execution
time were selected as response variables to measure the energy
consumption.
Results. We observed that both deployment strategies and soft-
ware releases significantly influence the energy consumption of
the hardware infrastructure. A strong interaction between the
two factors was identified. The impact of such interaction highly
varied depending on which use case scenario was considered,
making the identification of the most frequently adopted use
case scenario critical for energy optimisation. The collaboration
between industry and academia has been productive for both par-
ties, even if some practitioners manifested low interest/awareness
on software energy efficiency.
Conclusions. For the software product considered there is no
absolute preferable release or deployment strategy with respect
to energy efficiency, as the interaction of these factors has to
be considered. The number of machines involved in a software
deployment strategy does not simply constitute an additive
effect of the energy consumption of the underlying hardware
infrastructure.

Index Terms—Energy, Software Releases, Deployment.

I. INTRODUCTION

Software-intensive systems are taking up an ever-growing
part of our overall energy consumption and a considerable
amount of resources is nowadays allocated to power IT in-
frastructures [23]. According to the constant growth of digital
content, big data and cloud computing, software systems
are reported to be among the fastest-growing consumers of
electricity [17]. The question to be answered is therefore: how
can the impact of IT on energy consumption be reduced?

A possible solution lies in the continuous advancement
of hardware technologies. According to Koomey’s Law, the
number of computations per Joule of energy dissipated is

expected to double approximately every two and a half years.
This trend has been remarkably stable through the years [11].
Energy consumption of software systems, in divergence with
the energy efficiency improvements reflected by Koomey’s
Law, still increases linearly year after year. The cause of this
trend can be attributed to the concept expressed by Wirth
with his prominent computing adage “Software is getting
slower more rapidly than hardware is getting faster”. In other
words, while the performance of computations increases year
after year, due to the high confidence in constant hardware
improvements, the number of computations needed to fulfil a
task increases even more. This trend, first noticed about 30
years ago [25], is usually referred to as software bloat [16].

In this paper we aim to empirically assess the extent to
which different releases of an industrial software product
implementing the same functional requirements in different/
optimized ways, impact the energy consumption at the infras-
tructure level. The choice of choosing similar releases, i.e.
releases implementing the same functional requirements, was
led by the possibility to compare these releases by considering
the same use case scenarios to be executed. The interest of the
industrial partner on particular releases also contributed to the
selection process.

This research stems from a collaboration between the Vrije
Universiteit Amsterdam and KPMG, a professional service
company based in Amstelveen, The Netherlands, with more
than 189,000 employees. The underlying goal of both par-
ties is to understand to what extent releases of a software
product (that do not drastically differ in terms of functional
requirements) can influence in an appreciable way the energy
consumption of the underlying hardware components, leading
to the selection of the most convenient to adopt w.r.t. energy
consumption. Also, we assess the impact of the different
deployment strategies available for the software product on
the hardware energy consumption. In fact, while the effects of
deployment strategies on energy consumption (and possible
optimisation techniques such as server consolidation heuris-
tics [21]) have been researched, ad-hoc analyses can be utilised
to assess the specific behaviour of industrial software products.

The goal of this paper is hence to assess the different impact
that software releases and deployment strategies of an indus-
trial software product can have on the energy consumption
of the underlying hardware. This enables the selection of the
combination of version and deployment strategies available

for the industrial software product that enable its best energy
efficiency. It is important to notice that, in order to load test
the application, a set of use case scenarios encompassing the
core functional requirements of the industrial software product
considered has been adopted.

In order to achieve the aforementioned goal, we designed,
executed, and reported on an empirical study that considers
different use case scenarios of a professionally developed
software product called Qubus [12]. Qubus is a platform
for supporting governance, risk, and compliance processes
(GRC) developed by KPMG. The main contributions of this
paper are: (i) the description of a well-defined process to
measure the energy consumption of an industrial software
product; (ii) the results of an experiment on the impact of
different software releases and deployment strategies on the
energy consumption of a professionally developed software
product; (iii) the discussion of the obtained results and their
implications; (v) a replication package containing and the raw
data of the experiment and the scripts for data analysis.

The target audience of this paper is composed of both
academics and practitioners interested in measuring the energy
efficiency of a software product. Our results also provide an
overview on the impact that different releases and deployment
strategies of software products can have on energy consump-
tion, and hence help in reasoning about which strategy should
be preferred from an energy optimization point of view.

The paper is organized as follows. In Section III the object
of the study, namely the Qubus application, is presented.
Section IV reports the design of the experiment we performed.
Section V provides the details of the experiment execution,
while Section VI reports on the results of the analysis of the
data gathered from the experiment. An in-depth discussion of
the obtained results is provided in Section VII. Section VIII
presents and evaluates the threats to validity of the experiment.
Section II discusses related work, whereas Section IX closes
the paper and discusses future work.

II. RELATED WORK

Through an empirical study, Sahin et al. [19] provided
evidence that refactoring operations significantly influence
energy efficiency. In order to ease refactoring of identified
energy hotspots, Manotas et al. [15] developed a decision
framework to support code-level energy optimisation refac-
toring. By taking into account mobile applications, several
approaches aimed to identify energy-related issues, bugs, and
hotspots at different levels of abstraction have been proposed
[18], [17], [14].

Regarding the impact of different software releases on
energy consumption, to the best of our knowledge only few
researches addressing this study can be found in the literature.
An empirical research conducted by Jagroep et al. [10] demon-
strated how the energy consumption of different software
releases could be quantified down to the level of individual
processes. In a study by Hindle [9] a methodology aimed to
relate software change to energy consumption is proposed. The
method was then validated through two case studies. As for the

experiment proposed in this research, the energy consumption
highly depended on the adopted use case scenario.

III. INDUSTRIAL CASE STUDY: THE QUBUS SOLUTION

As shown in Figure 1, the problem to be addressed was
jointly formulated in a similar fashion of the technology
transfer model of Gorschek et al. [8]. The identification of
what characteristics of Qubus to focus on was then carried
out by the industrial party and validated with respect to the
predefined goal by the academic one. The selection of the
concrete factors was then carried out by the industrial partner,
according to their specific interest. The academic researchers
then conducted an in-depth analysis of the software product
according to the selected factors and underlying goal. During
this phase, the interaction with the industrial partner was
not paused, but enforced whenever clarifications about the
software product or refinements of the research goal and
factors were required. Finally, after the empirical experiment
was carried out, the results were presented by the researchers
and jointly discussed with the industrial partner.

Fig. 1. Interaction between academia and industry for this study

The object of this study is a platform named Qubus,
which supports Governance, Risk, and Compliance (GRC)
processes and is developed and maintained by KPMG. The
selected software product, based on dynamic and customizable
content, supports a wide range of enterprise management
processes including financial control management, strategic
and operational risk management, compliance management
and external audit management. The application implements
these processes through a set of personalized questionnaires to
be filled in by multiple (and possibly concurrent) users. Users
are also provided with the ability to implement and configure
ad-hoc structured sets of dynamically linked questionnaires,
aimed to capture evidence for customized GRC processes.
The data gathered through questionnaires is then automatically
processed by the platform and presented by graphical and
textual means with dashboards and custom-built reports.

Figure 2 provides the high-level architectural view of
the software components of the Qubus application and its
functionalities. The functionalities of the Qubus platform are
grouped in three distinct clusters according to their character-
istics. In a first cluster the functionalities that formed the end-
user experience are grouped. The services of this cluster are
all accessible by the end-user through dynamically generated
web pages based on ASP.NET. This category of functionalities

Fig. 2. Qubus high-level architecture view

are part of the logical component named Questionnaire Rapid
Development Environment. Some of the most prominent mod-
ules that fall under this category are: the Answering module,
the Workflow and Questionnaire builder, and the Dashboard
builder.

The second layer (Qubus Platform) is represented by the
three applications composing the Qubus platform. The web
application is the main, web-based, component the Qubus
platform, implementing all the logic required to build and use
the tools of the platform. The AD Connector is a Windows
service managing the integration of the Web application with
the AD directory service of the Windows Server on which
the database of the application is deployed. Finally, the Job
manager module represents an independent Windows service
application taking care of sending notifications to users, auto-
matic transition of a questionnaire to other states and automatic
assignment of the end-users to questionnaires.

The third layer (Technology platform) is composed of the
technologies on which the Qubus application relies. The com-
ponents of this last group are frameworks and engines common
to many .NET projects, such as the ASP.NET framework,
utilized to create dynamic event-driven web pages.

IV. EXPERIMENT PLAN

In order to provide objective and replicable results, we
planned our experiment by following well-known guidelines
on empirical software engineering [26], [20]. In the remainder
of this section we report on how we planned the experiment.

A. Goal and Research Questions

The defined goal of the experiment was agreed upon by
following the Goal-Question-Metric approach [5] and is as
follows: “Evaluate releases and deployment strategies for the
purpose of determining their impact on energy consumption
as seen from the viewpoint of the software engineer, in the
context of the Qubus application”.

From the goal of the experiment we derived the two
research questions of our study, which are the following:
RQ1 - What is the impact of different software releases on
hardware energy consumption?
RQ2 - What is the impact of software deployment strategies
on hardware energy consumption?

B. Variables Selection

In this section we discuss the identified dependent and
independent variables of the experiment, together with a
description about the experiment design.

1) Dependent variables: In order to answer each of the
above stated research questions the energy consumption of
the hardware infrastructure on which the industrial software
product is running had to be measured. This was possible by
keeping track of two distinct dependent variables, namely:

• Power consumption: the power required by the underly-
ing hardware infrastructure in order to run the application,
measured in Watts;

• Execution time: the time required by the application
to execute a predefined use case scenario, measured in
seconds.

These two dependent variables are required in order to
measure the energy consumption, that constitutes a de-
rived dependent variable. This latter variable is calculated as
E = P · ∆ t, where P is the average power consumption
during the execution time ∆t.

2) Independent variables: Three distinct factors were se-
lected, namely the Qubus release, deployment strategy (DS)
and use case scenario (UCS). The rationale behind the se-
lection of the first two factors was guided by the interest
of the industrial partners to understand the impact that these
easy to deploy changes might have on energy efficiency. In
addition, UCS was adopted as independent variable in order
to simulate realistically the common usage of the software
product. The factors and their corresponding treatments are
detailed as follows:
• Qubus release: the Qubus 6.2.3 release and Qubus 6.5.7
release were selected for the experiment, we will refer to them
as R1 and R2, respectively. These two releases can be consid-
ered as equivalent from both the architectural and implemented
features perspective, making them very good candidates for
our experiment due to their manageable comparability w.r.t.
UCS;
• Deployment strategy: the Qubus application can be de-
ployed through two main strategies. In the first one, both the
database and the web application are hosted on a single ma-
chine, we refer to it as centralized deployment strategy (Dc).
In the second deployment strategy the database and the web
application are deployed on two dedicated machines, we refer
to it as distributed deployment strategy (Dd);
• Use Case Scenario1: we identified two different use case
scenarios (UCS) containing the core functionalities of the

1For an in-depth description of the UCS we refer the reader to the online
replication package provided for this study.

Qubus application. The first UCS consists of the most common
UCS of the Qubus application, namely the completion of
a questionnaire by filling in its fields; we refer to it as
questionnaire completion (U1). The second UCS represents the
steps required in order to generate reports from the information
gathered through the questionnaires; we refer to it as report
generation (U2).

C. Hypotheses Formulation

By formalizing the research questions presented in Section
IV-A, and by taking into account the previously presented
factors, we can derive the hypotheses underling our experiment
as follows:

1) Hypotheses for the releases:

• Null hypothesis H1
0 : There is no significant difference

in energy consumption between the two Qubus releases
considered.

µR1
= µR2

(1)

• Alternative hypothesis H1
a : There is a significant dif-

ference in energy consumption between the two Qubus
releases considered.

µR1 6= µR2 (2)

2) Hypotheses for the deployment strategies:

• Null hypothesis H2
0 : There is no significant difference in

power consumption between the two deployment strate-
gies utilized.

µDc = µDd
(3)

• Alternative hypothesis H2
a : There is a significant differ-

ence in power consumption between the two deployment
strategies utilized.

µDc
6= µDd

(4)

It is important to notice that the UCSs U1 and U2 are
adopted as a blocking factor, hence the hypothesis are tested
independently for the two datasets associated to the UCSs.

D. Experiment Design

We purposefully kept the number of factors and treatments
low in this experiment so that the exhaustive set of all possible
combinations of treatments can be tested. This enables us to
gather comprehensive results by taking into account the totality
of the 3-way interactions between treatments.

The UCS factor is used as a blocking factor for the
experiment, i.e. the trials are divided into two different sets
(or blocks) according to the UCS that characterizes them.
The values gathered through these two sets are then analyzed
independently in order to isolate the effect of the blocking
factor. In order to avoid a possible threat to conclusion validity
two representative UCS of the application considered are
selected for our experiment. Tables I and II report the complete
test suite of our experiment.

TABLE I
EXPERIMENTAL TEST SUITE U1

Factors & Treatments
Qubus release Deployment Strategy

Trials

Trial 1 R1 Dc

Trial 2 R1 Dd

Trial 3 R2 Dc

Trial 4 R2 Dd

TABLE II
EXPERIMENTAL TEST SUITE U2

Factors & Treatments
Qubus release Deployment Strategy

Trials

Trial 5 R1 Dc

Trial 6 R1 Dd

Trial 7 R2 Dc

Trial 8 R2 Dd

E. Analysis Methodology

All of the hypotheses presented in Section IV-C will be
tested via two-tailed tests, and a significance level (α) of
0.05 is utilized to evaluate the distribution of the empirically
gathered values. Due to the variability of the values gathered
with the dynamic analysis, the execution of the UCS (also
referred further to as “run”), are carried out 30 times for each
combination of factors in order to gather enough statistically
sound data. This leads to the identification of an accurate
mean value and to the calculation of the standard deviation for
each of the experimental measurements carried out for each
combination of factors.

T-tests are carried out in order to compare the means of
the independent samples. A significance level (α) of 0.05
is used to analyze the differences between the dynamically
gathered values. Furthermore, the variation within and between
the treatments and the independent variables is tested via
the well-known Analysis of Variance (ANOVA) statistical
model [7]. In order to evaluate the heteroscedasticity of the
linear regression models of the independent variables Breusch-
Pagan tests [4] are utilized. The significance level (α) of
these tests is in line the previously set value of 0.05. A post
hoc analysis is carried out in order to detect patterns, useful
to answer the research questions that were not specified a
priori. This process is carried out by adopting the Tukey’s
honest significant difference (HSD) test [22]. In case that the
assumptions of the Tukey’s HDS do not hold for a specific
data set, a t-test in conjunction with an α adjustment calculated
through the Holm-Bonferroni correction [3] is utilized.

F. Replicability of the Experiment

To allow easy replication and verification of our experi-
ment, a complete replication package2 is publicly available to
interested researchers. Our replication package includes: an in-
depth step by step definition of the UCS, the source code of
the measurement scripts, the complete raw data of each trial

2http://cs.gssi.it/ESEM2017ReplicationPackage

http://cs.gssi.it/ESEM2017ReplicationPackage

run, the R scripts developed for analysing the data and the
analysis output.

V. EXPERIMENT EXECUTION

A. Instrumentation

The experiments were conducted by deploying the Qubus
web application and the SQL database required by the ap-
plication in a virtualization environment based on VMware
Vsphere3. Both the web application and the SQL database
were installed on machines running the Windows Server 2012
Enterprise edition operating system. All the runs of the
experiment were executed on a HP Proliant DL380 Gen-
eration 7 (G7) server equipped with two Quad-core Xeon
processors and a 18GB RAM memory with a 72GB HP SAS
2.0 Drive with RAID 0 configuration and a P400i Smart Array
RAID controller. The dynamic measurements were carried out
by utilizing a Wattsup PRO meter4. This tool enabled us to
measure the overall power consumption of the machine on
which the VMs adopted for the experiment were hosted on a
per-second basis. The decision to adopt the Wattsup PRO meter
was led by the high precision of the measurements carried
out by this tool, the absence of induced power overhead and
the ease with which this tool could be interfaced with the
orchestration scripts.

B. Application deployment

In order to carry out the measurements the applications
were installed on host servers by following the deployment
strategies characterizing the single trials. Multiple instances
of the application could be installed on the utilized servers, as
the impact on the measurements of other instances installed
on the same machine could be completely isolated by simply
turning off the instances that were not of interest. This led
to the set up of three distinct virtualized host servers, namely
the application server and the database server of the distributed
setting (Dd) and the single server necessary for the centralized
deployment strategy (Dc).

The VMs were connected to each other through abstracted
network devices; those devices internally bridged the traffic
between the two virtual machines of Dd. This constituted an
ideal environment in which the communication between the
application server and the database server were expected to
experience a latency close to zero.

In addition to the physical host server on which the VMs
were deployed, a supplementary monitoring server was uti-
lized in order to execute the scripts necessary to run the exper-
iment. An overview of the relation between the physical and
virtualized servers, as well as distribution of the experimental
artifacts, is provided in Figure 3.

C. Load test execution

The interactions of users with the system, based on the UCS
reported in Section IV-B, were simulated by implementing a

3http://www.vmware.com/products/vsphere, last retrieved March 13, 2017
4https://www.wattsupmeters.com/secure, last retrieved March 13, 2017

Fig. 3. Step-by-step overview of the experiment execution process (consid-
ering the distributed deployment strategy)

set of Apache JMeter5 scripts; those scripts have been used
for automatically load test the functional behavior of the
application. The number of concurrent users simulated by the
scripts was set to six, in accordance to the typical load of
the platform (as the developers of the application reported
through preliminary structured interviews). A ramp-up time
corresponding to a delay of 100 milliseconds between the
start of each user thread was adopted. This allowed to reduce
the probability of concurrent threads locking shared resources
simultaneously causing a potential deadlock.

To simulate a realistic input speed of the simulated users,
a “think time” for the JMeter threads was randomly defined
by utilizing a Poisson distribution with a mean value λ
set to three seconds. The λ value was chosen by taking
into account the average user input speed with the standard
QWERTY keyboard method that, according to Arif et al. [2],
is approximated to 64.80 words per minute.

In addition to the load tests further JMeter scripts were
utilized in order to automatically satisfy preconditions of the
UCS (Step 1-2 of Figure 3) and carry out post-execution tear-
down processes (Step 10-11). The recursive execution of the
set-up, load test and tear-down processes was automatically
coordinated by an ad-hoc Powershell orchestration script, as
can be seen in Figure 3. This latter type of script additionally
included the set up of the environment in which the exper-
iments were run, e.g. powering the energy meters (Step 3),
and supervised the retrieval of log files (Step 8-9). In order
to completely isolate the impact of the simulated UCS on
the experimental measurements waiting times were utilized
between the set-up, load test, and tear-down processes. All the

5http://jmeter.apache.org/, last retrieved March 13, 2017

http://www.vmware.com/products/vsphere
https://www.wattsupmeters.com/secure
http://jmeter.apache.org/

scripts utilised for the experiment execution were executed in
a monitoring server, as depicted in Figure 3, in order to avoid a
possible interaction of the script execution on the experimental
measures.

For each of the trials reported in Table I and Table II sets of
30 subsequent runs were utilized to gather the statistical data.
The execution of a set of runs ranged approximately from four
to five hours.

D. Collected data

The output of each experimental run consisted of three
artifacts, that were stored on the monitoring server (see
Figure 3): • JMeter log: log file reporting an entry for each
HTML request of the load test. Some attributes present in
the file worth mentioning are timestamp, Thread name, Total
number of threads running, elapsed time, latency and response
code. These logs were automatically checked for consistency
in order to ensure the correct execution of the load tests;
•Wattsup PRO meter log: a file containing the Watts, Voltage,
and Current consumption (with relative timestamp) of the
physical host machine where the VMware vSphere server vir-
tualization environment was deployed. This data was utilized
for the hypothesis testing process of our experiment;
• PowerCLI logs: a set of files containing information of the
VMs on which the Qubus application was deployed. These
data was collected through the VMware vSphere interface
PowerCLI. Some of the stored information contained in such
logs are: Total CPU usage, Total Memory usage and Total disk
usage. This data was utilized in order to have further insights
about the load test execution.

VI. RESULTS

This section describes the results of the hypothesis testing
by means of statistical analysis of the collected data. Addi-
tional findings deemed relevant for the study are also reported
in this section. For a detailed report about the performed
statistical analyses and the hypotheses testing we refer the
reader to our replication package.

A. Impact of Software Releases on Energy Consump-
tion (RQ1)

From a two tailed t-test carried out by controlling the fam-
ilywise error rate through the Holm-Bonferroni correction the
two means of the energy consumption result to significantly
differ (p-value = 0.0024) for U1. The performed two-way
ANOVA test showed that, while both treatments impact the
measurand significantly (p-value < 2 · 10−16), the interaction
of the two treatments also has a statistically significant effect
on the dependent variable (p-value < 2 · 10−16). In order to
better understand this interaction we calculated the effect size
of the two treatments by adopting a partial eta-squared [6] on
the previously processed ANOVA model. The results of the
analysis are reported in Table III.

As we can notice from the values reported in Table III, both
the treatments and their interaction result to impact to a
large extent the energy consumption of U1. This trend can

TABLE III
ETA-SQUARED RESULTS ON ANOVA OF THE INTERACTION OF

TREATMENTS (U1)

Treatment and interactions Partial eta-squared
Release 0.6979525

Deployment Strategy 0.9558263
Release : Deployment Strategy 0.7996772

Fig. 4. Total energy consumption per trial (U1)

also intuitively be spotted in Figure 4, reporting the average
energy consumption of the single trials.

Regarding U2, an ANOVA analysis showed that software
releases have a statistically relevant impact on the energy
consumption (p-value < 2.2 · 10−16).

From a pairwise t-test with the Holm-Bonferroni correc-
tion the two means result to significantly differ (p-value =
2 · 10−16). As for U1, a two way ANOVA evidenced
a strong interaction between the two factors on the energy
consumption that could not be neglected (p-value < 2−16).
By calculating the effect size through a partial eta-squared the
single treatments and their interaction result to have large
effect size on the energy consumption of U2. In Table IV
the partial eta-squared values of the calculated ANOVA are
reported.

TABLE IV
ETA-SQUARED RESULTS ON ANOVA OF THE INTERACTION OF

TREATMENTS (U2)

Treatment and interactions Partial eta-squared
Release 0.9651552

Deployment Strategy 0.9370992
Release : Deployment Strategy 0.8932505

In light of the strong interaction between the treatments, the
single trials have to be analyzed independently. In Figure 5 the
distribution of the energy consumption grouped by trial of U2

is depicted.
By considering the trials of both UCS, a further analysis

revealed a significant difference in energy consumption be-
tween the two Qubus releases. In fact a Tukey’s HSD test re-
vealed a significant difference for U1 (p-value ≤ 0.0035435).

Fig. 5. Total energy consumption per trial (U2)

Similar results were gathered by applying a pairwise t-test6

adjusted with the Holm-Bonferroni method to the data of U2

(p-value ≤ 2 ·10−11). In light of the findings of these we can
confidently reject the null hypothesis H1

0 .

Main findings - Impact of software releases on energy
consumption (RQ1):
I both the treatments and their interaction result to

largely impact the energy consumption of use case
scenario U1;

I both the treatments and their interaction result to
largely impact the energy consumption of use case
scenario U2;

I significant difference in energy consumption be-
tween the two Qubus releases has been observed.

B. Impact of Deployment Strategies on Energy Consump-
tion (RQ2)

In order to assess the impact of the deployment strategy on
the energy consumption of U1 an omnibus ANOVA test was
carried out. From this statistical analysis the null hypothesis
H2

0 could be rejected (p-value = 2.2 · 10−16). In Figure 6 the
distribution of the energy consumption for the two deployment
strategies is depicted.

As reported in Section VI-B an independent analysis of
the treatments is insufficient to evaluate the impact of the
deployment strategies on the energy consumption. In fact,
as can be intuitively seen in Figure 4, a strong interaction
between the two treatments is influencing the measurand. For
the sake of readability the previously carried out analysis
on the interaction of the two treatments is not repeated in
this section. Nevertheless the previously achieved results hold
also for the testing of the second hypothesis, i.e. both the
deployment strategy and its interaction with the software

6The choice of adopting this latter type of analysis for U2 was due to the
heteroscedasticity of the variable calculated through a Breusch-Pagan test.

Fig. 6. Total energy consumption per deployment strategy (U1)

release result to largely effect the energy consumption
measurements of the load tests relative to U1.

Regarding U2, from an initial omnibus ANOVA test the
deployment strategy treatment resulted to significantly impact
on the energy consumption of the test cases (p-value =
2.9 · 10−10). From a pairwise t-test with the Holm-Bonferroni
correction we observed that the mean of the two experimental
groups significantly differ (p-value = 3 ·10−10) and hence we
could conclude that the second treatment significantly affects
the energy consumption. In Figure 7 the distribution of the
energy consumption per deployment strategy of the Qubus
application load tested through U2 is reported.

Fig. 7. Total energy consumptionper deployment strategy (U2)

From the results of the first hypothesis testing, we know that
the interaction between treatments has to be considered
before conclusions can be drawn for U2. In fact, while the
effect size of the DS treatment resulted to be very large (partial
eta-squared ≈ 0.94) the same could be found for the other
treatment (partial eta-squared ≈ 0.96) and the interaction of
the two (partial eta-squared ≈ 0.89). This means that both
the DS and its interaction with the other treatment significantly
effect the energy consumption. Consequently we can conclude
that the null hypothesis H2

0 has to be rejected also for U2,
i.e. there is a significant difference in energy consumption

between the two deployment strategies with regards of U2.
In conclusion, we can confidently state that there is a

significant difference in energy consumption between the
two deployment strategies for both UCSs. Hence we can
confidently reject the null hypothesis H2

0 .

Main findings - Impact of deployment strategies on
energy consumption (RQ2):
I both the deployment strategy and its interaction

with the software release result to largely affect the
energy consumption measurements of the load tests
relative to use case scenario U1;

I we observed a significant difference in energy con-
sumption between the two deployment strategies
with regard to use case scenario U2;

I we observed a significant difference in energy con-
sumption between the two deployment strategies for
both use case scenarios.

VII. LESSONS LEARNED

In order to provide the industrial partner with as much
information as possible regarding the data gathered from the
experiment, in addition to the hypothesis testing, we carried
out further statistical analyses. This section presents the key
findings of the empirical experiment reported back to the
KPMG Qubus team and a retrospective on the collaboration
between academia and industry.

A. Relations between execution time, energy consumption, and
power consumption

A first consideration has to be made on the relation be-
tween the power and energy consumption of the trials. We
noticed that power consumption did not vary as drastically
as the energy consumption of the load tests; also, it was
not directly proportional to the total energy consumption.
While from ANOVA omnibus tests the power consumption
resulted to significantly influence the energy consumption
(p-value = 9.359·10−9 for U1 and p-value = 1.921·10−4 for
U2), it seemed as if another factor is influencing more these
values. After a pairwise comparison, carried out by graphical
means through matrices of scatter plots, the execution time
was identified as the only dependent variable that grow linearly
with respect to the energy consumption.

By calculating the effect sizes of the treatments on the
power consumption and the execution times of the two UCSs,
the execution times are affected to a large extent by the
adopted treatments, while the power consumption exhibits
only a small variation. We can therefore conclude that the
performance variation outweighs the power consumption w.r.t.
energy efficiency, i.e. the variation of execution times results
to have a deeper impact than the observed power variation
on the energy consumption due to the low variability of
power consumption.

Hence, on one hand, developers of the Qubus application
should not spend too much effort in lowering the overall power

consumption of the underlying hardware through software
changes, as their impact is with high probability negligible.
On the other hand, improving the performance of the software
product leads to an appreciable energy optimisation while im-
proving also other quality attributes of the product. In addition,
this heuristic enables to carry out refactoring processes aimed
for energy efficiency improvements without the requirement
of a sophisticated hardware and software infrastructure such
as the one adopted for this empirical experiment.

B. Impact of treatments on energy consumption

Regarding the impact of the application release on the
energy consumption, it is not possible to precisely isolate the
effect of the release for U1 without taking into account the de-
ployment strategy. While the most recent release (R2) resulted
to consume slightly less energy in the centralized setting,
it exhibited a higher energy consumption in the distributed
one if compared to Qubus release (R1). In contrast, for U2,
the effect of this treatment resulted to be more stable, with
release R2 consuming significantly less energy than R1 in both
deployment strategy. We can therefore conclude that a high
dependency is present between software and hardware compo-
nents when considering energy efficiency, and the deployment
strategies do not simply constitute an additive effect to the
energy consumption w.r.t. the number of machines utilised.
In fact, two machines resulted jointly to consume less power
than a single one for U2. Thus deployment strategies affect
differently the energy efficiency according to which UCS
is exercised and the selection on which to prefer w.r.t.
energy efficiency has to be choosed according to which
UCS is used more frequently.

By considering the significant difference in energy con-
sumption of the two UCS considered, we can conjecture that
this divergence is caused by the different database operations
entailed in the two UCS. In fact, by considering U1, we
can observe that the low presence in this UCS of database
operations makes Dc more energy efficient. In contrast, the
high frequency of READ operations required for U2 make Dd

the most energy efficient option, as it is more fitted to handle
the high load of requests involved in U2.

As an additional research activity we also investigated if
changes in the source code of the two versions, measured
through software metrics, could be correlated to energy con-
sumption variation. Nevertheless, due to the low variability
of the values of the software metrics adopted, no evident
correlation was observable.7

Regarding the deployment strategy, we can notice that for
U1 this treatment had a remarkable impact on the energy
consumption. A higher energy consumption was associated to
the distributed deployment strategy. This is in accordance with
the intuitive results that would be expected if two machines
(virtual or physical) are used for the execution of a software

7We considered the following metrics: Mantainability Index, Cyclomatic
Complexity, Depth of Inheritance, Class Coupling, Weighted Methods per
Class, Number of Children, Lack of cohesion in methods and Effective Lines
of Code. Due to NDA the measured values could not be made public.

application instead of a single one. Nevertheless the vast
majority of the gathered measurements did not result to double
in the distributed setting with respect to the centralized one,
potentially due to the different load on the servers and the
baseline values of the measurements that were not consid-
ered. Surprisingly, for U2 the distributed deployment strategy
resulted to consume less energy than the centralized one for
both releases. From the inspection of the VMware vSphere
logs we can conjecture that the increased energy consumption
is caused by the higher load that the single server of Dc was
exposed to.

In conclusion there is no absolute best option of release
and deployment strategy, as the interaction of these two
factors must be considered. Furthermore, UCS also influ-
ences the energy consumption, hence it is crucial to identify
the most recurrent use case scenarios during the evaluation
of which combination of release and deployment strategy to
adopt. In our case the combination of Dc and R2 results to be
the best option, as it results to be the most energy efficient with
respect to the most recurrent UCS (see Fig. 4) and exhibits a
similar energy behaviour for the second UCS (see Fig. 6).

C. Retrospective on the academia-industry collaboration

The collaboration process between industry and academia
was smooth and productive for both parties. We conjecture
that the joint formulation of the problem to be solved played
a key role in the successful collaboration.

A minor difficulty was experienced due to the availability
of some of the key developer team members, as they were
not always formally allocated to tasks aimed to support this
research, and hence had sometimes to self-organise in order to
find the time to assist us and provide feedback. Nevertheless,
the interest of the industrial partner was sustained by formal
meetings during which the important aspects of the research
were discussed.

Another minor hindrance was constituted by the low interest
of a small portion of developers in the topic of software energy
efficiency. This is a problem known in academia [24], usually
tackled by means of people awareness strategies [13].

VIII. THREATS TO VALIDITY

In this section we discuss the threats to validity of our study
based on the categorization given in [26].
Conclusion validity. For the vast majority of the results
reported in Section VI the statistical tests produced sound
p-values, far below the chosen significance level of 0.05.
Furthermore, by carrying out additional post hoc tests, such
as the Tukey’s HSD, the high statistical power of the analysis
was reconfirmed. In order to avoid violations of assumptions
of the statistical tests, additional tests, such as the Breusch-
Pagan Trialwere carried out and, in order to minimize the error
rate of the results, the Holm-Bonferroni was adopted to adjust
the significance level when required. A minor threat to con-
clusion validity is the reliability of the implementation of the
distributed deployment strategy. As reported in Section V, the
web and database servers were connected through abstracted

network devices bridging the traffic internally between the
two VMs. This constituted an ideal deployment environment
in which the latency between the two machines is close to
zero, and hence differs from the custom deployment of the
application on physical machines, as in the industrial setting.
Nevertheless, a higher latency between the two machines
would likely even amplify the impact of the first treatment,
leading to results in line with the ones reported in this experi-
ment. Our choice of adopting a virtualised solution was guided
by the need of having a controlled and isolated environment for
the experiment. This decision is supported by the increasing
adoption of virtualisation techniques in industrial settings [1].
Internal validity. After each experimental run the tested
applications were reset to their initial states. Therefore the
history of the experimental runs did not influence the results.
Particular attention was paid to avoid energy measurements
that could have been influenced by prior runs or preconditions’
setup processes. As presented in Section VI, the interaction
effects between the two treatments were analyzed in depth by
carrying out ANOVA and post-hoc analyses on the gathered
data. By using these approaches, the possible internal validity
threat of unknown third factors that could potentially influence
the measurements was reduced as much as possible. A final
possible threat regards the implementation of the load tests.
While the threads for simulating the user interaction with the
system where created to emulate as closely as possible the
real interaction with the system, the hard-coded values used
for the ramp-up time of the threads are, in all real life setting,
of random nature. Also, all the incoming requests of the Qubus
server(s) were launched by the same client, i.e. the machine on
which the JMeter scripts were executed, residing in the same
subnet of the machines where the application was deployed.
Construct validity. While the experiment was not character-
ized by a strict mono-operation or mono-method biases [26],
by analyzing a higher number of releases the results could
have been more generalizable. In fact, only two software
releases of a single software product were considered for our
experiment. A higher number of samples would be therefore
needed in order to accurately generalize the findings to a wider
range of software applications. Furthermore, the selection of
the releases, guided by the developers of the software product,
has to be considered as an additional threat to construct
validity. By considering the interactions between the different
treatments, while their presence were remarkably present in the
data set, the statistical analysis that followed did not violate
the construct validity, as these interactions were carefully
analyzed with post-hoc analyses, such as the partial eta-
squared method. The selection of the UCS as blocking factor
might be considered as a possible threat, as it leads to a
reduction of the power of the ANOVA tests.
External validity. A possible threat to external validity resides
in the low number of samples utilized as measurands in the ex-
periment. This choice was primarily led by the time constraints
under which this research was carried out. As presented in
Section VI, a strong interaction of selection and treatment
was present in the data set, making it difficult to generalize the

results to a wider range of applications. Furthermore, from the
obtained results we observed that the functionality to be tested
deeply influenced the energy consumption evaluation, leading
to an additional interaction between selection and treatment.
Additionally, a minor interaction of setting and treatments
could be present in the experiment due to the low latency times
caused by our virtualization environment. This could lead to a
reduced representativeness of the industrial environment that
was emulated for the experiments. Nevertheless, the impact of
this threat has to be considered as very low, and hence it does
not significantly influence the results. Finally, the results are
bound to the hardware and software instrumentation used to
carry out the load tests. This fact has to be taken into account
when considering a wider range of applications and possible
deployment configurations. Particular attention should be paid
to investigate thoroughly the possible impact of the processor
base frequency, that in our hardware configuration resulted
to be slightly lower than the one specified in the minimum
requirements of the application.

IX. CONCLUSIONS AND FUTURE WORK

This work is motivated by the fast-growing energy con-
sumption of IT. In collaboration with an industrial partner,
KPMG, we investigated how deployment strategies can influ-
ence the energy consumption of a software product, and if
software releases play a role in this evaluation. We measured
and collected data for over 200 simulations of a platform for
governance, risk, and compliance process management via au-
tomated load tests.In addition to the in-depth analysis reported
to the industrial partner, the findings of this research deliver the
following messages, and recommendations, to researchers and
practitioners: (i) the power variation of underlying hardware
might be negligible when optimising energy efficiency at
software level; (ii) utilising a higher number of machines
does not always imply a higher energy consumption of a
software application; (iii) there is no absolute optimal option
for releases and deployment strategies w.r.t. energy efficiency,
as the interaction of these two factors has to be considered;
(iv) the identification of the most recurrent UCS is crucial
to efficiently carry out energy optimisations of a software
product; (v) the collaboration between industry and academia
resulted to be productive for both parties, even if a minor
portion of practitioners manifested low interest/awareness on
software energy efficiency.

As future work we are planning to extend this research
by: (i) analysing a higher number of heterogeneous software
products in order to collect enough statistical data to improve
the generalizability of the experiment, (ii) considering a wider
set of use case scenarios for better investigating its relation
to the deployment strategies, and (iii) identifying and using
open-source products with a publicly available source code
repository (e.g., GitHub) in order to have better control on the
various releases to be considered in the experiment.

REFERENCES

[1] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and
F. Xia. A survey on virtual machine migration and server consolidation

frameworks for cloud data centers. Journal of Network and Computer
Applications, 52:11–25, 2015.

[2] A. S. Arif and W. Stuerzlinger. Analysis of text entry performance
metrics. In Science and Technology for Humanity (TIC-STH), IEEE
Toronto International Conference, pages 100–105, Sept 2009.

[3] C. E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilita.
Libreria internazionale Seeber, 1936.

[4] T. S. Breusch and A. R. Pagan. A simple test for heteroscedasticity and
random coefficient variation. Econometrica: Journal of the Econometric
Society, pages 1287–1294, 1979.

[5] G. Caldiera, V. Basili, D. Rombach, and J. Marciniak. Goal question
metric paradigm. Encyclopedia of Software Engineering, 1:528–532,
1994.

[6] J. Cohen. Eta-squared and partial eta-squared in fixed factor anova
designs. Educational and psychological measurement, 1973.

[7] E. R. Girden. ANOVA: Repeated measures. Number 84 in Quantitive
Applications in the Social Sciences. Sage, 1992.

[8] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for
technology transfer in practice. IEEE software, 23(6):88–95, 2006.

[9] A. Hindle. Green mining: A methodology of relating software change to
power consumption. In Proceedings of the 9th IEEE Working Conference
on Mining Software Repositories, pages 78–87, 2012.

[10] E. A. Jagroep, J. M. van der Werf, S. Brinkkemper, G. Procaccianti,
P. Lago, L. Blom, and R. van Vliet. Software energy profiling:
Comparing releases of a software product. In Proceedings of the 38th
International Conference on Software Engineering Companion, pages
523–532. ACM, 2016.

[11] J. G. Koomey. Outperforming Moore’s law. IEEE Spectrum, 47(3):68–
68, 2010.

[12] KPMG. Qubus: Home, 2017. Online, available at: http://www.
qubussoftware.com; accessed 1 August 2017.

[13] P. Lago and T. Jansen. Creating environmental awareness in service
oriented software engineering. In International conference on service-
oriented computing, pages 181–186. Springer, 2010.

[14] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirovic. Assessing
the impact of service workers on the energy efficiency of progressive
web apps. In Proceedings of the International Conference on Mobile
Software Engineering and Systems, MOBILESoft ’17, Buenos Aires,
Argentina, May, 2017, pages 35–45, 2017.

[15] I. Manotas, L. Pollock, and J. Clause. SEEDS: A software engineer’s
energy-optimization decision support framework. In Proceedings of the
36th International Conference on Software Engineering (ICSE), pages
503–514, 2014.

[16] J. McGrenere. “Bloat”: The objective and subject dimensions. In CHI
’00 Extended Abstracts on Human Factors in Computing Systems, pages
337–338. ACM, 2000.

[17] S. Murugesan and G. R. Gangadharan. Harnessing Green IT: Principles
and Practices. John Wiley & Sons, 2012.

[18] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping
my phone awake? characterizing and detecting no-sleep energy bugs in
smartphone apps. In 10th International Conference on Mobile systems,
applications, and services, pages 267–280. ACM, 2012.

[19] C. Sahin, L. Pollock, and J. Clause. How do code refactorings affect
energy usage? In Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
pages 36:1–36:10, 2014.

[20] F. Shull, J. Singer, and D. I. Sjøberg. Guide to advanced empirical
software engineering, volume 93. Springer, 2008.

[21] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for
cloud computing. In Proceedings of the conference on Power aware
computing and systems, volume 10, pages 1–5, 2008.

[22] J. W. Tukey. Comparing individual means in the analysis of variance.
Biometrics, pages 99–114, 1949.

[23] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet,
and P. Demeester. Trends in worldwide ict electricity consumption from
2007 to 2012. Computer Communications, 50:64–76, 2014.

[24] R. Verdecchia, F. Ricchiuti, A. Hankel, P. Lago, and G. Procaccianti.
Green ict research and challenges. In Advances and New Trends in
Environmental Informatics, pages 37–48. Springer, 2017.

[25] G. Welsh. Yes, There IS a Difference Between Micros and ’Big’
Computers. TPUG News, 1987.

[26] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in Software Engineering. Computer
Science. Springer, 2012.

http://www.qubussoftware.com
http://www.qubussoftware.com

