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ABSTRACT
Background:Numerous methodologies have been used to study
technical debt. Among different data sources, Q&A sites provide an
opportunity to study how users reference and request support on
technical debt. To date only few studies, focusing on narrow aspects,
investigate technical debt through the lens of Stack Overflow.

Aims:We aim at gaining an in-depth understanding on the char-
acteristics of technical debt questions on StackOverflow. In addition,
weassess if identificationstrategiesbasedonmachine learningcanbe
used to automatically identify and classify technical debt questions.

Method:Weuse combinationof automatedandmanual processes
to identify technical debt questions on Stack Overflow. The final set
of 415 questions is analyzed both quantitatively and qualitatively to
study (i) technical debt types, (ii) question length, (iii) perceived ur-
gency, (iv) sentiment, and (v) emerging themes.Natural languagepro-
cessing andmachine learning techniques are used to evaluate if tech-
nical debt questions can be identified and classified automatically.

Results:Architecture debt is the most recurring debt type, fol-
lowed by code and design debt. Most questions displaymild urgency,
with frequency of higher urgency steadily declining as urgency rises.
Question lengthvaries across debt types. Sentiment ismostlyneutral.
29 recurrent themesemerge.Machine learningcanbeused to identify
technical debt questions and binary urgency, but not debt types.

Conclusions: Different patterns emerge from the analysis of
technical debt questions on Stack Overflow. The results provide
further insights on the phenomenon, and support the adoption of
a more comprehensive strategy to identify technical debt questions.

KEYWORDS
Technical Debt, Stack Overflow, Machine Learning

ACMReference Format:
Nicholas Kozanidis, Roberto Verdecchia, and Emitzá Guzmán. 2022. Ask-
ing about Technical Debt: Characteristics and Automatic Identification of
Technical Debt Questions on Stack Overflow. In Proceedings of International
Symposium on Empirical Software Engineering and Measurement (ESEM ’22).
ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

∗The first two authors contributed equally to this work.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
ESEM ’22, September 19–23, 2018, Helsinki, Finland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
During the past years, a plethora of different research methods and
data sources have been used to study Technical Debt (TD). Among
these studies, quantitative investigations relying on source code
analysis were frequently used to identify and manage TD [7, 15, 21,
35, 41, 61]. Researchers also used qualitative approaches, such as sur-
veys, focus groups, and grounded theory, to acquire knowledge from
thosedirectly experiencingTDandgain insights that couldbemissed
by utilizing exclusively quantitative approaches [25, 32, 34, 49, 59].
Among the various data sources used, a vast pool of data which may
contain information useful to further understand TD remains almost
uncharted.Withover 23Mquestions asked, 18Mregisteredusers, and
11Mvisits perday1, StackOverflow(SO) ranks top inall thesemetrics
amongthepopularumbrellaofStackExchangeQuestionandAnswer
(Q&A) sites. Possibly, SO is to date largest and most popular Q&A
site where users ask questions, share knowledge, and discuss topics
related to computer programming. Despite its large popularity, rela-
tively few research has investigated TD from the point of view of SO.

In this study, we aim at understanding the nature of questions
regarding technical debt posted on Stack Overflow, which from now
on are referred to as Technical Debt Questions (TDQs). Specifically,
we aim at characterizing the TD phenomenon through the lens of SO
by studying different characteristics of TDQs, such asTD types, ques-
tion length, urgency, sentiments, and considered themes. In addition,
sincewe have to rely on a keyword-based search followed bymanual
analysis to identify TDQs, we also investigate the potential of pre-
dictive models for automatically identifying and categorizing TDQs.

With regards to scientific progress, our study constitutes a first
systematic step towards understanding how users reference and
request support on TD online, by providing a combination of quan-
titative and qualitative empirical results, a ready-to-be-used labeled
dataset, and predictivemodels to build on our findings. Furthermore,
our study supports practitioners in understanding how Stack Over-
flow is used to ask TDQs, and access structured knowledge which
could not be gained by considering their personal experience alone.

The main contributions of this study are the following:
• An in-depth analysis of technical debt questions on Stack
Overflow, including discussed TD types, question length, ur-
gency, sentiments, and themes considered;

• A fine-grained dataset of labelled technical debt Stack Over-
flow questions;

• Predictive models to automatically detect and classify tech-
nical debt questions on Stack Overflow.

The replication package of this study is available at the following
online repository: https://github.com/TD-SO/rep-pkg.

1https://stackexchange.com/sites#traffic. Accessed 28th April 2022.
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Figure 1: Research process overview.

2 STUDYDESIGNANDEXECUTION
In this section,wedocument thedesignandexecutionof this study, in
terms of research goal (Section 2.1), research questions (Section 2.2),
and research process followed (Section 2.3).

2.1 Research Goal
The goal of this research is twofold. On one hand, we aim to broaden
the body of knowledge of TD by studying the characteristics of SO
questions posed on the topic. On the other hand, we aim to eval-
uate if SO questions related to TD can be identified and classified
automatically via predictive models. More formally, by utilizing the
Goal-Question-Metric approach [8], the objective of this research
can be formulated as follows:
Analyze the content of questions
For the purpose of characterization and automatic classification
With respect to technical debt
From the viewpoint of software engineering researchers
In the context of Stack Overflow.

2.2 Research Questions
Based on our goal, we can derive the following two research ques-
tions (RQs), which are at the foundation of our study:

RQ1 : What are the characteristics of technical debt questions on Stack
Overflow?

With𝑅𝑄1, we aimat gaining a better understandingof theTDphe-
nomenon, by studying the topic through the lens of questions posed
on the SO platform. Different aspects, namely TD types, question
length, urgency, sentiments, and emerging themes are considered
to answer this RQ (as further detailed in Section 2.3).

RQ2 : Can technical debt questions on Stack Overflow be automati-
cally identified and classified via predictive models?

With 𝑅𝑄2, we aim to evaluate if TDQs can be automatically iden-
tified and classified via predictive models. Positively answering this
RQ allows to strive away from trivial keyword-based SO post search
strategies (such as the one used in the first phase of this study, see
Section 2.3.1), and enables to identify posts related to TD that do not
explicitly mention the term “technical debt” or similar keywords.
Also, it reduces the manual analysis entailed in TD categorization.

2.3 Research Process
An overview of the research process we follow to answer our RQs
is depicted in Figure 1, and is further detailed in the reminder of this
section.Our researchprocess comprisesfivephases. In thefirst phase
(Phase 1, Section 2.3.1), we identify a preliminary set of TDQs via an
automated search process. Subsequently, we refine the TDQ set via a
manualprocess (Phase2, Section2.3.2).ThefinalTDQset is thenman-
uallycodedaccording todifferentcharacteristics related toTD(Phase
3, Section 2.3.3). In the last two phases, we analyze the coded data to
answer𝑅𝑄1 (Phase 4a, Section 2.3.4), and execute a predictive model
training and assessment to answer 𝑅𝑄2 (Phase 4b, Section 2.3.4).

2.3.1 Phase 1: Automated Question Identification. In our first
research phase, we identify a preliminary TDQ set by executing an
automated query on the Stack Exchange Data Dump2. Specifically,
we select for inclusion questions posted on SO which contain in
their title, body, and/or tags, at least one of the following keywords:
“technical debt”, “technical debts”, “technical-debt”,
“tech debt”, “tech-debt”, and “techdebt”. To enrich our
automated selection, we include in the preliminary TDQ set also the
questions which contain one or more of the aforementioned key-
words in at least one of their answers. The automated selection phase
terminates with the identification of a preliminary set of 824 TDQs.

2.3.2 Phase 2: ManualQuestion Identification. In order to ensure
the quality of TDQs identified automatically, in this second
phase we execute a manual scrutiny of the preliminary TDQ set.
Specifically, two researchers manually inspect a distinct subsample
of 412 TDQs each (824 in total), and evaluate the content of each
question against the 16162 Technical Debt definition [6]. If a
question regards TD (as defined in the 16162 TD definition), then
it is included in our final TDQ dataset, otherwise it is excluded.
Questions concerning the troubleshooting of tools implementing
technical debt analyses, e.g., SonarQube3 installation issues, are
excluded, as these questions concern solely technical issues related
to tools, and do not contribute to answer our RQs.

The inter-rater reliability of this process is assessed by
means of Cohen’s Kappa [18] on a set of 50 questions sampled
uniformly at random, showcasing a strong agreement among raters
(kappa=0.83). The manual identification phase terminates with the

2https://archive.org/details/stackexchange. Accessed 21st April 2022.
3https://www.sonarqube.org. Accessed 25th April 2022.

https://archive.org/details/stackexchange
https://www.sonarqube.org


Asking about Technical Debt ESEM ’22, September 19–23, 2018, Helsinki, Finland

identification of approximately half of preliminary set of questions
as TD-related (415/824). These 415 TDQs constitute the final TDQ
set used in this investigation4. Out of the 409 questions not related
to TD, a notable portion (174/409) regards technical troubleshooting
questions of the SonarQube tool (see Figure 9).

2.3.3 Phase 3: Manual Question Coding. In this phase, the final
TDQ set is qualitatively analyzed via two coding strategies, which
are used to derive the TD type and perceived urgency of the questions.
Regarding the coding of TD types, we use provisional coding [51] to
map each TDQ to one of the ten TD types presented in the TD type
taxonomy presented by Li et al. [37]. Regarding perceived urgency,
we use magnitude coding [51] to classify the urgency of TDQs as
either “none”, “very mild”, “mild”, “moderate”, “severe”, or “very
severe”. As for the manual identification of TDQs (cf. Section 2.3.2),
two researchers code a distinct subsample of 206 TDQs each. A
coding guide, made available in the replication package, is used
to ensure both researchers share a common interpretation of the TD
types and perceived urgencies.5 Inter-rater reliability is calculated
bymeans of Cohen’s kappa [18] on a sample of 50 TDQs sampled uni-
formly at random. The inter-rater reliability is strong for TD types
(kappa=0.80) and substantial for the perceived urgency (kappa=0.71).

2.3.4 Phase 4a: Data Analysis. To answer 𝑅𝑄1, we further analyze
the coded data both by quantitative and qualitative means. From a
quantitative standpoint, we analyze our TDQs to understand the
recurrence of TD types, the perceived urgencies, and the distribution
of urgencies across TD types. In addition, we consider the number
of words used in each question to investigate if TD types influence
TDQs length. To evaluate the affective states expressed in the TDQs,
we analyze the questions via sentiment analysis [40]. The sentiment
analysis is conducted by using the VADER (Valence Aware Dictio-
nary and sEntiment Reasoner) tool6.We useVADER as it is a state-of-
the-art sentiment analysis tool, andhasahighaccuracywhenapplied
in the context of SO [38]. The sentiment expressed in the TDQs body
is analyzed both in terms of relative sentiment components (nega-
tive, neutral, positive) and compound sentiment scores [30]. For this
computation, we use the out of the box configuration of VADER.

Regarding the qualitative analysis conducted to answer 𝑅𝑄1, we
further codify the content of our 415 TDQs. The goal of this addi-
tional codingprocess is to gain further insights into the content of the
TDQs, in terms of considered themes related to TD. A natural coding
strategy to achieve this goal would be to use provisional coding [51]
by consideringas “start list” the sub-categories ofTD typespresented
in the taxonomy of Li et al. [37]. Nevertheless, a preliminary data
analysis shows that the sub-categories of Li et al. [37] are only seldom
mentioned in ourTDQs.7Asprovisional coding is not a viable option,
we analyze the TDQs via open and subsequent focused coding [51],
leading to the identification of the most salient themes related to TD
emerging in our TDQ corpus. The coding process is conducted by a
single researcherwith six years of experience inTD investigation. To
guarantee the quality of the coding process, the final coded data is ex-
aminedbyasecondresearcher.Potential inaccuraciesare jointly scru-
tinized and revised among the two researchers involved in this phase.

4Except for the binary TDQs classifier (see Section 2.3.5), which uses the original 824 set.
5For concrete coding examples ofTD types, urgency, and theme refer to the codingguide.
6https://github.com/cjhutto/vaderSentiment. Accessed 21 April 2022.
7A further consideration on this research-related finding is discussed in Section 4.

2.3.5 Phase 4b: Model Training and Assessment. To answer 𝑅𝑄2 we
develop three types of predictive models8: (i) a binary classifier for
detecting TDQs, (ii) a multi-class classifier for detecting the type of
technical debt in TDQs, (iii) a multi-class classifier for categorizing
the urgency of TDQs according to the six-level scale presented in Sec-
tion 2.3.2, (iv) a binary classifier for categorizing TDQs as either non-
urgent (grouping together “none”, “very mild”, “mild” urgency) or
urgent (grouping together “moderate”, “severe”, and “very severe” ur-
gency).We develop themodels using both title and body of the TDQs.

We train and test the binary classifier detecting TDQs with the
original SO questions collected in Phase 1. This dataset consists
of 824 SO questions (see Section 2.3.1). We train and test the rest of
the classifiers with only the questions that were manually labelled
as TDQs. This latter dataset consists of 415 TDQs (see Section 2.3.2).

To prepare the text for the classifiers we tokenize all text, convert
it into lower case, extract bigrams, remove stopwords and all punc-
tuation marks. We also remove any SO related HTML or markdown
elements and replace any appearances of source code with a code
tag, since these do not contain information of lexical or semantic
importance. Finally, we stem the text, eliminating inflectional forms
of words. To avoid over-fitting the models during the training phase
we remove the mention of "technical debt", technical debt related
keywords (see Section 2.3.1) and "SonarQube" from the text.

To train each classifier we convert the pre-processed single
tokens and bigrams into a vector space model using tf-idf [47] as
a weighting scheme. Besides the vector weights, we input a set of
additional features into the model:

• Distinct number of bigrams: Distinct number of bigrams
that we find to be highly correlated with posts discussing TD.
These bigrams are found within the labelled data set and are
scored using the built-in function of the nltk9 collocations
library;

• Distinct number of unigrams: Unigrams acquired similarly
to the bigrams.

• Popularity score: The amount of upvotes minus the amount
of downvotes a post has on SO;

• Comment count: The number of comments of a SO post;
• Tf-idf score: The summation of tf-idf scores of each term
within the body of each post.

All predictive models are built using the scikit-learn10 library
in Python. We train and test the classifiers with a 10-fold cross
validation on the previously described labelled dataset. We report
our results using standard metrics for machine learning models:
precision, recall and F1 score.

We use random forest (RF) models for this phase as an initial
empirical evaluation including other machine learning models
(SVM, Multinomial Naive Bayes, Logistic Regression and Decision
Trees), yielded the best results for these.

To handle the data imbalance in our multi-class classifiers, we
use SMOTE [16] as a balancing technique. SMOTE oversamples
minority classes by creating synthetic data points. During each fold
of the cross validation, the minority classes of the training dataset
are oversampled using SMOTE.

8We use the terms models and classifiers interchangeably in this work.
9https://www.nltk.org. Accessed 27th April 2022.
10https://scikit-learn.org. Accessed 27th April 2022.
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3 RESULTS
In this section, we present the results collected to answer our RQs.
The results gathered for 𝑅𝑄1 are documented in Section 3.1, while
Section 3.2 is dedicated to the results of 𝑅𝑄2. The interpretation
and discussion of the results are presented in Section 4.

3.1 Results RQ1: Characteristics of
Technical Debt Questions on Stack Overflow

The results of 𝑅𝑄1, dedicated to the characterization of TDQs, are
structured as follows. Section 3.1.1 documents the distribution of
TDQs across TD types. Section 3.1.2 discusses the lenght of TDQs.
The perceived urgency of questions is reported in Section 3.1.3,
while the sentiment in Section 3.1.4. Finally, in Section 3.1.5 we
detail the themes recurring in the TDQs.

3.1.1 TDQsTechnicalDebtTypes. Anoverviewof thedistributionof
TDQsamongTD types, according to theTD taxonomyof Li et al. [37],
is depicted in Figure 2.ArchitectureTD is themost recurringTD type
(96/415), followedbyCodeTD(83/415)andDesignTD(80/415).Other
TD types are less recurring, whileDefect TD [37] is nevermentioned.
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Figure 2: Technical debt types considered across questions.

3.1.2 TDQs Length. The distribution of TDQs length, grouped by
TD types, is documented in Figure 3, while Table 1 shows the related
summary statistics. From the values collected we observe that most
TD types display comparable question lengths, with ranges which
generally lay between 100 and 200 words per question. Median
lengths are also comparable across TD types, with median values
within the range of 130 and 147 words, with the exception of Design
and Test TD, which showcase longer median lengths, and Docu-
mentation TD, which is characterized by a shorter median length.

3.1.3 TDQs Urgency. The distribution of perceived urgencies
across TDQs is documented in Figure 4. In most cases questions
present some kind of urgency, with only 29/415 questions displaying
none. In most of the cases however, such urgency is only of very
mild (154/415) or mild (100/415) nature. Overall, the frequency of
questions reporting a higher urgency results to steadily decline
as urgency rises, with only a minor portion of questions reporting
very severe urgency (13/415).

Table 1: Summary statistics of question length (in number
of words) across technical debt types.

TD Type Min. Max. Median 𝜎

Architecture 34 679 147 129.9
Build 35 297 132 55.73
Code 30 848 143 146.29
Design 42 774 174 160.42
Documentation 30 323 98 77.44
Infrastructure 42 351 136 74.79
Requirements 20 652 130 137.38
Test 44 1554 178 249.07
Versioning 55 339 141 68.46
Average 36.88 646.33 142.11 122.164

𝜎 : Standard deviation
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Figure 3: Question length (in number of words) across
technical debt types.11
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To gain further insights into the perceived urgency expressed in
the TDQs, we analyze how urgency levels are distributed across TD
types (see Figure 5). By considering relative values, we observe that
Test TD is the TD type characterized by the highest urgency, with
9/35 questions expressing severe to very severe urgency. Code and
Versioning TD are instead the types reporting the relatively highest
moderate urgency across TD types, with Code TD reporting 21/83
11For the sake of readability, outlier values are not represented in Figure 3.
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Figure 5: Question urgency distribution per technical debt type across questions.

moderate urgency questions, and Versioning TD 6/23. Very mild
urgency instead results to be more recurrent, in relative terms, in
questions regarding Infrastructure TD (13/28), Documentation TD
(10/17), and Build TD (6/10). Questions with no urgency are instead
less recurrent across all TD types, reflecting the overall urgency
trend already observed in Figure 4.

3.1.4 TDQs Sentiment. Regarding the sentiment expressed
in TDQs, an overview of the distribution of sentiment scores
across negative, neutral, and positive sentiment components is
documented in Figure 6. All TDQs of our corpus showcase a very
noticeable neutral sentiment, with a median neutral sentiment
score equal to 0.87. Positive affective states are instead expressed
to a much lower extent in the TDQs (median sentiment score =
0.07), and negative sentiment even less (median sentiment score
= 0.04). By considering instead the compound sentiment expressed
in the TDQs (see Figure 7), we can observe that questions leaning
towards an overall more positive sentiment are more recurrent,
with a median compound sentiment value of 0.61.
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3.1.5 TDQs Themes. As final characteristic considered to answer
𝑅𝑄1, we investigate the most salient themes related to TD which
emerge from our TDQ corpus (see also Section 2.3.4). Figure 8
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Compound Sentiment Score

Figure 7: Compound sentiment distribution across questions.

shows an overview of all treated themes, while Figure 9 presents the
recurrence of the themes (right-most column), and their distribution
across TD types (central column). Due to space limitations, themes
which are only seldom mentioned in our TDQs corpus are not
depicted in Figure 9 and are not further discussed in the reminder of
this section. For completeness, such themes are reverse engineering
(4/415), dead code (4/415), deployment (4/415), lack of documentation
(4/415),missing tests (4/415), code churn (3/415), unfit build processes
(3/415), and self-admitted TD (2/415).

Figure 8: Themes considered in the questions.

The overall most recurrent TD theme is TD resolution (68/415),
which is associated to questions asking, at various levels of
abstraction, how to resolve TD items. TD resolution is mentioned
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Figure 9: Distribution of technical debt types and themes considered in the questions.

to various extents in TDQs regarding almost every TD type, except
in Build and Test TD questions.

The secondmost recurrent theme is TDmanagement (64/415), i.e.,
questions regarding how to properly control and deal with TD. TD
management is the most recurring in questions related to Require-
ments TD (22/43), followed by Architecture (17/96) and Code TD
(11/83). TD items related to databases are also frequently mentioned
(42/415), and mostly occur in questions regarding Architecture TD
(25/96), followed by Code (7/83) and Design TD (7/80).

Dependencies of software components (at various levels of
abstraction), and their relation toTD, are discussed amongnumerous
TD types, such as Architecture (15/96), Design (10/80), Test (5/35),
Code (4/83), and Build TD (3/10). Coding standards (41/415), i.e.,
conventions and guidelines used to improve software quality, are
instead most mentioned in questions regarding Code (20/83) and
Design TD (15/80), followed by few questions on Test (3/35) and
Requirements TD (2/43).

Debugging (35/415), i.e., questions regarding technical issues
related to the resolution of TD items, are most frequent in Code
TD questions (25/83), and appear only to a much lower extent
in questions regarding other TD types, e.g., Design (5/80) and
Test TD (4/35). TD items related to software patterns (35/415)
are instead almost exclusively mentioned in questions regarding
Architecture (27/96) and Design TD (7/80).

TDQs considering software frameworks (35/415), e.g., Spring
Boot12 and .NET13, are most frequently mentioned in the context of
Architecture TD (14/96), while being quite frequent in Infrastructure
TD questions (10/28). In contrast, TDQs considering software
development methodologies (28/415), e.g., Agile and test driven
development, appear almost exclusively in questions regarding
Requirements (16/43) and Test TD (9/35).

12https://spring.io/projects/spring-boot. Accessed 22nd April 2022.
13https://dotnet.microsoft.com/en-us. Accessed 22nd April 2022

Sub-optimal design (26/415) is mostly referenced in the context of
Architecture TD (20/96), while the documentation of TD items (TD
documentation, 23/415) is most occurring in Requirements (10/43),
Infrastructure (6/28), and Documentation TD (6/17) questions.14

Legacy code (21/415) is mentioned most frequently in the context
of Architecture (7/96), Code (5/83), and Test TD (5/35). TD items re-
lated to outdated components (20/415) instead occur most frequently
in questions on Infrastructure (6/28) and Architecture TD (5/96).

Softwaremetrics (19/415) are discussed in questions regarding
Requirements (8/43) and Infrastructure TD (7/28), while TD items
related to interfaces (14/415) are almost exclusively mentioned in
Architecture (7/96) and Design TD questions (5/80).

Some of the themes result to be exclusive only to certain TD
types. For example, TD incurred due to upgrading issues (7/415),
utilizing multiple versions of a product (7/415), or using multiple
concurrent development branches (branching hell, 11/415), are all
mentioned exclusively in the context of Versioning TD.

Similarly, TD related tomocking practices (8/415), automation of
development processes (12/415), testing complexity (10/415), and code
coverage (6/415) is mentionedmostly if not exclusively in Test TDQs.

TD arising in the context of logging (11/145) is most mentioned in
questions related to Infrastructure TD (6/28). In contrast, TD related
towarnings (14/415) is referenced to small extents in different TD
types, e.g., Code (3/83), Test (3/35), and Build TD (3/10).

Some rather infrequent themes, namely TD regarding code
duplication (13/415), concurrency (8/415), antipatterns (9/415), or
using solutions developed in-house instead of already available ones
(in-house solutions, 6/415), mostly occur in Design TD questions.

Finally, the communication of concepts related to TD among
colleagues and/or stakeholders of a software product (TD

14“DocumentationTD”regards insufficient, incomplete, oroutdateddocumentation [37].
“TD documentation” instead refers to the documentation of TD.

https://spring.io/projects/spring-boot
https://dotnet.microsoft.com/en-us
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communication, 12/415) is a theme that emerges exclusively in
questions regarding Requirements TD (12/43).

3.2 Results RQ2: Automatic Classification of
Technical Debt Questions on Stack Overflow

The binary classifier is able to detect TDQs and non-TDQs with
a very good precision and recall, with an average of 0.81 and 0.80,
respectively (see Table 2).

Table 2: Results for binary classifier detecting Technical Debt.

Precision Recall F1 score
Non-TDR 0.80 0.76 0.78
TDR 0.81 0.85 0.83
Average 0.81 0.80 0.80

Table 3: Results formulti-class classifier categorizing types
of Technical Debt.

TD Type Precision Recall F1 score
Requirements 0.43 0.53 0.47
Infrastructure 0.42 0.55 0.48
Code 0.28 0.23 0.25
Testing 0.58 0.75 0.66
Architecture 0.54 0.33 0.41
Design 0.36 0.36 0.36
Versioning 0.49 0.5 0.49
Documentation 0.65 0.57 0.61
Build 0.69 0.68 0.68
Average 0.49 0.50 0.49

Results are less promising for the multi-class classifiers
categorizing TD types. The multi-class classifier for TD types has
an average precision of 0.49 and recall of 0.50 (see Table 3). This
classifier performs best when classifying the Test (precision=0.58,
recall=0.75) and Build (precision=0.69, recall=0.68) TD types. The
least performing types are Design (precision=0.36, recall=0.36) and
Code TD (precision=0.28, recall=0.23).

The urgency multi-class classifier has an average precision and
recall of 0.64 for both metrics (see Table 4). When training a model
that categorizes the TDR posts into urgent and non-urgent, we
obtain an average precision and recall of 0.84 (see Table 5).

Table 4: Results formulti-class classifier categorizing types
of urgency in Technical Debt related questions.

Urgency (six-level scale) Precision Recall F1 score
None 0.82 0.7 0.75
Very mild 0.41 0.35 0.38
Mild 0.6 0.5 0.55
Moderate 0.5 0.73 0.59
Severe 0.64 0.71 0.68
Very severe 0.88 0.82 0.85
Average 0.64 0.64 0.63

Table 5: Results for binary classifier categorizing urgency in
Technical Debt related questions.

Urgency (binary) Precision Recall F1 score
Non-urgent 0.85 0.81 0.83
Urgent 0.82 0.87 0.85
Average 0.84 0.84 0.84

4 DISCUSSION
Almost half of the questions collected via our automated search
query (see Section 2.3.2) are manually identified as non-TD-related
(409/824), with a notable portion concerning the SonarQube tool
(174/824). Thehighoccurrenceofnon-TD-relatedquestions ismostly
caused by irrelevant mentions of the term “technical debt” (fre-
quentlyoccurring in low-ratedanswers), and thepresenceof the term
in code/log snippets. The high number of questions related to Sonar-
Qube troubleshooting (see Section 2.3.2) is instead attributable to the
potentially high popularity of the tool to identify code-related TD.

Regarding the characteristics of TDQs (𝑅𝑄1), a first consideration
can be made on TD types (see Section 3.1.1). From the gathered re-
sults, TD types appearwith different frequencies in SOquestions (see
Figure 2). Architecture, Code, and Design TD are the most recurrent
TD types, while all other types are mentioned approximately at least
half less frequently.Overall,weexpect theobserved recurrenceofTD
types to reflect to a large extent the frequencywithwhich practition-
ers face the TD types in practice. An observation nevertheless needs
to bemade regarding the high occurrence of Architecture TD, which
we conjecture is in part influenced by the keyword-based strategy
used to automatically identify TDQs (see Section 2.3.1). In fact, di-
rectly referencing the term“technical debt” inaTDQsmight require a
level of abstraction and reflection on programming/design processes
which is more common at the architectural level, leading potentially
to a higher appearance of Architecture TD in our TDQ corpus.

By considering systematic literature review of Li et al. [37], we
note remarkable differences in the recurrence of TD types reported
in such study and our results. For example, Requirements TD is the
fourth most recurring TD type in our study, while it is among the
least mentioned ones in the literature. We reason that such discrep-
ancy highlights potential differences between academic research
and industrial practice, the latter of which might be more closely
represented in our study. This conjecture is further corroborated
by the low occurrence in our TDQ corpus of the TD sub-categories
elicited by Li et al. [37] (see also Section 2.3.4), indicating that
different topics are more prominent in the literature and SO.

Key finding 1: Architecture, Code, and Design TD are the
most referenced TD types on Stack Overflow. Other TD types
are also referenced, but at least half less frequently. A notable
difference in TD type recurrence w.r.t. the academic body of
literature is observed.

Regarding the length of the TDQs (see Section 3.1.2), most TD
types are characterized by comparable question length (see Table 1).
Only Design and Test TD present slighter longer median questions.

Upon inspection of the Design TDQs, we conjecture that the
slightly longer Design TD question length might be due to the char-
acteristic needof presentingbothhigher level concepts, typical of the
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architectural level, and lower level ones, typical of the code level one.
Similarly, regarding Test TD, we attribute the longer length to the re-
current need inTest TDquestions of including both details regarding
the test environment considered and code snippets used to exemplify
the questions. By inspecting the Documentation TD questions in-
stead, we observe that most questions are of general, opinion-based,
and open-ended nature (e.g. “What are the crucial key items in record-
ing technical debt?”15). Therefore, such questions do not require a
high number of words to present specifics, details, or code snippets,
leading to shorter questions. By considering the related literature,we
note that all TD types showcase a medium question length (between
90 and200words), reflecting the common lengthof SOquestions [14].

Key finding 2: All TD types reflect the common length of
Stack Overflow questions. Design and Test TD are character-
ized by slightly longer questions w.r.t. the other types, while
documentation TD by slightly shorter ones.

From the recorded levels of perceived urgency (see Section 3.1.3),
the vast majority of TDQs display some degree of urgency, mostly
being of very mild nature. The frequency of higher urgency ques-
tions steadily declines as urgency rises (see also Figure 3.1.3). On one
hand, the observed distributionmight partially reflect the commonly
experienced urgency of TD items in practice. On the other hand, the
distributionmightbepartially influencedby theverynatureof theSO
platform.Most questions display amild degree of urgency,which jus-
tifies the effort spent in posting the questions on SO. Higher urgency
questions instead are less frequent, potentially due to the asynchro-
nous nature of SO, the slightly unpredictable quality of the answers,
and difficulties related to comprehensively report complex questions
in a time-efficient manner. All these aspects may lead higher ur-
gency TD questions to be discussed in other venues (e.g, face to face
meetings with other software developer colleagues), and not on SO.

Regarding the relative urgency across TD types (see Figure 5),
Test TD presents most frequently high urgency questions, followed
by Code and Versioning TD. By inspecting the high urgency
questions of these types, we note that often the questions regard
TD items that are currently hindering, to a large extent, normal
development activities. We infer that such types of TD items more
frequently occur in Test, Code and Versioning TD than for other TD
types (e.g., Architecture or Requirements TD), which would justify
the higher urgency of Test, Code and Versioning TD questions.

Key finding 3: Most TD questions display some degree of
urgency. Frequency of higher urgency questions steadily
declines as urgency rises. Test TD questions display the
highest relative urgency, followed byCode andVersioning TD.

By considering the sentiment expressed in the questions (see
Section 3.1.4), we note that most questions display primarily a
neutral sentiment (see also Figure 6). While TD concepts might
be intuitively associated to a potentially higher negative sentiment,
given the technical nature of the Q&A platform considered, we
deem this finding unsurprising. More interestingly, by considering
the compound sentiment expressed in the questions (Figure 6), we

15https://stackoverflow.com/questions/3902389/what-are-the-crucial-key-items-in-
recording-technical-debt. Accessed 26th April 2022.

observe that questions often tend to express an overall more positive
than negative sentiment. Upon manual inspection of the questions
with a higher compound sentiment, we conclude that this finding
is not due to the sentiment expressed while discussing TD per se.
In fact, the positive sentiment is often expressed in portions of the
question body, commonly located towards the end of the questions,
that users utilize to express their gratitude for the answers they
received or expect to receive in the future. Therefore, we conjecture
that the overall sentiment expressed in TD questions is generally
of neutral nature, with positive sentiments driven primarily by the
politeness utilized by users to pose questions.

Key finding 4: The sentiment expressed in TD questions is
primarily of neutral nature, with slightly positive sentiments
driven primarily by the politeness used to pose the questions.

The last characteristic we consider to answer 𝑅𝑄1 are the salient
themes considered in our TDQ corpus (see Section 3.1.5). From the
collected results we can observe that the 29 recurrent themes (see
also Figure 9) are characterized by different levels of granularity,
ranging from topics of general nature, e.g., TD resolution, and TD
management, to lower-level themes, e.g., concurrency andwarnings.

TD resolution and TDmanagement are themes mentioned across
all TD types, and are the most recurring themes overall. Given the
high level of abstraction such themes entail, we deem their high
recurrence, and mapping to all TD types, as rather unsurprising. In-
stead, the high occurrence of the software patterns, suboptimal design,
and databases themes results to be primarily driven by questions re-
gardingArchitecture TD,which is themost frequently appearingTD
type in our TDQs corpus. By comparing our findingswith the related
literature which also utilizes SO as data source (see also Section 6),
we note that databases are also among the most recurrent indicators
used in TD identification processes [27], further supporting the
high occurrence in our data of this rather specific theme.

Regarding the distribution of themes across TD types, we deem
that the distribution reflects what could be intuitively expected.
For example, dependencies among software components are mostly
referenced at a high and medium levels of abstraction, i.e., in
questions related to Architecture and Design TD. In contrast, coding
standards appear only at a medium or low levels of abstraction,
i.e., when discussing Design and Code TD. Similarly, the theme
frameworks is mostly associated to the TD types where intuitively
software frameworks might be discussed the most, namely
Architecture and Infrastructure TD.

While most themes are supported, to various extents, by
questions belonging to different TD types, we also notice that some
themes are almost if not exclusively characteristic of specific TD
types. For example, branching hell, upgrading issues, and TD due to
utilizingmultiple versions, are all themes exclusive to Versioning TD.
Similarly, Test TD distinguishes itself from the other TD types by
being the only one presenting the themes of code coverage, testing
complexity, and most occurrences ofmocking. By adopting a more
encompassing search strategy (e.g., based on our 𝑅𝑄2 findings), it
might be possible to further characterize TD types via the analysis of
SO, e.g., by identifying the TD items characteristic of each TD type.

As a separate observation, software development methodologies,
which might be more discussed on Q&A sites dedicated to the

https://stackoverflow.com/questions/3902389/what-are-the-crucial-key-items-in-recording-technical-debt
https://stackoverflow.com/questions/3902389/what-are-the-crucial-key-items-in-recording-technical-debt
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software development life cycle (e.g., the Software Engineering
Stack Exchange16) than coding Q&A sites such as SO, appears
in our results among the 10 most frequent themes. From a further
inspection of the TDQs related to this theme, we note that most
of these questions regard the integration of TD management
practices into software development methodologies, with test
driven development being often mentioned.

Finally, among TDQs themes, we also observed the presence
of TD communication, i.e., questions regarding the communication
of concepts related to TD. To the best of our knowledge, this topic is
only marginally investigated in academic literature (e.g., in a theory
on architecture debt Verdecchia et al.mention “communication” as a
category [59]). Nevertheless, by following a reasoning similar to our
discussion on software development methodologies, the presence of
such topic also on SO, rather than more fitting platforms, could indi-
cate that TD communication is a thematic which is morewidespread
in practice than what the related academic literature could suggest.

Key finding 5: 29 salient themes emerge from the questions.
TD resolution and TD management are the most recurring
themes, potentially due to their encompassing nature. Most
themes are distributed across TD types, while a minor portion
are characteristic to specific TD types.

Regarding 𝑅𝑄2, although the manual analysis of SO posts is a
useful technique for our study, automated approaches are needed
for the analysis of TD in SO questions. This need is motivated by the
large number of questions posted daily on SO and the high presence
of non-technical debt related questions (see Section 2.3.2). In this
respect, results answering 𝑅𝑄2 are encouraging. TDQs can be
filtered with an F1 score of 0.83. Similarly, the binary categorization
of the urgency of the TDQs (urgent, non-urgent) has an F1 score of
0.84. Our results for themulti-classmodels are less encouraging. The
categorization into the nine different TD types have an average F1
score of 0.49, whereas the categorization of urgency into a six-level
scale have an average F1 score of 0.63. We believe that a larger la-
belled dataset could allow for the training ofmulti-classmodels with
better accuracy. It is important to note that we avoid the over-fitting
of the models by removing all technical-debt related keywords that
are used for the collection of the original training and test set.

Key finding 6: Predictive models are able to detect and
classify with high precision and recall TD questions and their
binary urgency, but not TD types and six-level urgency.

5 THREATS TOVALIDITY
Despite our best efforts, the results presented in this study may
be affected by validity threats. By following the classification of
Runeson et al. [50], we consider four aspects to discuss the potential
threats of this study and the related mitigation strategies adopted.

5.1 Construct Validity
Regarding the extent to which our operational measures are
appropriate to answer our RQs. To answer 𝑅𝑄1, five qualitative and
quantitative TDQs characteristics of different nature are considered
16https://softwareengineering.stackexchange.com. Accessed 27th April 2022.

(see Section 2.3.3 and Section 2.3.4). The selection of characteristics
was guided by the aspects of TDQwe deemed most relevant in the
context of TD. We do not expect such selection to majorly hinder
our answer to 𝑅𝑄1. A related threat lies in the selection of the TD
types used for the provisional coding phase (see Section 2.3.3).
To mitigate potential threats, we use the well-established and
widely-adopted taxonomy of TD types presented by Li et al. [37]
for the provisional coding. A similar threat regards the adoption
of a six-level urgency scale to rank the perceived urgency of TDQs.
From a preliminary investigation, the six-level granularity proved
to be intuitive yet satisfactorily expressive, and we not deem that
adopting such scale considerably influenced our answer to 𝑅𝑄1.
Regarding 𝑅𝑄2, we used de facto standard metrics to evaluate our
classifiers (namely precision, recall, and F1 score), which should
nullify potential construct threats in answering 𝑅𝑄2.

5.2 Internal Validity
Regarding the extent to which the observed results are due to the
“treatment” and not to other factors. A threat of this category lies
in the design of the automated query used to identify TDQs in
Phase 1 (see Section 2.3.1). To mitigate potential threats related
to the query design, we ensure to (i) include various synonyms of
TD, (ii) consider not only the body of questions, but also their title,
tags, and answers, and (iii) manually scrutinize all automated query
results (see Section 2.3.2). Another threat to internal validity in our
study is due to the manual coding steps entailed by Phase 2, Phase 3,
and Phase 4a. To mitigate this threat we (i) use a coding guide, (ii)
discuss coding discrepancies among researchers till a consensus
is reached, (iii) assess inter-rater reliability of Phases 2-3, and (iv)
conduct an examination of the coded data produced in Phase 4a.

5.3 External Validity
Regarding the extent to which our results are generalizable.
In order to mitigate potential threats to external validity, the
automated query used in Phase 1 was purposely designed to
be as encompassing as possible, while leading to a preliminary
question set which is with high probability relevant for our study.
Nevertheless, our results may not be representative of the entirety
of questions related to TD present on SO. In fact, our study does not
include potential questions related to TDwhich do not contain the
keyword “technical debt” (or variations thereof, see Section 2.3.1) in
their title, body, tags, or answers. This threat may affect our results,
and can be mitigated in future research by adopting other search
strategies, e.g., the one modeled in this study to answer 𝑅𝑄2.

5.4 Reliability
Regarding the extent to which our observations can be reproduced
by other researchers. To ensure reliability of our results, we make
all data used in this paper, scripts, and relative settings, available
in the replication package of this study (see Section 1).

6 RELATEDWORK
In this section we present and discuss the literature that, to the
best of our knowledge, is related the closest to this study. The work
which resembles our study most, in terms of topic and used research

https://softwareengineering.stackexchange.com
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process, is a study byGama et al. [27]. In such study, Gama et al.man-
ually analyze a curated sample of 140 Stack Overflow discussions
to study how developers identify TD. As most prominent difference
with such work, our study aims at providing a general overview of
TD questions on SO, by including all identified questions concerning
TD, regardless of the specific aspect of TD or TD process considered
(e.g., TD management [9, 29, 36] and TD prioritization [3, 20, 33]).
In contrast, Gama et al. focus exclusively on one specific process
related to TD, namely TD identification [5, 26, 60, 62], to study
how TD items are commonly identified by developers [27]. As
additional differences, our study considers as aspects to characterize
TDQs the TD types taken from the taxonomy of Li et al. [37] (see
Section 5.1 for further rationale on such selection), question length,
perceived urgency, sentiment, and considered themes. Differently,
while also considering TD types (albeit by using the taxonomy of
Rios et al. [48]), the other aspects studied by Gama et al. differ, and
focus specifically on TD identification aspects (namely low- and
high-level TD indicators, and their relations to TD types). Finally,
our study focuses also on the automatic identification of TDQs
(𝑅𝑄2), while this aspect is not considered in the work of Gama et al.

Digkas et al. [22] study the relation between reusing code from
SO and TD.While both our study and the one of Digkas et al. focus
on TD, and consider SO as a data source, the two studies differ
drastically. Specifically, we focus on the characteristics of TDQs (see
Section 3.1) and their automatic classification (see Section 3.2), while
Digkas et al. investigate, via source code static analysis, the technical
debt incurred by reusing code snippets posted on the platform.

Another study related toTDand SO is thework byPerez et al. [43],
where the authors propose a model-driven approach to manage
the architectural technical debt life cycle. Rather than focusing on
SO questions, in such study, a dataset of SO posts [13] is used to
assess the sentiment expressed while documenting architectural
design decisions.

With TDMentions [24], Ericsson andWingkvist make available
a dataset of TD mentions on various platforms, including the
Stack Exchange network under which SO is provided. We opted
to query directly the Stack Overflow Data Dump, rather than using
TDMentions, in order to have full control over the query to be
executed, tailor the query according to our focus, and ensure that
the query satisfied our requirements (e.g., in terms of keywords
to be used and search fields to be considered, see Section 2.3.1).

Marginally related to our work, similar to the method used to
answer 𝑅𝑄1, numerous studies utilized SO to acquire knowledge
on different topics related to software engineering, such as code
smells [53–55], non-functional requirements [2, 11, 63], refactor-
ing [4, 44, 45], API usage [1, 39, 42], and coding practices [23, 46, 57].

In a similar vein, some studies investigated the automatic
identification of questions regarding various topics related to
software engineering [1, 10, 11, 52, 56]. Such studies showcase a
similar accuracy to the we report for 𝑅𝑄2, while in some cases being
able to detect questions at a finer level of granularity, potentially
due to the usage of larger question sets.

Finally, we acknowledge two closely related studies, published in
Portuguese, which focus on TD on SO. To avoid potential misinter-
pretations of the full-text, we refrain from carrying out an in-depth
comparison, and base our discussion on the abstracts of such studies,
which are provided in English. To the best of our understanding, in a

first study Costa et al. [19] build upon thework of Gama et al. [27], to
investigate the relation between technical debt indicators identified
in the work of Gama et al. [27] and the quality attributes defined
in the ISO/IEC 25010 standard [31]. The main differences with our
study and the one by Costa et al. [19] are the same as those readily
discussed for the work of Gama et al. [27], with the additional
difference of quality attributes, which are not considered in our
study. In a second study, Gama et al. [28] analyze 195 SO discussions
on TD to study the recurrent TD types, activities, strategies, and
tools used in TDmanagement. In difference to such work, our study
focuses on SO questions rather than discussions, considers a higher
number of data points (see Section 2.3.2), and utilizes different
aspects to characterize TD questions (see Section 3.1). In addition,
our study focuses also on the automated identification of TDQs (see
Section 3.2), an aspect not considered in the work of Gama et al. [28].

7 CONCLUSIONAND FUTUREWORK
Our investigation provides empirical insights into the characteristics
of technical debt questions posed on Stack Overflow. To achieve
our goal, we study a curated set of 415 Stack Overflow questions
regarding technical debt, by adopting a mix of qualitative and quan-
titative analyses. From the results clear patterns emerge regarding
the frequency of technical debt types, the urgency expressed in
the questions, their length, sentiments, and considered themes. In
addition, we demonstrate how predictivemodels can successfully be
used to automatically identify and classify technical debt questions.

For researchers, this study constitutes a first step, providing both
quantitative and qualitative empirical insights, to understand how
users reference and request support on technical debt online. Our
results suggest that, by adopting a more comprehensive strategy to
identify technical debt questions, further insights into the technical
debt phenomenon can be gained by considering Stack Overflow.
For example, technical debt items specific to each technical debt
type, common resolutions, and management strategies could be
determined. In addition, we support future research by making all
our labeled data, and our predictive models for utilizing a more
encompassing search strategy, available in our replication package.

For practitioners, our study provides concrete evidence of the
most frequently referencedTDtypes, themes, andurgencies ofTDQs.
Such findings can corroborate or refine their understanding and use
of StackOverflowtoaskTDQs, andaccess structuredknowledge that
could not be gained by considering their personal experience alone.

As future work, we plan to use the predictive models trained for
this investigation to gain amore encompassingoverviewof technical
debt from the viewpoint of Stack Overflow. In addition, we aim at in-
cluding also other Q&A platforms, such as the Software Engineering
Stack Exchange, to gain amore encompassing and less “code-centric”
overview on how technical debt is discussed on online Q&A sites.
Finally, regarding the automatic identification and classification of
technical debt questions, it would be interesting to train models
with a larger amount of data and evaluate models trained on TDQs
focusing on specific software applications, technologies, and pro-
gramming languages, e.g.,AI-based systems [12], Android apps [58],
or scientific software [17]. These models might have a higher perfor-
mance than the ones presented in this research, as they could learn
about the specific software context considered in the TDQs.
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