
Exploring Technical Debt in Security Questions on
Stack Overflow

Joshua Aldrich Edbert∗, Sahrima Jannat Oishwee∗, Shubhashis Karmakar∗, Zadia Codabux∗, Roberto Verdecchia†
∗Department of Computer Science

University of Saskatchewan
Email: {joshua.edbert, sahrima.oishwee, shubhashis.k}@usask.ca, zadiacodabux@ieee.org

†Department of Information Engineering
University of Florence

Email: roberto.verdecchia@unifi.it

Abstract—Background: Software security is crucial to ensure
that the users are protected from undesirable consequences
such as malware attacks which can result in loss of data and,
subsequently, financial loss. Technical Debt (TD) is a metaphor
incurred by suboptimal decisions resulting in long-term con-
sequences such as increased defects and vulnerabilities if not
managed. Although previous studies have studied the relation-
ship between security and TD, examining their intersection in
developers’ discussion on Stack Overflow (SO) is still unexplored.
Aims: This study investigates the characteristics of security-
related TD questions on SO. More specifically, we explore the
prevalence of TD in security-related queries, identify the security
tags most prone to TD, and investigate which user groups are
more aware of TD. Method: We mined 117,233 security-related
questions on SO and used a deep-learning approach to identify
45,078 security-related TD questions. Subsequently, we conducted
quantitative and qualitative analyses of the collected security-
related TD questions, including sentiment analysis. Results: Our
analysis revealed that 38% of the security questions on SO are
security-related TD questions. The most recurrent tags among
the security-related TD questions emerged as “security” and
“encryption.” The latter typically have a neutral sentiment,
are lengthier, and are posed by users with higher reputation
scores. Conclusions: Our findings reveal that developers implicitly
discuss TD, suggesting developers have a potential knowledge gap
regarding the TD metaphor in the security domain. Moreover,
we identified the most common security topics mentioned in
TD-related posts, providing valuable insights for developers and
researchers to assist developers in prioritizing security concerns
in order to minimize TD and enhance software security.

Index Terms—Technical Debt, Security Vulnerability, Stack
Overflow, Crowdsourcing

I. INTRODUCTION

Security is a crucial component in software development [1]
and is concerned with the ability of applications to withstand
malicious attacks brought on by exploiting flaws in the soft-
ware [2]. Neglecting security in software development will
result in severe consequences for users and companies, such
as financial loss, personal data compromise, confidentiality
breaches, damaged reputation, and delays in software develop-
ment efforts [3]–[6]. In addition, security threats in software
development have become more complex due to growing

978-1-6654-5223-6/23/$31.00 ©2023 IEEE

advancements in the Internet of Things [7]. Hence, ensuring
secure software is crucial to software development [8], [9].

Technical Debt (TD) is a metaphor used to describe subopti-
mal artifacts created as a result of design and implementation
choices that, while they may achieve short-term objectives,
may cause issues during the maintenance and evolution phases
of a software project [10]. TD can be incurred during any
phase of the software development lifecycle but primarily im-
pacts software maintenance [11]. Inadequate TD management
can result in higher costs, poor product quality, and a slow-
down in the long-term success of software development [12].
As a result, TD is also acknowledged as a critical problem in
software development [13].

Identifying security threats during the software develop-
ment lifecycle is crucial for secure development [14]. Hence,
mechanisms to help developers detect security risks before
software releases are important [15], [16]. For instance, TD
has been used to highlight security vulnerabilities in software
products [17]. Suboptimal security implementation practices
can weaken a system disastrously, and simple coding mistakes
or design issues can lead to exploitable vulnerabilities [18],
[19]. Incurring TD due to suboptimal security practices can
make it harder to maintain or update the software, increasing
the risk of future attacks and further compounding the conse-
quences of a breach [17]. Therefore, studying the intersection
between TD and security in developers’ discussions is essential
to understanding and preventing suboptimal security practices.

Previous studies have explored the connection between TD
and security vulnerability [17], [20]–[22] and examined the
security-related posts on Stack Overflow (SO) [3]. Addition-
ally, studies have examined the TD-related posts on SO [23],
[24]. However, to the best of our knowledge, no studies have
focused explicitly on security-related questions with TD on
SO. SO is a crowdsourcing platform where users exchange
information about programming tasks with over 24 million
questions and 20 million users1. It allows practitioners to
examine how users request support and exchange expertise
about technical issues [24]. SO is a helpful resource for

1https://stackexchange.com/sites#traffic

https://stackexchange.com/sites#traffic

understanding real-world viewpoints on various software en-
gineering problems [25], [26].

In this study, we investigated security-related questions
on SO. The security-related questions with indications of
suboptimal security practices will be referred to as Security-
related TD Questions (STDQs). The security questions without
indications of suboptimal security practices will be referred
to as non-STDQs. More specifically, we quantitatively and
qualitatively investigated various traits of STDQs and non-
STDQs, including the security tags that are more recurrent
in STDQs and non-STDQs, the sentiment, popularity score,
length, security topics, question types of STDQs and non-
STDQs, and finally, the SO account profile of users asking
STDQs and non-STDQs. Note that security “tag” and “topic”
are different terms used in this study. Tags are SO tags attached
to the questions by the users, while topics emerged from our
manual coding process of the questions (described in Section
III-E).

This study offers a thorough analysis of STDQs to help
better comprehend the relationship between TD and software
security. Our key contributions include the following:

1) A qualitative analysis of question types and security
topics of STDQs to better inform the community which
specific question types and security topics are more
prevalent in STDQs.

2) An exploration of the most recurrent security tags in
STDQs to support researchers in identifying the areas
of security most susceptible to TD.

3) An analysis of the question length, sentiment, popularity,
and time needed for answers of STDQs to understand
the complexity, popularity, and emotion toward STDQs.

4) An investigation of the SO account profile characteristics
of the users asking STDQs to understand which group
of people most frequently pose STDQs and need more
understanding of TD resolution in secure development.

5) A comprehensive replication package2 of the study.
The rest of this paper is structured as follows: Section

II presents related works. Section III describes our study’s
methodology. Section IV and Section V describe and discuss
the findings of our experiments, respectively. Section VI
describes the implications of our findings. Threats to this
study’s validity are listed in Section VII. Section VIII
concludes the study.

II. RELATED WORK

General Stack Overflow Studies. Barua et al. [25] exam-
ined the main topics and trends of general SO discussions
using Latent Dirichlet Allocation. Although our study and
theirs analyzed SO discussions, our study did not investigate
general SO discussions but investigated STDQs specifically.
Their study found that the topic of interest among developers
varies. Over time, web development, mobile applications, Git,
and MySQL have gained the most traction. Rosen et al. [27]

2https://doi.org/10.5281/zenodo.7888440

analyzed the topics related to mobile development in SO
discussions instead of TD and security. Their study revealed
that questions like app distribution, mobile APIs, and data
management are frequently asked in SO. Haque et al. [28]
also examined the topics of SO discussions related to Docker
instead of security and TD. According to their findings, most
developers use SO to post questions about various Docker-
related subjects, such as framework development and applica-
tion deployment.

Stack Overflow Studies on Technical Debt. Kozanidis et
al. [24] analyzed the different characteristics of TD-related
questions on SO. This study is very similar since we also
analyzed the characteristics of SO questions, including sen-
timent and question length. However, we analyzed STDQs
instead of TD-related questions. In addition, they investigated
whether machine learning can be used to detect and classify
TD questions on SO automatically. We used their dataset
for training our classification model to detect STDQs. Their
study showed that architecture debt is the most discussed
debt on SO, most TD questions have a slight sense of ur-
gency and neutral sentiment, the question length varies across
different debt types, and machine learning can identify TD
questions but not classify them across different debt kinds.
The study by Alfayez et al. [23] extracted and examined 578
TD-related queries using a dataset derived from three Stack
Exchange Q&A websites, including SO. Although their study
and ours investigated TD-related questions on SO, they did
not specifically investigate STDQs. In addition, most of the
characteristics we investigated differed from theirs, except for
the median time to receive an answer. Their findings showed
that there are 14 categories in which TD-related questions can
be categorized, 636 different tags are used in the acquired
set of TD-related questions, and some TD-related categories
have a shortage of accepted answers and a longer median time
to receive an accepted answer than others. Gama et al. [29]
manually evaluated a sample of SO discussions to determine
how developers identify TD in their software projects. While
their study and ours investigated SO, we aimed to investigate
STDQs, not TD identification, in software projects. They
found that SO users frequently discuss TD identification and
reported 29 low-level indicators for detecting TD items in
code, infrastructure, architecture, and test.

Stack Overflow Studies on Software Security. Yang
et al. [3] described a large-scale study on security-related
questions on SO. Their study investigated security-related
topics and trends. Their study and ours investigated security-
related questions on SO, but ours specifically investigated
STDQs. The authors used the SO tagging system to extract
security-related questions from SO, which we used in our
study to collect the security-related questions of SO. They
reported the top five main security-related topics and the
top eight challenging security-related topics. Croft et al. [30]
examined SO and GitHub discussions. They investigated the
security issues faced by programmers using different program-
ming languages by leveraging Latent Dirichlet Analysis. The
difficulties and features of the security issues vary greatly

https://doi.org/10.5281/zenodo.7888440

depending on the programming languages and data sources.
Lopez et al. [31] studied how security knowledge and secure
practices were produced and shared among practitioners on
SO and how developers conversed about security in SO. Their
results showed developers actively conversed on the website to
address security issues, promote knowledge, exchange knowl-
edge, and help one another.

Security and Technical Debt Studies Siavvas et al. [17]
assessed TD’s ability to detect security issues in software
products by analyzing a large code repository with static
analysis tools. They found a statistically significant positive
correlation between TD and the vulnerability densities of the
examined software products. Siavvas et al. [21] evaluated TD
indicators in predicting software security risks at the project
and class levels by developing various machine learning mod-
els. Their conclusions imply that TD indications have the
potential to serve as security indicators. Izurieta et al. [20]
developed a method to examine TD-related security flaws
using the Common Weakness Enumeration and the Common
Weakness Scoring System. While our study also investigated
the intersection between TD and security, we specifically
focused on SO discussion, an aspect not explored by previous
studies.

Summary: Compared to previous studies, which
investigated either TD or security vulnerability discussions in
SO separately, our study specifically investigated STDQs. We
explored the user characteristics such as the SO account age,
reputation score, profile views, and earned badges. Our study
also identified security topics more prone to TD.

III. METHODOLOGY

This section describes how this study was conducted. We
describe the objective, research questions, data collection, and
analysis. Figure 1 depicts the phases of the methodology.

A. Goal

This goal of the study is described using the Goal-Question-
Metric technique [32] as follows:

Purpose: To investigate
Issue: the characteristics of
Object: security-related technical debt questions
Viewpoint: from the software engineering re-
searchers perspective

B. Research Questions

Based on our goal, we derive the following Research
Questions (RQs):

RQ1 To what extent do developers indicate suboptimal
security practices in security-related questions?

Rationale: This research question seeks to understand
how frequently suboptimal security practices are indicated in
security-related questions on SO. Understanding this will help
us gain insights into the prevalence of incurring suboptimal
security practices in security questions. This research question

contributes to the broader understanding of how TD and
security are intertwined from the SO discussion perspective.
RQ2 Which security tags are more recurrent in security-

related TD questions?
Rationale: By exploring which security-related tags on SO

contain the most indications of suboptimal security practices,
researchers can identify the areas of security most susceptible
to TD. Identifying these areas can help software developers
prioritize their resources and efforts to prevent and mitigate
TD in the identified areas, reducing the risk of security issues.
RQ3 What are the different characteristics of security-

related TD questions?
Rationale: By examining the sentiment of STDQs, the study

can gain insight into the attitudes and emotions associated
with the STDQs [33]. The question score and length of a SO
question are indicators of the importance and complexity of the
issue being discussed in the question [24]. Lastly, we identify
the tags that require greater community attention to determine
whether some questions are more challenging to answer than
others [34].
RQ4 What are the characteristics of the user profiles

asking security-related TD questions?
Rationale: The SO community is known for its diverse users

with varying experiences and expertise. Understanding the
characteristics of users who ask STDQs, including reputation
score, profile age, and badges earned, as previously done by
Konstantinos et al. [35] can help researchers identify patterns
and characteristics of users associated with STDQs. This can
help inform which users are more likely to address suboptimal
security practices in security questions.

C. Extracting Security Questions

In this study, we collected questions and user information
from SO by downloading the publicly available SO dump
provided by the Stack Exchange Data Dump3. Our questions
and user dataset spans from 2008 until 2022 and comprises
23,020,127 questions and 19,307,021 users of SO. Each ques-
tion includes a title and body.

Since the collected SO questions could be related to any
topic, developing a filtering technique to identify the questions
related to security was necessary. One strategy would be to
use the tags of SO questions and compile all questions with
the tag “security” [3]. However, the study by Yang et al. [3]
revealed that several security questions on SO are not tagged
with “security” but tagged with other security-related terms.

To overcome this impediment, we followed the guide-
line of Yang et al. [3] to extract the SO questions re-
lated to security. The SO questions tagged with “security,”
“sql-injection,” “passwords,” “encryption,” “xss,” “websecu-
rity,” “csrf,” “password-protection,” or “cryptography” will
be extracted. Cross-Site Scripting (“xss”), Cross-Site Request
Forgery (“csrf”), and “sql-injection” are related to web vul-
nerability, while “cryptography” and “encryption” are related
to cryptography techniques.

3https://archive.org/details/stackexchange

https://archive.org/details/stackexchange

Ph
as

e
1

- E
xt

ra
ct

Se
cu

rit
y

Q
ue

st
io

ns

Ph
as

e
3

- D
at

a
An

al
ys

is

User Characteristics
Analysis

Model
Predictions

Ph
as

e
2

-
Cl

as
si

fic
at

io
n

M
od

el

Sample for
Verification

(383)

STDQs &
non-STDQs
(45,078) &
(72,155)

C

A

Sample for
Verification

(383)

B

SO Dump

Extract Security
Questions by Tag

Security
Questions
(117,233)

TD Prevalence Analysis

Security Tags Analysis

Questions
Characteristics Analysis

Manual Coding

Fig. 1: Methodology Overview

The study of Yang et al. [3] independently validated the
exclusivity and representativeness of those nine security tags
using a two-step heuristic procedure. They started by searching
for questions with the tag “security” in them. In the second
step, they extracted the tags from those questions tagged with
“security” and referred to them as candidate tags. Finally, they
went through each candidate tag and filtered them out. This
selection process resulted in a well-curated set of nine security
tags, where the tags were exclusive and representative of the
security questions on SO. Using the nine security tags, we
extracted 117,233 security-related questions. We used the title
and body of the questions for our analysis.

Next, we manually examined a sample of 117,233 security
questions to assess if the strategy of automated filtering of the
questions with the tags led to a high-quality result. In particu-
lar, we sampled 383 security questions (with a 95% confidence
level and 5% margin of error), and two authors independently
reviewed and assessed each question to determine whether
they were related to security. All disagreements among raters
were solved by discussing the questions marked differently by
both raters. We used Cohen’s Kappa [36] to measure inter-rater
reliability. The result showed strong agreement among raters
(Cohen’s Kappa = 0.89). Our final verification results showed
that of the 383 sampled security questions, 370 (97%) were
related to security. We concluded that using the tags by Yang
et al. [3] is suitable for our study.

D. Classification Model

After extracting security-related questions, this subsection
describes our strategy to identify STDQs. This phase consisted
of three main steps, namely (i) preprocessing the extracted
security-related questions from the previous section, (ii) train-
ing a binary classification model to detect STDQs, and (iii)
using the trained classification model to detect STDQs in our
preprocessed security-related questions.

First, we preprocessed our extracted security questions
from Section III-C. This preprocessing step was necessary
to clean the extracted security questions. We followed the
guidelines by Kozanidis et al. [24] to preprocess the extracted
security questions. We tokenized every question, converted it
to lowercase, removed stopwords, and removed all punctuation
from the security questions. We also removed any HTML or
markdown elements and replaced any instances of source code
with a code tag, as these do not include information of lexical
or semantic value. We deleted references to “technical debt,”
other TD-related keywords suggested by Kozanidis et al. [24],
and “SonarQube” from the text to prevent the model from
being over-fit during the training phase [24].

Next, we trained a binary classification model by following
the guidelines by Kozanidis et al. [24] to detect STDQs. We
used their dataset to train our model. Our binary classifi-
cation model was built using Python’s simple transformers
library4. We used the pre-trained RoBERTa [37] model as
it is considered the state-of-the-art model for binary text
classification [38], [39]. With the training dataset prepared by
Kozanidis et al. [24], we used 10-fold cross-validation to train
and test the classification model. We used the standard metrics
for evaluating our classification model [24], [40], namely
precision, recall, and F1 score. With the test set, our model
detected STDQs with an F1 score of 0.85.

Finally, we predicted each prepossessed security question
with our trained classifier to identify STDQs. To verify the
performance of our classification model, we took a sample
with a 95% confidence level and a 5% margin of error. Two
authors manually verified the output results of the model
prediction. By following a labeling guideline of previously
published work [24], two authors independently reviewed 384
predicted security questions and assessed each question to
determine whether it was related to TD. Any disagreements

4https://simpletransformers.ai/

https://simpletransformers.ai/

among raters were solved by discussing the questions marked
differently by both raters. We had a strong agreement (Co-
hen’s Kappa = 0.81). Our final verification, matched with the
model’s prediction results, showed that the model achieved an
F1 score of 0.75, comparable with the results of the binary
classification model of Kozanidis et al. [24].

E. Data Analysis

We analyzed the questions (both STDQs and non-STDQs)
using quantitative and qualitative methods to answer our re-
search questions. For the quantitative analysis, we investigated
which of the nine security tags by Yang et al. [3] was
present in the questions and recorded their frequency. We
also examined how many words each question contained to
determine whether indications of suboptimal security practices
affect a question’s length. We considered the post score of
a question and the time it took for a question to have an
accepted answer. The post score on SO indicates the usefulness
of a question as perceived by the community. A higher
score means that the post is considered more helpful by the
community. The Valence Aware Dictionary and sEntiment
Reasoner (VADER) tool were used to analyze the sentiment.
VADER is a vocabulary and rule-based sentiment analysis
tool and measures the amount of positive or negative emotion
and the intensity of emotion in a text [41]. It is readily
available for use on unlabeled text data and is included in
Python’s NLTK5 package. We employed VADER to analyze
the sentiment of STDQs and non-STDQs since it is a state-
of-the-art sentiment analysis tool that performs well in SO
setting [42]. Both relative sentiment components (negative,
neutral, and positive) and compound sentiment scores were
used to examine the sentiment expressed in our security
questions. According to VADER’s GitHub6 site, each word’s
valence score is added, modified following the guidelines, and
normalized to fall between -1 (the most severe negative) and
+1 to get the compound score (the most extreme positive).
Lastly, we analyzed the user characteristics regarding their
reputation score, the years of their account age, the number
of profile views, and the badges achieved.

For the qualitative analysis, we took a sample of 396
questions (95% confidence level and 5% margin of error)
and manually coded the questions. This supplementary coding
procedure aims to understand better the question types and
security topics. The question types is defined as the nature
of the questions and can be categorized into the following:
debugging, conceptual understanding, implementation, code
review, best practices, and learning resources. Table II defined
each question type. These question types emerged as a result
of the provisional coding [43] from the types reported by
Allamanis et al. [44].

In addition, the security topics of the questions are defined
as the security topics a question belongs to. This topic differs
from the security tags we used to extract security-related

5www.nltk.org/ modules/nltk/sentiment/vader.html
6www.github.com/cjhutto/vaderSentiment

questions. Specifically, security tags are provided as SO tags
attached to the questions by the users, while security topics
emerged from our manual coding process of the questions.
The security topics in our security questions were identified
using open coding [43]. One author coded the question types
and security topics for each sampled question. Another author
reviewed the final classification to ensure the accuracy of the
coding procedure. Disagreements were discussed and resolved.

IV. RESULTS

A. RQ1: To what extent do developers indicate suboptimal
security practices in security-related questions?

Out of the 117,233 security-related questions we extracted,
our model identified 45,078 (38%) questions as STDQs.
The remaining 72,155 security questions were non-STDQs.
However, these 45,078 STDQs do not explicitly mention the
word “technical debt.” An example of an STDQ is as follows:

I use gpg for encrypting a file storing my passwords
in Windows. This file is an MS Excel file, which I
use for convenience. Every time I want to check or
update my passwords (> once per day on average),
I execute the following batch script, which decodes
the encrypted file and encodes the updated xlsx file
again when I close the application. Obviously, this
is a suboptimal solution as it creates a decrypted
file, which in case of an interruption (e.g. acciden-
tally closing the command line window or a system
crash), the file remains unencrypted. Anyone with
something better, e.g. using in-memory pipes or the
like (in Windows)? - SO Post ID 666265057

The question asked for a script for file encryption in
Windows. As we can see, although the word “technical debt”
was not mentioned explicitly, this security question clearly dis-
cussed suboptimal code solutions, which indicates suboptimal
security practices. The person asking the question mentioned
how he tried implementing scripts but found them suboptimal.

Summary RQ1 (Prevalence of STDQs) 38% of security-
related questions are STDQs. While addressing suboptimal
security issues, developers do not explicitly use the term
“technical debt” but use terminologies indicating subopti-
mal security practices.

B. RQ2: Which security tags are more recurrent in security-
related TD questions?

Table I displays the distribution of security tags in STDQs
and non-STDQs. It shows the number of questions per tag
and the proportion of STDQs and non-STDQs for each tag.
The security tags were ranked in order of most to least
frequent number of questions. The “security” tag appears most
frequently in the questions, followed by “encryption,” and in
third place, “cryptography.” Hence, irrespective of STDQs or

7www.stackoverflow.com/questions/66626505

www.nltk.org/_modules/nltk/sentiment/vader.html
www.github.com/cjhutto/vaderSentiment
www.stackoverflow.com/questions/66626505

TABLE I: Distribution of STDQs and non-STDQs

Rank STDQs non-STDQs

Security Tags Questions % per Tag Security Tags Questions % per Tag

1 security 24,449 44.4 security 30,532 55.6
2 encryption 12,635 35.0 encryption 23,396 65.0
3 cryptography 5,224 36.5 cryptography 9,072 63.5
4 passwords 2,898 27.7 passwords 7,555 72.3
5 xss 1,910 41.8 csrf 2,654 58.2
6 csrf 1,780 41.8 xss 2,475 58.2
7 sql-injection 1,582 43.0 sql-injection 2,100 57.0
8 password-protection 575 33.8 password-protection 1,124 66.2
9 websecurity 150 44.0 websecurity 191 56.0

Total 51,203 39.3 Total 79,099 60.7

TABLE II: Question Types and Definitions

Question Type Definition

Debugging Questions for seeking help identifying and resolving errors or bugs in their code.
Conceptual Understanding Questions for comprehending a concept’s inner workings or principles.
Implementation Questions for requesting guidance on implementing code features or algorithms.
Code Review Questions for requesting guidance to assess code quality, readability, and maintainability.
Best Practices Questions for recommendations on adhering to software development best practices.
Learning Resources Questions refer to learning resources to acquire knowledge in a particular subject.

non-STDQs, the top three tags assigned to the questions are
“security,” “encryption,” and “cryptography.”

The security tags with the highest proportion of STDQs are
“security,” “websecurity,” and “sql-injection” (44.4%, 44.0%,
and 43.0%, respectively). At the same time, “passwords,”
“password-protection,” and “encryption” have a lower pro-
portion of STDQs (27.7%, 33.8%, and 35.0%, respectively).
Therefore, the “security,” “websecurity,” and “sql-injection”
tags have a higher proportion of STDQs.

Another finding is that the ranking of security tags based
on the number of questions for STDQs and non-STDQs is
generally identical (we discussed this further in Section V),
except for the tags “xss” and “csrf.” These two tags have
switched positions in the STDQs and non-STDQs, with “xss”
ranking higher in the STDQs and “csrf” ranking higher in the
non-STDQs.

Summary RQ2 (Security Tags Distribution) The most
frequent security tags in STDQs and non-STDQs are
“security,” “encryption,” and “cryptography.” The security
questions tagged with “security,” “websecurity,” and “sql-
injection” are more likely to indicate suboptimal security
practices. The rank of security tags between STDQs and
non-STDQs is, in most cases, comparable, with the excep-
tion of “xss” and “csrf” tags.

C. RQ3: What are the different characteristics of security-
related TD questions?

The characteristics of the STDQs and non-STDQs are com-
pared in Table III. The table lists the features (e.g., question
length, compound score, and post score), mean and median
scores across STDQs and non-STDQs.

Our study’s results show that the median question length
of STDQs is 112 words. Conversely, the non-STDQs are

TABLE III: Comparative Analysis of Different Aspects Be-
tween TD and non-TD Security-Related Questions

STDQs non-STDQs

Mean Median Mean Median

Question Length (Words) 132.39 112.00 79.29 67.00
Negative Score 0.04 0.03 0.04 0.03
Positive Score 0.10 0.09 0.09 0.08
Neutral Score 0.86 0.86 0.86 0.87
Compound Score 0.43 0.69 0.26 0.40
Post Score 3.47 1.00 2.44 1.00
Time to Answer (Hours) 378.22 1.19 391.03 1.07

characterized by shorter median question lengths with 67
words. This indicates that STDQs are lengthier than non-
STDQs.

The median neutral sentiment scores were 0.86 and 0.87 for
the STDQs and non-STDQs, respectively. Positive sentiment
in both questions has lower scores (median sentiment score
= 0.09), while negative sentiment is even lower (median
sentiment score = 0.03). The median compound score (the
normalized sum of positive, neutral, and negative scores)
for STDQs is 0.69, higher than the median for non-STDQs
(0.40). Overall, the sentiment in STDQs and non-STDQs
are comparable, indicating almost no difference in sentiment
from users when asking security questions regardless of the
presence of suboptimal security practices indications.

The mean post score (to indicate the usefulness of a SO
question post) for STDQs is 3.47, and the median score is
1.00. In contrast, non-STDQs have a mean post score of 2.44
and a median score 1.00. This shows that the median post
score of STDQs and non-STDQs is the same, indicating the
same attention from SO users.

Finally, the median time to answer STDQs is 1.19 hours,

while the median time needed to answer non-STDQs is 1.07
hours. According to these findings, the time for a question to
have an accepted answer is comparable for the two questions.

Summary RQ3 (Different Aspects of Questions) Com-
pared to non-STDQs, STDQs require more words. The
median compound score for STDQs is higher compared
to non-STDQs. STDQs have a slightly higher mean post
score and higher median time to answer.

D. RQ4: What are the user profiles asking security-related
TD questions?

TABLE IV: Comparative Analysis of User Profiles Asking TD
and non-TD Security-Related Questions

STDQs non-STDQs

Mean Median Mean Median

User Profile Age 9 10 8 9
Reputation Score 4377 469 2597 193
Profile Views 478 59 276 36
Badges Silver Bronze Silver Bronze

The results for RQ4 are presented in Table IV. It compares
the user profiles of those who asked STDQs and non-STDQs,
showing the mean and median values for account age, rep-
utation score, profile views, and each group’s most common
badge type.

The median account age for asking STDQs is ten years old.
In contrast, those who asked non-STDQs had a slightly lower
median account age of 9 years. Users who asked STDQs had
a higher median reputation score, with 469 scores for STDQs
and 193 scores for non-STDQs. Similar patterns emerged in
profile views, with STDQs users reporting greater median (59
views) profile views than non-STDQs users (36 views). Bronze
is the most prevalent (median) badge type for both categories.

Summary RQ4 (User Profiles) Compared to non-STDQs,
users who ask STDQs tend to be more experienced, have
higher reputation ratings, and have more profile views. Both
groups have a similar distribution of badges.

E. Qualitative Analysis: Question Types
In this section, we report the results of the question types,

which we described in Section III-E as the nature of STDQs
and non-STDQs obtained through provisional coding [43]
from the types given by Allamanis et al. [44]. The distribution
of question types (defined in Table II) for STDQs and non-
STDQs is shown in Table V. Since a security question can have
multiple question types, we can assign multiple question-type
labels to the question. However, the ranking of the question
types for STDQs and non-STDQs differs. Most STDQs are of
“Implementation” type. Contrarily, “Conceptual Understand-
ing” is the most common type for non-STDQs. Other question
types like “Debugging,” “Best Practices,” “Code Review,” and
“Learning Resources” are less common in both questions.

Figure 2 further summarizes our analysis of question types
per security tag. Most security tags in STDQs have “Imple-
mentation” as their question types, except for “websecurity”

and “passwords.” In contrast, most security tags in non-STDQs
have “Conceptual Understanding” as the question type, except
for “passwords,” “csrf,” and “encryption.”

Summary Question Types Implementation is the most
discussed question type in STDQs. In contrast, conceptual
knowledge questions are the main focus of non-STDQs.
Other question types are less frequent in both STDQs and
non-STDQs.

F. Qualitative Analysis: Security Topics

In this section, we report the results of the security topics
described in Section III-E as the topics of STDQs and non-
STDQs obtained through the open coding process. These
security topics are different from the SO security tags. A
comparison of the distribution of security topics for STDQs
and non-STDQs within each security tag is summarized in
Table VI. Due to page limitations, we only show the results
for some of the security topics.

The distribution of security topics for STDQs and non-
STDQs in each security tag differs, indicating that the two
types of inquiries have different priorities. The emphasis
on practical implementations is typically more significant
in STDQs, e.g., “Prevention” techniques for “csrf,” “sql-
injection,” and “xss.” Non-STDQs focus more on conceptual
elements, e.g., “Token” for “csrf,” and have a more uniform
distribution across topics.

Non-STDQs with the “cryptography” tag emphasize “Sig-
nature” more than STDQs, which prioritize “Algorithm.” Sim-
ilarly, STDQs with the “encryption” tag focus more on “File.”
In contrast, non-STDQs are more focused on “Algorithm.”

Summary Security Topics Each security tag emphasized
STDQs and non-STDQs differently. “Prevention” in “csrf,”
“xss,” and “sql-injection” is highlighted in STDQs. “Al-
gorithm” and “File” are given priority in STDQs for
“cryptography” and “encryption.”

V. DISCUSSION

Prevalence of TD in Security-Related Questions. Previous
studies investigated TD-related questions on SO [23], [24]. In
our study, we specifically observed STDQs. Developers are
voicing concerns about potentially poor implementations or
design choices as they solve various security-related problems.
Our results also reveal that developers only implicitly convey
their concerns about suboptimal security practices during the
software development process rather than mentioning “techni-
cal debt” explicitly when asking security-related questions.

Indications of suboptimal security practices in security ques-
tions can be attributed to the nature of the SO website and the
intertwined relationship between security and TD. Developers
use SO to improve their code quality and ensure best practices
are being followed [45]. At the same time, previous stud-
ies [17], [20], [46]–[48] showed that the relationship between
suboptimal implementations or design choices in software
systems is strongly correlated with security vulnerabilities.

web
sec

urit
y

pass
word

-prot
ec

tio
n

pass
word

s
csr

f
xss

sq
l-in

jec
tio

n

sec
urit

y

cry
ptog

rap
hy

en
cry

ptio
n

0

2

4

6

8

10

12

14

16

C
ou

nt
Source = non-STDQs

web
sec

urit
y

pass
word

-prot
ec

tio
n

pass
word

s
csr

f
xss

sq
l-in

jec
tio

n

sec
urit

y

cry
ptog

rap
hy

en
cry

ptio
n

Security Tags

Source = STDQs

Type
Conceptual Understanding
Implementation
Debugging
Code Review
Learning Resources
Best Practices

Fig. 2: Distribution of Question Types for each Security Tag

TABLE V: Comparison of Question Types between TD and non-TD Security-Related Questions

Rank STDQs non-STDQs

Type No. of Questions Type No. of Questions

1 Implementation 95 Conceptual Understanding 90
2 Conceptual Understanding 48 Implementation 54
3 Debugging 45 Debugging 46
4 Best Practices 31 Best Practices 11
5 Code Review 13 Code Review 3
6 Learning Resources 5 Learning Resources 2
Total 237 206

The nature of the SO website and the intertwined relationship
result in developers asking STDQs to gain insights and find
effective solutions, albeit suboptimal security practices, which
are implicitly (and potentially unconsciously) indicated in the
security questions.

The absence of explicit TD mentions in all STDQs can
be attributed to a lack of awareness among developers of
the term TD. The latter is still unfamiliar to almost 45%
developers, as suggested by Ramač et al. [49]. As per the
studies by Kozanidis et al. [24] and Alfayez et al. [23], the low
number (only 500) of questions on SO questions, irrespective
of domain, explicitly mentioning TD, confirms that the TD
metaphor is unfamiliar to many practitioners.

Security Topics in STDQs and non-STDQs. Table I
displays the distribution of security tags in STDQs and

non-STDQs. The ranking of security tags for STDQs and
non-STDQs is almost identical. One potential reason can
be attributed to the overlapping concerns between TD and
security in software. Since many security-related decisions
involve trade-offs between functionality, maintainability, and
security, security-related issues involve overlapping concerns
with TD [17], [20], [46]–[48]. This overlap contributes to the
similarity in the results between STDQs and non-STDQs, as
developers need to address the same topics when managing
security, regardless of the presence of TD.

The “encryption” and “cryptography” security-related tags
are the second and third most frequently appearing in STDQs
and non-STDQs. This appears to be caused by the fact that
“cryptography” and “encryption” are among the most popular
security tags on SO [3], [50], regardless of whether the queries

TABLE VI: Comparison of Security Topics between TD and
non-TD Security-Related Questions

Security Tags Security Topics No. of Questions

STDQs non-STDQs

csrf Prevention 19 8
Token 9 13
Concept 2 2

sql-injection Detection 2 5
Concept 4 8
Prevention 22 7
Simulation 0 3

xss Detection 1 1
Prevention 17 7
Testing 0 3
Concept 2 5
Simulation 0 3

cryptography Signature 6 11
Algorithm 22 7
Key 1 0

encryption Algorithm 9 18
File 14 8
Server and Client Side 6 6
Key 4 3
IP Address 0 2
Kubernetes 0 4
Mobile 1 2

are TD or non-TD related. The complexity of cryptography
principles, which have been known to present difficulties
for developers attempting to understand them [51], could be
another reason for their predominance. Our qualitative analysis
of the security topics for “cryptography” and “encryption”
tags revealed a prominent lack of understanding of developing
cryptography algorithms and understanding concepts related
to signatures and file encryption. Our findings align with
the findings of the study of Hazhirpasand et al. [51], which
also reported those security topics as the main hurdles in
Cryptography for developers.

A more in-depth qualitative examination of the data
revealed that web vulnerabilities associated with three
security tags, namely “xss,” “csrf,” and “sql-injection” have
significantly more STDQs. Additionally, our analysis shows
that STDQs with those tags emphasize addressing preventative
measures. Previous studies [52]–[54] show that implementing
effective prevention strategies is challenging for developers.
This difficulty makes them discuss suboptimal solutions and
design choices, resulting in more STDQs.

Characteristics of Questions and Users. By quantitatively
comparing various aspects of STDQs and non-STDQs, we
observed that STDQs tend to use more words than non-
STDQs. From a subsequent qualitative analysis, we note that
STDQs mainly request guidance on implementing specific
features, algorithms, or techniques within the code written by
the users, thus requiring more words and details to describe
the context. In contrast, non-STDQs mainly ask short, general,
and open-ended questions to comprehend the inner workings

or principles behind a concept, language, or technology. As a
result, non-STDQs are shorter, as they do not need as many
words to elaborate on the details or need to include code. We
conclude that STDQs are more complex and challenging. Non-
STDQs instead focus primarily on conceptual understanding,
thus requiring fewer words. We observe that the median word
count in our STDQs is comparable with the results of the
study by Kozanidis et al. [24] and the standard length of SO
questions [55]. Our analysis of STDQs length reveals a con-
sistent pattern across numerous research efforts, highlighting
the underlying complexity of STDQs.

Our quantitative analysis also shows that users asking
STDQs have higher reputation scores and more profile views.
This result can be attributed to the nature of STDQs, as
they are more complex and challenging to comprehend for
newer users. Thus, higher reputation users are more aware of
incurring TD and the potential implications of such actions
on security issues and are more likely to include suboptimal
security issues in their questions.

VI. IMPLICATIONS

For researchers. The findings of our study can be used
to pinpoint the security areas that are highly intertwined with
TD. Knowledge of these areas allows researchers to prioritize
research and analysis, especially in critical areas of the security
domain. Our results reveal that web vulnerability tags (“xss,”
“csrf,” and “sql-injection”) are prominent since they are asso-
ciated with a higher proportion of STDQs than most security
tags. This is primarily due to a need for knowledge of preven-
tion techniques and indicates the need for a more in-depth
investigation into developers’ need for knowledge of web
vulnerability prevention techniques. Leaving the developers to
struggle with these web vulnerability prevention techniques
will cause severe consequences to clients and companies [52]–
[54]. Researchers and tool developers should focus on creating
more comprehensive, user-friendly tools and methodologies
for implementing web vulnerability prevention techniques.
These tools can guide implementing prevention techniques
to minimize or eliminate TD without compromising software
security.

For practitioners. Practitioners with more experience are
more aware and likely to participate in discussions about
suboptimal security practices. The lack of awareness from less
experienced developers urges more experienced developers to
help less experienced team members understand how their
decisions in security may affect incurring suboptimal security
practices. In order to increase the quality of the software-
generated, experienced developers should mentor and direct
less experienced developers in recognizing and managing
suboptimal security practices by highlighting their potential
implications on security issues.

For educators. Our study found a lack of explicit mention
of the term “technical debt” in STDQs. This result means
there is a lack of awareness among developers of the term TD
in the security domain. Thus, security courses and seminars

should be structured to educate about suboptimal security
practices and TD concepts. With better-structured courses
and seminars, we will raise the awareness of developers of
TD and any suboptimal practices in the security domain to
reduce security vulnerabilities in software development.

VII. THREATS TO VALIDITY

Despite our best efforts, validity threats could impact the
findings of this study. Following Runeson et al. [56] classifica-
tion, we consider the following factors to discuss the potential
risks to this study and the relevant mitigation measures taken.

Construct Validity is regarding how well our operational
measures are suited to respond to our RQs. Our datasets of
security-related questions were extracted based on a set of
predefined security tags by Yang et al. [3]. Since the SO
tagging system is user-generated, there may be inaccuracies
and inconsistencies in how posts are tagged in the used dataset.
To mitigate this threat, two authors manually inspected a
statistically significant sample of the security question posts,
as described in Section III-C, to verify the content. The manual
validation stages could be a potential threat to our study.
Although we manually validated the classification model pre-
dictions, the process might have been prone to human error and
bias. To mitigate this threat, two authors labeled the sampled
datasets by following the guidelines prepared by Kozanidis et
al. [24]. Disagreements among raters were resolved through
discussion until an agreement was reached.

Internal Validity is regarding how much the “treatment,”
and not other factors, are responsible for the observed findings.
The most relevant threat to the internal validity of our study
regards the classification model used to identify STDQs. The
model trained to identify STDQs is based on the RoBERTa
model [37], which achieved an F1 score of 0.75. This suggests
the dataset may contain false positives and negatives that could
influence the outcomes. Future research can reduce this risk
by enhancing model performance with more training datasets.

External Validity is regarding the scope of generalizability
of our findings. In this study, the analyzed data was collected
using SO. Therefore, the findings from our study might lack
generalizability, as there are other platforms, such as Software
Engineering Stack Exchange8, where developers share their
thoughts about security and TD. However, as also stated in
the study by Kozanidis et al. [24], among the well-known
group of Stack Exchange Question and Answer (Q&A) sites,
SO is the most used programming Q&A website with over
24M questions and 20M registered users. Given its size and
popularity, we deem SO as the best pool of data where
developers discuss topics related to technical debt and security
vulnerabilities in software development. Another threat to our
study lies in using the dataset presented by Kozanidis et
al. [24] to train our classification model. In their study, the
authors documented that they deliberately constructed their
automated query as encompassing as possible to filter out

8www.softwareengineering.stackexchange.com

only the TD-related question posts on SO. Nevertheless, their
findings might not reflect all TD-related queries featured on
SO. Since we use their TD-related question post dataset to
train our model, this threat is also cascaded to our study. We
can reduce this threat in future studies by developing our own
dataset.

Conclusion Validity is regarding the link between outcomes
and our treatments. Our dataset of security-related questions
was extracted based on a set of predefined security tags by
Yang et al. [3]. However, there might be more security-related
tags than those nine security tags. This threat will impact the
number of extracted security-related questions, thus also im-
pacting the results and conclusions of our study. Additionally,
the model trained to identify STDQs only achieved an F1 score
of 0.75. The model was imperfect, suggesting the identification
of STDQs to contain false positives and negatives that could
influence the results and conclusions of our study. The manual
coding analyses could be another threat to our study. We
inspected a statistically significant random sample from the
STDQs and non-STDQs to better comprehend the security
topics and question types in the dataset. Sampling bias might
be present, causing the sampled STDQs and non-STDQs not
to represent the whole population. Additionally, the manual
coding procedure might incorporate the subjective judgment
of the authors. Despite the collaborative review and editing
process between the two authors, there could still be biases or
inconsistencies that affect the conclusions.

VIII. CONCLUSIONS AND FUTURE WORK

In this study, we explored the different characteristics of
STDQs. We used a deep-learning approach to identify STDQs.
The classification model revealed that 38% of security ques-
tions on SO are STDQs. The most recurrent tags among the
STDQs emerged as “security” and “encryption.” The latter
typically have a neutral sentiment, are lengthier, and are posed
by users with higher reputation scores.

For future works, we plan to extend the scope of our analysis
to other platforms, such as Github or other Q&A platforms.
Analyzing data from other platforms would provide a more
comprehensive understanding of the relationship between TD
and security. Another interesting avenue of research is to
enhance our model’s capability in detecting STDQs by ex-
panding the training datasets and using more sophisticated
models. Lastly, we would like to perform further correlation
studies to study the relationship between STDQs and user
profiles.

ACKNOWLEDGMENT

This research is partly supported by an NSERC Collab-
orative Research and Training Experience (CREATE) grant
on Software Analytics at the University of Saskatchewan and
the European Union under the Italian National Recovery and
Resilience Plan (NRRP) of NextGenerationEU, partnership on
Telecommunications of the Future” (PE0000001 - program
“RESTART”).

www.softwareengineering.stackexchange.com

REFERENCES

[1] S.-F. Wen and B. Katt, “Learning software security in context: An
evaluation in open source software development environment,” in
Proceedings of the 14th International Conference on Availability,
Reliability and Security, ser. ARES ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3339252.3340336

[2] H. Assal and S. Chiasson, “Security in the software development
lifecycle.” in SOUPS@ USENIX Security Symposium, 2018, pp. 281–
296.

[3] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow posts,”
Journal of Computer Science and Technology, vol. 31, pp. 910–924,
2016.

[4] E. Moradian, “Security of e-commerce software systems,” Agent and
Multi-Agent Systems in Distributed Systems-Digital Economy and E-
Commerce, pp. 95–103, 2013.

[5] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, “Systematic
literature review on security risks and its practices in secure software
development,” ieee Access, vol. 10, pp. 5456–5481, 2022.

[6] R. Khan, “Secure software development: a prescriptive framework,”
Computer Fraud & Security, vol. 2011, no. 8, pp. 12–20, 2011.

[7] H. Michael and L. Steve, “The security development lifecycle: Sdl: A
process for developing demonstrably more secure software,” 2006.

[8] D. Geer, “Are companies actually using secure development life cycles?”
Computer, vol. 43, no. 6, pp. 12–16, 2010.

[9] I. A. Tondel, M. G. Jaatun, and P. H. Meland, “Security requirements
for the rest of us: A survey,” IEEE software, vol. 25, no. 1, pp. 20–27,
2008.

[10] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, 2012.

[11] N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spı́nola,
F. Shull, and C. Seaman, “Identification and management of technical
debt,” Inf. Softw. Technol., vol. 70, no. C, p. 100–121, feb 2016.
[Online]. Available: https://doi.org/10.1016/j.infsof.2015.10.008

[12] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software
practitioners have to say about technical debt,” IEEE Software, vol. 29,
no. 6, pp. 22–27, 2012.

[13] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
J. Syst. Softw., vol. 86, no. 6, p. 1498–1516, jun 2013. [Online].
Available: https://doi.org/10.1016/j.jss.2012.12.052

[14] G. McGraw, “Software security: Building security in,” Datenschutz und
Datensicherheit-DuD, vol. 36, no. 9, pp. 662–665, 2012.

[15] M. Siavvas, E. Gelenbe, D. Kehagias, and D. Tzovaras, “Static analysis-
based approaches for secure software development,” in Security in
Computer and Information Sciences: First International ISCIS Security
Workshop 2018, Euro-CYBERSEC 2018, London, UK, February 26-27,
2018, Revised Selected Papers 1. Springer International Publishing,
2018, pp. 142–157.

[16] M. Siavvas and E. Gelenbe, “Optimum checkpoints for programs with
loops,” Simulation Modelling Practice and Theory, vol. 97, p. 101951,
2019.

[17] M. Siavvas, D. Tsoukalas, M. Jankovic, D. Kehagias, A. Chatzigeorgiou,
D. Tzovaras, N. Anicic, and E. Gelenbe, “An empirical evaluation of
the relationship between technical debt and software security,” in 9th
International Conference on Information society and technology (ICIST),
vol. 2019, 2019.

[18] R. Kuhn, M. Raunak, and R. Kacker, “Can reducing faults prevent
vulnerabilities?” Computer, vol. 51, no. 7, pp. 82–85, 2018.

[19] F. Camilo, A. Meneely, and M. Nagappan, “Do bugs foreshadow
vulnerabilities? a study of the chromium project,” in Conf. on MSR,
2015, pp. 269–279.

[20] C. Izurieta, D. Rice, K. Kimball, and T. Valentien, “A position study
to investigate technical debt associated with security weaknesses,” in
Proceedings of the 2018 International Conference on technical debt,
2018, pp. 138–142.

[21] M. Siavvas, D. Tsoukalas, M. Jankovic, D. Kehagias, and D. Tzovaras,
“Technical debt as an indicator of software security risk: a machine
learning approach for software development enterprises,” Enterprise
Information Systems, vol. 16, no. 5, p. 1824017, 2022.

[22] K. Rindell and J. Holvitie, “Security risk assessment and management
as technical debt,” in 2019 International Conference on Cyber Security

and Protection of Digital Services (Cyber Security). IEEE, 2019, pp.
1–8.

[23] R. Alfayez, Y. Ding, R. Winn, G. Alfayez, C. Harman, and B. Boehm,
“What is asked about technical debt (td) on stack exchange question-
and-answer (q&a) websites? an observational study,” Empirical Software
Engineering, vol. 28, no. 2, p. 35, 2023.

[24] N. Kozanidis, R. Verdecchia, and E. Guzman, “Asking about technical
debt: Characteristics and automatic identification of technical debt
questions on stack overflow,” in Proceedings of the 16th ACM /
IEEE International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 45–56. [Online]. Available:
https://doi.org/10.1145/3544902.3546245

[25] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, pp. 619–654, 2014.

[26] C. C. Silva, M. Galster, and F. Gilson, “Topic modeling in software
engineering research,” Empirical Software Engineering, vol. 26, no. 6,
p. 120, 2021.

[27] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, pp. 1192–1223, 2016.

[28] M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in docker
development: A large-scale study using stack overflow,” in Proceedings
of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2020, pp. 1–11.

[29] E. Gama, S. Freire, M. Mendonça, R. O. Spı́nola, M. Paixao, and M. I.
Cortés, “Using stack overflow to assess technical debt identification on
software projects,” in Proceedings of the XXXIV Brazilian Symposium
on Software Engineering, 2020, pp. 730–739.

[30] R. Croft, Y. Xie, M. Zahedi, M. A. Babar, and C. Treude, “An empirical
study of developers’ discussions about security challenges of different
programming languages,” Empirical Software Engineering, vol. 27, pp.
1–52, 2022.

[31] T. Lopez, T. Tun, A. Bandara, L. Mark, B. Nuseibeh, and H. Sharp,
“An anatomy of security conversations in stack overflow,” in 2019
IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS). IEEE, 2019, pp. 31–
40.

[32] V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, pp. 528–532, 1994.

[33] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms
and applications: A survey,” Ain Shams engineering journal, vol. 5,
no. 4, pp. 1093–1113, 2014.

[34] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and E. Shihab,
“Challenges in chatbot development: A study of stack overflow
posts,” in Proceedings of the 17th International Conference on
Mining Software Repositories, ser. MSR ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 174–185. [Online].
Available: https://doi.org/10.1145/3379597.3387472

[35] K. Stakoulas, K. Georgiou, N. Mittas, and L. Angelis, “An analysis
of user profiles from covid-19 questions in stack overflow,” in 25th
Pan-Hellenic Conference on Informatics, ser. PCI 2021. New York,
NY, USA: Association for Computing Machinery, 2022, p. 419–424.
[Online]. Available: https://doi.org/10.1145/3503823.3503900

[36] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[37] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[38] W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. S. Dhillon, “Taming
pretrained transformers for extreme multi-label text classification,” in
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ser. KDD ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 3163–3171.
[Online]. Available: https://doi.org/10.1145/3394486.3403368

[39] P. Rajapaksha, R. Farahbakhsh, and N. Crespi, “Bert, xlnet or roberta: the
best transfer learning model to detect clickbaits,” IEEE Access, vol. 9,
pp. 154 704–154 716, 2021.

[40] K. Rajanbabu, I. K. Veetil, V. Sowmya, E. Gopalakrishnan, and K. So-
man, “Ensemble of deep transfer learning models for parkinson’s disease
classification,” in Soft Computing and Signal Processing: Proceedings
of 3rd ICSCSP 2020, Volume 2. Springer, 2022, pp. 135–143.

https://doi.org/10.1145/3339252.3340336
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1145/3544902.3546245
https://doi.org/10.1145/3379597.3387472
https://doi.org/10.1145/3503823.3503900
https://doi.org/10.1145/3394486.3403368

[41] C. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model
for sentiment analysis of social media text,” in Proceedings of the
international AAAI conference on web and social media, vol. 8, no. 1,
2014, pp. 216–225.

[42] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto,
“Sentiment analysis for software engineering: How far can we go?” in
Proceedings of the 40th international conference on software engineer-
ing, 2018, pp. 94–104.

[43] J. Saldaña, “The coding manual for qualitative researchers,” The coding
manual for qualitative researchers, pp. 1–440, 2021.

[44] M. Allamanis and C. Sutton, “Why, when, and what: analyzing stack
overflow questions by topic, type, and code,” in 2013 10th Working
conference on mining software repositories (MSR). IEEE, 2013, pp.
53–56.

[45] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack overflow: A code
laundering platform?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017,
pp. 283–293.

[46] R. L. Nord, I. Ozkaya, E. J. Schwartz, F. Shull, and R. Kazman, “Can
knowledge of technical debt help identify software vulnerabilities?” in
CSET@ USENIX Security Symposium, 2016.

[47] S. J. Oishwee, Z. Codabux, and N. Stakhanova, “An exploratory study
on the relationship of smells and design issues with software vulnera-
bilities,” in Proceedings of the 1st International Workshop on Mining
Software Repositories Applications for Privacy and Security, 2022, pp.
16–20.

[48] K. Z. Sultana, Z. Codabux, and B. Williams, “Examining the relationship
of code and architectural smells with software vulnerabilities,” in 2020
27th Asia-Pacific Software Engineering Conference (APSEC). IEEE,
2020, pp. 31–40.

[49] R. Ramač, V. Mandić, N. Taušan, N. Rios, M. G. de Mendonca Neto,
C. Seaman, and R. O. Spı́nola, “Common causes and effects of technical
debt in serbian it: Insightd survey replication,” in 2020 46th euromicro
conference on software engineering and advanced applications (seaa).
IEEE, 2020, pp. 354–361.

[50] T. Lopez, T. T. Tun, A. Bandara, M. Levine, B. Nuseibeh, and
H. Sharp, “An investigation of security conversations in stack overflow:
Perceptions of security and community involvement,” in Proceedings of
the 1st international workshop on security awareness from design to
deployment, 2018, pp. 26–32.

[51] M. Hazhirpasand, O. Nierstrasz, M. Shabani, and M. Ghafari, “Hurdles
for developers in cryptography,” in 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2021, pp.
659–663.

[52] S. Shalini and S. Usha, “Prevention of cross-site scripting attacks
(xss) on web applications in the client side,” International Journal of
Computer Science Issues (IJCSI), vol. 8, no. 4, p. 650, 2011.

[53] R. Kombade and B. Meshram, “Client side csrf defensive tool,” Inter-
national Journal of Information and Network Security, vol. 1, no. 3, p.
171, 2012.

[54] D. Kar and S. Panigrahi, “Prevention of sql injection attack using query
transformation and hashing,” in 2013 3rd IEEE International Advance
Computing Conference (IACC). IEEE, 2013, pp. 1317–1323.

[55] F. Calefato, F. Lanubile, and N. Novielli, “How to ask for technical
help? evidence-based guidelines for writing questions on stack overflow,”
Information and Software Technology, vol. 94, pp. 186–207, 2018.

[56] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, pp. 131–164, 2009.

	Introduction
	Related Work
	Methodology
	Goal
	Research Questions
	Extracting Security Questions
	Classification Model
	Data Analysis

	Results
	RQ1: To what extent do developers indicate suboptimal security practices in security-related questions?
	RQ2: Which security tags are more recurrent in security-related TD questions?
	RQ3: What are the different characteristics of security-related TD questions?
	RQ4: What are the user profiles asking security-related TD questions?
	Qualitative Analysis: Question Types
	Qualitative Analysis: Security Topics

	Discussion
	Implications
	Threats to Validity
	Conclusions and Future Work
	References

