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Abstract With the growing adoption of ICT solutions, developing energy efficient
software becomes increasingly important. Current methods aimed at analyzing en-
ergy demanding portions of code, referred to as energy hotspots, often require ad-
hoc analyses that constitute an additional process in the development life cycle. This
leads to the scarce adoption of such methods in practice, leaving an open gap be-
tween source code energy optimization research and its concrete application. Thus,
our underlying goal is to provide developers with a technique that enables them
to efficiently gather source code energy consumption information without requiring
excessive time overhead and resources. In this research we present a naive spectrum-
based fault localization technique aimed to efficiently locate energy hotspots. More
specifically, our research aims to understand the viability of spectrum based energy
hotspot localization and the tradeoffs which can be made between performance and
precision for such techniques. Our naive yet effective approach takes as input an
application and its test suite, and utilizes a simple algorithm to localize portions
of code which are potentially energy-greedy. This is achieved by combining test
case coverage information with runtime energy consumption measurements. The
viability of the approach is assessed through an empirical experiment. We conclude
that the naive spectrum based energy hotspot localization approach can effectively
support developers by efficiently providing insights of the energy consumption of
software at source code level. Since we use processes already in place in most com-
panies and adopt straightforward data analysis processes, naive spectrum based en-
ergy hotspot localization can reduce the effort and time required for assessing en-
ergy consumption of software and thus make including the energy consumption in
the development process viable. As future work we plan to (i) further investigate
the tradeoffs between performance and precision of spectrum based energy hotspot
approaches (ii) compare our approach to similar ones through large-scale experi-
ments. Our ultimate goal is to conceive ad-hoc tradeoff tuning of performance and
precision according to development and organizational needs.
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1 Introduction

Nowadays, software systems are becoming more and more ubiquitous. With the ever
increasing adoption of software solutions, the energy consumption of the underlying
hardware on which the software is run is no longer negligible. This becomes par-
ticularly evident if data centers are considered. In fact, an increasing amount of re-
sources is allocated nowadays to ICT [37], and the overall consumption of data cen-
ters alone accounted between 1.1 % to 1.5 % of global energy consumption already
back in 2010 [22]. In addition to the environmental impact of ICT, another aspect
deeply influences the software energy efficiency research field, namely mobile de-
vices. Mobile devices are notably characterized by a limited amount of resources at
their disposal. Hence, energy efficiency is becoming an increasingly crucial perfor-
mance and usability concern for mobile users. During the years, numerous research
efforts focused on the evaluation of the energy efficiency of software products [38].
Such research results to be homogeneous w.r.t. the domain and approach utilized
in order to assess the energy consumption of software systems. In particular, due
to the recent popular shift towards the cloud paradigm, an increasing number of
studies focus on possible software optimizations aimed to improve the energy effi-
ciency of large data centers [16, 15, 7]. Following the same rationale of popularity,
a wide range of approaches aimed at assessing, measuring and optimizing energy
consumption of mobile applications have been reported in the literature [11, 27, 10].

Energy efficiency assessment analyses can be divided into two macro-categories,
namely static and dynamic analyses, according to the specific technique adopted
to evaluate the energy efficiency. As the name suggests, static analyses commonly
evaluate the energy efficiency of source code without compiling and executing it.
Instead, such techniques rely on analyzing the source code in order to map compu-
tations to CPU cycles or energy models, in order to obtain an estimate of the energy
consumed at runtime [36]. Static analyses are usually characterized by being tech-
nology dependent, i.e. specifically tailored for a programming language or frame-
work. In addition, while the time required to execute static analyses is generally
low, the output often results to be an approximation of the energy consumed, lack-
ing empirical evidence of the calculated outcomes. In contrast, dynamic analyses
are usually carried out by directly measuring the run-time energy consumption of
a software application. Such approaches are usually adopted to validate hypotheses
through empirical experiments or carry out ad-hoc energy efficiency assessments.

Dynamic analyses, in contrast to the static ones, provide precise information on
the energy that is consumed by the hardware on which the analyzed software ap-
plication is executed, and hence result to be generally more reliable in terms of
precision w.r.t. the static ones. Nevertheless, dynamic analyses require more time to
be carried out than static analyses, as the time required to execute some function-
ality is needed in order to gather measurements. In addition, dynamic analyses are
often characterized by time-demanding set-up times, which are necessary to iden-
tify the variables to be considered and to implement the experiment framework in
which the experiment is carried out. In addition, dynamic analyses heavily rely on
the identification of a significant set of use case scenarios through which the soft-
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ware application under analysis has to be load tested. Such a process is crucial, as,
in case of an ill-suited selection of use case scenarios, the dynamic analysis might
lead to inconclusive or insignificant results. Due to its importance, the selection, im-
plementation, and execution of use case scenarios often results in a time demanding
process. It also requires knowledge of the software under analysis and resources to
be allocated for such a task. As a primary or secondary end result, static and dy-
namic analyses often lead to the identification of energy hotspots, i.e. scenarios in
which executing an application causes the underlying hardware on which the appli-
cation is run to consume abnormally high amounts of energy [5]. In general, energy
hotspot localization often results in time- and resource-consuming processes, lead-
ing to their scarce adoption in industrial settings.

In this paper, we adapt the knowledge of spectrum-based fault localization re-
search in order to evaluate if similar techniques can be utilized in order to detect
portions of source code which consume an anomalous amount of energy. Spectrum-
based fault localization techniques rely on the coverage information of test cases in
order to pinpoint portions of source code which are more likely to contain faults.
We investigate if a naive spectrum based testing technique can be used to efficiently
localize energy hotspots. As a result, we lie the groundwork towards a better un-
derstanding of potential tradeoffs which lie between performance and precision of
spectrum based energy hotspot localization techniques.

The remainder of the paper is structured as follows: in Section 2 the literature
related to our study, i.e. considering software energy efficiency assessment, is pre-
sented. The naive approach combining program spectra and empirical energy mea-
surements that we conceived for energy hotspot localization is presented in Sec-
tion 3. In Section 4 we document the details and results of the empirical experiment
we devised in order to assess the viability of our approach. In Section 5 the threats
to validity of our experiment are reported. In Section 6 we discuss the benefits and
drawbacks of our approach and the results of the experiment. Finally, in Section 7
we report the conclusions and the future steps this research leads to.

2 Related Work

Energy efficiency measurements raise the interest in different fields, e.g. data cen-
ters, mobile devices, and cloud computing. Hence, it is not surprising that there
are plenty of research activities addressing methods how to measure the energy
consumption of ICT, even if the focus on the software side is quite new in this
context [30, 38]. Thus, the following section will provide an insight into the
research field of green software engineering, focusing on energy efficiency of
software, as well as corresponding measurement methods. We do not claim to
present a comprehensive literature analysis, as many literature studies and exten-
sive literature discussions in this context have been published, e.g. by Procac-
cianti et al. [33], Bozzelli et al. [8], Zein et al. [41], and, focusing on mobile applica-
tions, Vásquez et al. [24]. According to Calero et al. [9], compared to other sustain-
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ability issues of software, energy, or rather power consumption is much more ad-
dressed in context of measurements. Besides differentiating between static and dy-
namic energy efficiency assessment analyses (see Section 1), the approaches avail-
able in the literature can be distinguished according to the methods used to carry out
the measurement (black-box/white-box measurements, see e.g. [20, 4]), the system
under test (mobile-device/desktop-computer/server-system), and the strategy for the
acquisition of data (energy consumption measurement/estimation).

Black box measurements regard the system under test (SUT) as a black box to be
tested without any knowledge of the implementation of the software [4]. In contrast,
white box measurements analyze the software product based on its source code. One
example for this latter type of analysis is the energy efficiency assessment of differ-
ent programming languages and algorithms to solve a specific problem, e.g. the
work of presented by Rashid [34] considering sorting algorithms. In a study by Jo-
hann et al., source code instrumentation is used to locate resource intensive parts of
programs in order to improve them [20]. This is also done by Procaccianti et al. [33]
when testing energy efficient software practices and by Verdecchia et al. [39] in the
context of energy optimizations through code-smell refactoring. Most of such meth-
ods are based on predefined Use Case Scenarios (UCS), through which software
applications are load-tested.

One big issue in the context of energy consumption of software lies in the field of
mobile devices. Similarly to software developers, users are not aware of the energy
consumption of mobile software applications [28]. Nevertheless resource-related
complaints have a high relevance in the context of mobile applications [21]. Thus,
researchers conceived numerous approaches aimed to assess the energy consump-
tion in context of mobile devices: In order to automatically test mobile applications,
Linares-Vásquez et al. [24] present a conceptual framework following the CEL prin-
ciples: Continuous, Evolutionary, and Large-scale. Wilke et al. [40] provide a pro-
totypical realization of energy profiling as a service for mobile applications. This
service is conceived to support research groups and application developers in order
to reduce the effort to build up a dedicated testing environment. Ahmad et al. [3]
present a comprehensive comparison of different energy profiling methodologies in
case of mobile applications: they compare different energy profiling schemes, hard-
ware and software based profiling methods, and introduce a thematic taxonomy in
this context. In the context of desktop computers and server systems, end user does
not directly recognize the energy consumption in the form of battery life. Neverthe-
less, we also consider these two fields as relevant in case of finding solutions for
energy efficient software.

The concept of efficiently identifying energy consuming software components is
gaining more and more attention in the literature. In the context of mobile applica-
tions, Pathak et al. [29] present an approach aimed at assessing the energy consump-
tion of four different program entities, namely processes, threads, subroutines, and
system calls. In comparison, our approach results to be language independent, and
focuses on distinct entities, namely program branches, functions, and lines of code.
In a related work by Liu et al. [25] the energy inefficient usage of mobile sensors
and related data is assessed by simulating the runtime behavior of an application.
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Apart from the context considered (which in our case is not focusing exclusively on
sensor usage and the mobile ecosystem) our study differs by being driven by real
measurements, i.e. without simulating software energy consumption through real
time hardware measurements. Li et al. [23] present a tool based on path profiling to
correlate energy measurements to single lines of code. In contrast to this study, our
approach considers three distinct levels of granularity, namely program lines, func-
tions and branches. Additionally, our study has a different underlying goal, namely
exploring the viability that naive approaches can have to detect energy hotspots at
source code level. Investigating such hypothesis lies the groundwork towards a bet-
ter understanding of the tradeoffs between precision and performance of spectrum
based energy hotspot localization techniques, striving towards conceiving simple
yet effective analyses. In the work of Hindle et al. [17] a framework to automat-
ically gather energy consumption data of mobile applications at test case level is
presented. Our work builds on such a concept by adopting a refined level of gran-
ularity. This is done in our approach by computing which portions of code covered
by the test cases are more/less energy efficient.

The research which relate the closest to our study are the ones of Pereira et
al. [31, 32]. In their studies, a tool under development named SPELL is presented.
The tool makes use of an adaptation of spectrum-based fault localization [2] by con-
sidering three different parameters for each test case, namely energy consumption,
execution time, and number of executions. In comparison, our approach exclusively
relies on the variation of energy of each test case execution. Additionally, our ap-
proach does not rely on the coefficient of test case similarity, but instead evenly dis-
tributes the energy consumption among the items covered by the test cases. While
the goal of the SPELL tool [31, 32] lies in providing the means to precisely lo-
cate energy hotspots in source code, our study aims to investigate if more naive
approaches can be used to effectively locate them. This enables us to lie the ground-
work to accurately understand through empirical experimentation the magnitude of
the tradeoff that lies between performance and precision of spectrum based energy
hotspot localization. Through this initial step we aim to provide the basis in order to
experiment with incremental depth the impact of performance w.r.t. precision. This
would potentially enable a fine grained tuning of the parameters, in order to adjust
them according to development and organizational needs.

Summarizing, research activities focusing on subjects related to the energy es-
timation of software are carried out. The approach presented in this paper aims to
investigate more in depth a specific aspect of a particular technique, namely spec-
trum based energy hotspot localization. More specifically, we carry out a prelimi-
nary investigation in order to understand if a naive spectrum based approach, which
is potentially more performant but also less precise than existing techniques, can be
utilized to effectively localize energy hotspots in source code. This enables us to lay
the groundwork towards understanding such tradeoffs by empirical means, with the
final goal of considering and tuning the approach on an ad-hoc basis.
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3 Approach

As presented in Section 2, a commonly adopted technique used to empirically eval-
uate the energy efficiency of software applications is to utilize UCSs in order to
load-test an application and measure the energy consumption of the underlying
SUT. Nevertheless such a technique binds the energy consumption exclusively to
UCSs, which might vary in number of steps, complexity and required execution
time. Hence, it is hard to remap the energy consumption induced by the UCS exe-
cution to a particular portion of code, as the only data available is the atomic energy
consumption, relative to the execution of entire UCSs.

In this paper we present a naive approach which combines program spectra infor-
mation [35] (also referred to as code coverage) with runtime hardware energy con-
sumption in order to identify which portions of code are potentially energy-greedy.
The essential intuition behind our approach is to take advantage of commonly pre-
existing artifacts of software applications, namely test suites and test case coverage
data, and combine this information with runtime energy measurements in order to
identify energy-greedy portions of code. Specifically, the approach is composed of
two phases, the first of which consist of two independent steps that can be executed
in arbitrary order. An overview of the phases and steps of the approach are presented
in Figure 1.

Fig. 1 Steps and phases of our approach

More specifically, the phases of our approach consist of:
Phase 1 - Step 1: Test case coverage data collection. The goal of this step is

to gather the coverage information of each available test case. The coverage criteria
considered (e.g. function, branch, or line coverage) will result in the granularity at
which the energy hotspot localization will be carried out. If coverage information is
already available, e.g. if regression testing processes are in place, this step can be
skipped in order to accelerate the process.

Phase 1 - Step 2: Test case energy consumption measurement. The goal of
this step is to measure the energy required by the SUT in order to execute each test
case individually. This step consists of (i) the individual execution of each available
test case and (ii) the measurement of the energy consumption of the SUT on which
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the application is running. In order to gather enough statistical data, each test case
can be executed multiple times (as further detailed in Section 4.2). In order to carry
out this step, a power meter (PM) with the ability to export the measurement data is
required to monitor the power consumption of the SUT.

Phase 2: Naive spectrum based energy hotspot localization. The third step of
the approach consists of the combination of the information gathered from Step 1
and 2. In particular, in order to localize potential energy hotspots, the approximate
energy consumption of each item of the coverage level considered (e.g. function,
branch or source code line) is calculated by (i) iterating over the coverage informa-
tion of each test case to count how often each item is covered, and (ii) assigning to
each item its average energy consumption.

Intuitively, we want to identify those items that are more often involved in
energy-hungry calls during program execution. This means that for each covered
item i, the corresponding energy Ei is calculated as

Ei =
1
ni

ni

∑
j=0

E j

k j
(1)

where ni is the total number of test cases in which item i is covered; for each test
case j, E j is its average energy consumption and k j is the number of items it covers.
In this way, the energy E j measured for each test case j is equally distributed among
the items k j covered by the test case. Subsequently, the estimated energy Ei of each
item i is averaged among all ni energy measurements E j

k j
of each test case j covering

the item, identifying which items are more often involved in energy-hungry calls.

4 Experimental proof of concept

In order to confirm the viability of the approach, we devised an experimental mea-
surement setup and analyzed the results we gathered from it. To carry out the ex-
periment, we selected an artifact available in the Software-artifact Infrastructure
Repository (SIR)1 [13]. We adopted this repository as it contains a set of software
artifacts with already implemented test suites and relative coverage data. With the
artifacts, we devised a controlled measurement experiment, where we assessed the
energy consumption of a system under test (SUT) running the software, following
ISO/IEC 14756 as introduced by Dirlewanger [12]. More specifically, we collected
runtime energy measurements, and subsequently distributed the energy consump-
tion over the test cases and, using the coverage information of the test cases, over
the functions, branches and source code lines, following the approach described in
Section 3. From SIR, we selected the Unix command-line utility program “grep”.
The measurement setup, data collection process, and results are described below. A

1 The repository is available online at http://sir.unl.edu [Retrieved 2018-01-05]
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replication containing the software artifacts and scripts utilized to run the experi-
ment, process the data, and analyze the results is available online2.

4.1 Measurement setup

As described, we adopted a measurement setup for our empirical measurements, fol-
lowing ISO/IEC 14756. To measure the energy consumption of a software product
(or in our case a software artifact), the standard suggests to let a computer system (in
our case a desktop computer3) execute a defined set of tasks and monitor the con-
sumption of the system under test at the hardware level. Figure 2 depicts the mea-
surement setup utilized to record the energy consumption of a SUT that is induced
by a software product. Before the software product is installed on the SUT, all possi-
ble background processes, such as automatic updates, virus scanners, indexing- and
backup processes, are deactivated and a baseline measurement is conducted. This is
done to ensure minimal side effects. The workload generator then triggers the exe-
cution of the test case on the SUT (in our case by means of a Bash script). The power
supply of the SUT is monitored by a power meter4, which collects the data. The data
is aggregated in a centralized data storage and then analyzed. The measurement data
and workload statistics are synchronized by means of time stamps.

Fig. 2 Setup for measuring the energy consumption of software

2 https://github.com/energyHotspots/EnviroInfo2018/
3 Hardware specifics of the SUT adopted for experimentation: AMD Ryzen 7 1700, GeForce
GTX 1060, 16 GB DDR4 RAM @ 2133 MHz, MSI B350 PC Mate, running Ubuntu 16.4 LTS.
4 Power meter utilized for the measurements: Janitza UMG 604 Power Analyser. Sampling rate:
20 kHz, resolution: 10 mV, 1.0 mA.
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The test script repeats the execution of each use case scenario (in our case 16
times5). For each measurement, we record the power input, which is directly aver-
aged per second by the power meter. We store the measurement data together with
the log data from the load generator in a database, in order to be able to accurately
map test cases to their energy consumption. Details on the measurement procedure
can also be found in [14]. In the following, we present the results of the measure-
ments from the case study.

4.2 Data collection

The aim of the work described in this section was to create a proof of concept for the
approach we conceived. In order to do so, we selected a software artifact available on
SIR namely, ”grep” version 3. The test suite available for this application consists
of 808 test cases. grep is a linux command-line utility, that processes text inputs
and prints lines which match a specified expression. The SIR test cases consist of
grep calls with parameters of the sort:

grep -e if -e else ../inputs/grep1.dat

In this exemplary case, the parameter -e is the expression that is searched for in the
input file grep1.dat. After several trial runs, we chose to repeat each test case
5000 times for one test run. This method stretches the execution time of the test
cases to an average of 11.38 seconds to ensure viable measurements with our power
meter. Additionally, as we want to measure exclusively the energy consumption
induced by grep, we write all results of the calls to the null device in order to avoid
measurement noise caused by the operations required by the operating system to
print the text.

After all data was collected, we analyzed the power measurement by first av-
eraging over the 16 times 5000 measurements of each test case. Figures 4 and 3
show the mean power consumption values of each call (i.e. test case) and the power
consumed, plotted against the average duration of that call, respectively.

To evaluate the precision of the measurement setup we calculated the average
standard deviation of the power measurement per test case to be 3.23 · 10−3 milli-
watts (with a mean value of 0.797 milliwatts) and the average standard deviation for
the duration to 36.5 milliseconds (with a mean value of 11.38 seconds). To factor in
the duration of the individual calls, from this point forward, we use the average en-
ergy per test case, which is calculated as the average power consumption, multiplied
with the average duration (this results in the unit millijoule [mJ]).

Finally, we take into consideration the test suite coverage information available
on the SIR repository for the artifact considered. The coverage information is sepa-
rated into the three categories

5 One use case scenario consists of all test cases from the SIR test suite for the program “grep”.
Each test case was repeated 5000 times in each scenario. Thus, each test case was run 80000 times
(see also Section 4.2).
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Fig. 3 Mean power consumption in milliwatts, plotted against the mean duration of the test case
in seconds
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Fig. 4 Mean power per test case in milliwatts

• function coverage (107 functions),
• branch coverage (1801 branches), and
• line coverage (13372 lines of code, including comments).

To take the final step towards assessing the average energy consumption on a
function-, branch-, and line-based level, we simply iterate over the coverage infor-
mation of each test case for the three categories, count how often each item is cov-
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ered, and assign it its average energy consumption. Specifically, energy consumption
of each item i is calculated by applying Formula 1 reported in Section 3 (Step 2).

4.3 Results

In this section we report the results gathered for our experimental proof of concept.
More specifically, in order to carry out a preliminary evaluation of the viability of
our approach, the results gathered through the reported experiment were manually
inspected. This operation consisted in (i) examining the processed data, (ii) selecting
a subsample of items according to which ones resulted to be potentially more/less
energy-greedy (iii) inspecting the source code of the selected items to get more
insights of the results. In order to be able to carry out an in-depth manual evaluation
of the gathered results, we concentrated our efforts in inspecting the items identified
at function level. In order to do so, we considered the calculated average energy
consumption estimates for each function covered by the test cases. Functions that
resulted not to be covered by the test suite were not considered during the hotspot
identification, as no coverage data was available as input for our approach.

0.5 1.0 1.5

Average energy consumption per covered function

Average energy [mWs]

Fig. 5 Distribution of the average energy consumption of covered functions

Figure 5 presents the measurements of the average estimated energy consumption
per function. We can observe clearly that there is one function with a particularly
high energy reading. For Figure 6 we additionally assigned a color palette to the
energy consumption to ease through graphical means the identification of the most
energy consuming functions. In our case we can observe that function usage()
consumes much more energy than all others. This visual example shows the po-
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tential of the approach to rapidly and efficiently report the results of the hotspot
analysis. A similar visualization technique could be used in a future tool (e.g. an
IDE plugin) to directly point the developer to the energy hotspots in their source
code editor.

4.4 Approach viability

From the manual inspection of the results gathered from the experiment, we can
conclude that our naive approach can successfully detect energy-greedy items. As
the manual inspection of source code resulted in a time consuming process, we con-
centrated out effort in the in-depth analysis of a subset of prominent items identified
at the function coverage level. Specifically we manually inspected the source-code
of the 6 most energy-greedy functions and 11 of the least energy-consuming ones in
order to assess the viability of our approach (see Figure 6). In order to comprehen-
sively interpret the data, in addition to the hotspot analysis results, we also inspected
the unprocessed test case coverage information included in the replication package.
In the reminder of this section we briefly discuss the manual inspection results.

Regarding the most energy-consuming functions, 6 were identified, namely:
usage(), fatal(), ck_atoi(), Fcompile(), and Fexecute(). From the
manual investigation of the source code of the function usage(), two main reasons
were identified for its high energy consumption, namely: (i) the function is always
part of test cases covering only few functions, i.e. the energy overhead required to
start and end the grep process highly influences the average energy consumption,
and (ii) the function makes use of output printing more extensively than all other
functions. From this occurrence, we can conclude that the energy hotspot is caused
by the expected behaviour of the function, and hence does not require refactoring.

From the manual inspection, the high energy readings of fatal() appear to be
caused, as for the function usage(), by the appearance of such functions in “short”
test cases. The energy hotspot is therefore caused by the application start and end
energy overhead, and should hence not be considered for refactoring processes.

The xrealloc() and ck_atoi() functions resulted to be energy-greedy,
presumably, due to the involved computations, namely: expensive memory opera-
tions and iterating, checking and converting each character of a string into numeral.
A careful inspection of such occurrences should be carried out by the application
developers in order to assess if such operations can be optimized.

Through the inspection of the implementation of FCompile() and Fexecute(),
we concluded that their high-energy consumption is caused by complex computa-
tions, involving nested loops and goto statements. As for the previous example,
further inspection by the developers of the application should be conducted to in-
vestigate possible energy optimizations of this hotspot.

Regarding the least energy consuming functions, as can be seen in Figure 6, these
resulted in most of the cases to be simple character comparison functions, such
as is_alnum (is alphanumeric), is_digit (is numeric), is_lower (is lower



Code-level Energy Hotspot Localization via Naive Spectrum Based Testing 13

case), etc. This leads us to conclude that simple atomic functions, which intuitively
consume little energy, are also correctly identified by our approach.

In summary, from the manual inspection of the results, we can conclude that our
approach is able to detect both low- and high-energy-consuming portions of code.

Energy consumption per function
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5 Threats to Validity

In this section we report the threats to validity of the experiment adopted for the pre-
liminary assessment of the viability of our approach. It is important to bear in mind
that this research focuses on the exploration of the possibilities that lie in adapt-
ing a naive spectrum-based fault localization technique in order to identify energy
hotspots at source code level. Therefore, the focus of the research lies in the presen-
tation of the potential of such concepts, rather than on their extensive evaluation by
empirical means. Nevertheless, in order to provide an overview of the main short-
comings of the preliminary empirical evaluation reported in this paper, the major
threats to validity that have to be considered for this research are presented below.

External Validity. The adoption of a single software artifact for the experiment
results to be our major threat to external validity. One of the main benefits of our
approach is that it is language independent, i.e. the only requirements necessary to
carry out the hotspot analysis are the availability of (i) a test suite with coverage
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information, and (ii) a power meter. In order to mitigate potential threats to external
validity, as future work, we plan to extensively evaluate the approach on a large set
of applications, ranging different languages and technologies.

Internal Validity. In order to mitigate potential threats to internal validity, we
took precautions to minimize side effects in the measurements, performed base-
line measurements of the SUT energy consumption (see Section 4.1) and executed
each test case multiple times (see Section 4.2) in order to ensure the statistical rel-
evance of the data. Furthermore, in order to evaluate the precision of the measure-
ment setup, we calculated the standard deviation of the power measurements and
execution times.

Construct Validity. In order to ensure that a relevant and indicative software
application and test suite was considered, we chose an artifact taken from a well
established repository, which is widely used for scientific software testing research,
namely SIR [13]. While constituting a representative measurand, the potential that
our approach has to be language independent was not explored further, as we con-
centrated on the evaluation of an artifact implemented in the programming lan-
guage C. This constitutes the most prominent threat to the construct validity of our
empirical evaluation. As for the threats to construct validity, the strategy required to
mitigate this threat consists of considering a large set of heterogeneous applications,
which will be adopted for experimentation in the future.

Conclusion Validity. The most notable threat to conclusion validity is consti-
tuted by the analysis method adopted to inspect the results. In fact, in order to
evaluate the results in depth, a manual evaluation was adopted. Nevertheless, this
process is error-prone and sensitive to potential subjective interpretation of the re-
sults. Additionally, such process was carried out by researchers which did not de-
velop the application, further increasing this threat to validity. In order to mitigate
such threat, three researchers independently carried out the manual inspection of the
results and jointly discussed them in order to identify potential occurrences of di-
vergent interpretations. An additional threat to conclusion validity is the inspection
of a subset of typology of items (namely a subset of high/low energy consuming
functions), which was adopted due to time constrains, as the manual inspection of
the entirety of all covered item types resulted to be a very time-consuming process.

In order to mitigate the identified threats to conclusion validity of the study, in
our future work we envision to involve developers of the analyzed applications in
the evaluation process.

6 Discussion

In this paper, we present the opportunities that lie in utilizing spectrum based fault
detection techniques to localize potential energy hotspots at source code level.
Adapting spectrum based fault detection techniques for energy hotspot localization
can lead to many potential benefits, but entails also some potential drawbacks. In
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this section we discuss the benefits and drawbacks we identified by considering the
approach we conceived:

6.1 Approach Benefits:

(i) time-efficiency: the approach does not require much time to set-up and carry
out, as it relies on artifacts which are commonly present in software environments
(namely applications and test suites), and requires the time needed to collect cover-
age information and execute test cases6. The strength of our approach lies in the time
required to calculate the average energy per item. In fact, compared to other simi-
lar approaches, our naive approach result to be less complex from a computational
point of view. The gain in effectiveness might negatively impact the precision of the
analysis. Nevertheless this latter point requires serious empirical experimentation,
that is left as part of out future work.

(ii) language independence: as similar approaches, our conceived one is language
independent and potentially technology agnostic. The only technology requirements
are that the application to be analyzed is provided with a test suite and that coverage
data is obtainable through profiling tools.

(iii) test relevance reliability: the approach takes advantage of pre-existing test
suites of the application to be analyzed. The identification of the portions of code
to be inspected is therefore delegated to the software testing processes. Hence, the
depth of the analysis and the items considered is exactly the same as one utilized
by developers to test the application. This means that our approach does not rely on
ad-hoc identified UCSs, which usually characterize empirical energy measurement
approaches.

(iv) variable granularity: our approach specifically takes into account different
levels of granularity, according to the coverage criteria considered (e.g. function,
branch, and line coverage). Therefore the energy hotspot localization can be tuned
according to different levels of depth in order to better fit into time constraints,
desired precision or other requirements.

(v) driven by real measures: the approach is based on the refinement of exact en-
ergy consumption measurements and not on simulated results based on source code
inspection. This means that hardware specifications can be easily considered by ex-
ecuting the measurements on the hardware itself, and do not have to be simulated
and approximated by theoretical means.

(vi) outsourcing opportunities: The presented approach requires a power meter.
This gives the opportunity to software service providers to make available their mea-
surement infrastructure in a Platform as a Service (PaaS) fashion in order to offer
quick, reliable and easy to access empirical energy analyses of software products.

6 Empirical measurements could be collected even during normal testing processes by measuring
the runtime energy consumption during the test case execution. Additionally, if regression testing
processes are adopted (i.e. coverage data is already available), coverage information does not need
to be acquired, further accelerating the hotspot detection process.



16 Verdecchia et al.

This service could be integrated in existing IDEs, and requires exclusively a soft-
ware application, its test suite, and optionally test coverage information.

6.2 Approach Drawbacks:

(i) test suite dependence: our approach does not entail a formal technique aimed
to systematically explore code bases, but rather takes advantage of existing data col-
lected from software testing processes which are already in place. For this reason
our approach heavily relies on pre-made test suites: If a considered test suite is of
low quality, so will potentially be the results of the energy hotspot localization anal-
ysis. This implies that, in order to produce accurate results, our approach requires
test suites which are indicative of the real life usage of the analyzed application. Ad-
ditionally, the input of the use cases should be representative of the common usage
of the analyzed application. The less such assumption holds, the more the results
of the hotspot analysis will diverge from the real world energy consumption of the
application.

(ii) power meter requirement: the most prominent requirement of our approach
is the necessity of a power meter in order to carry out the empirical measurements.
While seldom available, these hardware components result to be rather inexpensive
and are frequently deployed in academic and industrial environments which focus
on hardware/software energy efficiency research. Furthermore, by considering the
mobile device ecosystem, it is possible to take advantage of measurements gathered
through one of the many energy profilers that exist to date [18], which have been
effectively utilized in previous researches [26, 19]. Additionally, there are also ap-
proaches that aim at removing the need for power meters through software based
estimation of power demand [6].

(iii) localization uncertainties: The most prominent drawback of our approach
is its potential lack of precision. On the one side, our approach takes advantage
of spectrum based testing techniques in order to efficiently localize potential en-
ergy hotspots. On the other side, it also inherits the intrinsic uncertainties that such
techniques entail [1]. Additionally, our approach leverages precision in favour of
performance. This is achieved by equally splitting the energy consumption of a test
case among all its covered items. This can potentially lead to the calculation of fast
estimates to the cost of a loss of precision. Our approach is conceived in order to bet-
ter understand the potential tradeoffs that lie between performance and precision of
spectrum based energy hotspot localization approaches. More specifically, if com-
pared to related work, the approach presented in this study is potentially less precise
but also less complex from a computational point of view. Nevertheless, from the
proof of concept experiment provided in this study, we assessed that our approach
results to be a viable option to effectively detect hotspots. As future work, we there-
fore plan to extensively compare our approach to other spectrum-based techniques,
in order to understand to which extent the possible performance gains affected its
precision. Additionally, we plan to improve the accuracy of our approach through
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different techniques and assess how these affect efficiency and efficacy. More in
detail, we plan to consider (i) the percentage of test cases covering each item, (ii)
the variability of the empirical measurements in order to assess the precision of
the estimates, and (iii) the adoption ad-hoc automated analyses to further inspect
potential energy hotspots that are identified. This will lay the groundwork towards
(semi-)automatic tuning of precision/performance of energy hotspot analyses based
on the software development context and requirements.

7 Conclusion and Outlook

In this paper we evaluate the effectiveness of a naive spectrum-based fault local-
ization technique for source code energy hotspot localization. More specifically, we
conceived an approach which, taking as input an application and its test suite, ef-
ficiently localizes portions of code which are potentially energy-greedy based on
straightforward data analysis processes. The viability of our approach was assessed
through a preliminary empirical experiment that we devised.

This exploratory research presents the opportunity for many future steps, based
on combination of empirical energy measurements and program spectra. More
specifically, our approach is conceived in order to evaluate the tradeoffs that lie
between efficiency and effectiveness of spectrum based energy hotspot localization
techniques. The approach conceived for this study is only in its preliminary state,
aimed to assess to which extent naive approaches can be adopted to locate energy
hotspots. From the experiment result we assess that naive spectrum based analyses
yield to promising results.

Additionally, we plan to incrementally extend the approach in order to increase
its precision and evaluate potential performance losses. Among various techniques,
we plan to consider (i) how many items cover the test cases, (ii) the variability of
energy measurements, and (iii) more advanced spectrum based techniques which
have been already conceived for fault localization [1]. In addition, we plan to carry
out a comprehensive comparison of our naive spectrum-based approach with other
hotspot localization approaches in order to better understand the tradeoffs between
performance and precision that our approach entails. This will lay the groundwork to
explicit the possible tradeoffs and potentially conceive ad-hoc tuning of parameters
in order to set them according to development and organizational needs. In addi-
tion, we plan to assess the efficacy and effectiveness of the approach by considering
for experimentation a large set of heterogeneous applications, ranging different lan-
guages and technologies.
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