Green Al: Which Programming Language
Consumes the Most?

Niccold Marini*, Leonardo Pampaloni*, Filippo Di Martino*, Roberto Verdecchia™, and Enrico Vicariof
University of Florence, Software Technologies Laboratory
*name.surname @edu.unifi.it, fname.surname @ unifi.it

Abstract—Al is demanding an evergrowing portion of environ-
mental resources. Despite their potential impact on Al environ-
mental sustainability, the role that programming languages play
in Al (in)efficiency is to date still unknown. With this study, we
aim to understand the impact that programming languages can
have on Al environmental sustainability. To achieve our goal, we
conduct a controlled empirical experiment by considering five
programming languages (C++, Java, Python, MATLAB, and R),
seven Al algorithms (KNN, SVC, AdaBoost, decision tree, logistic
regression, naive bayses, and random forest), three popular
datasets, and the training and inference phases. The collected
results show that programming languages have a considerable
impact on Al environmental sustainability. Compiled and semi-
compiled languages (C++, Java) consistently consume less than
interpreted languages (Python, MATLAB, R), which require up to
54x more energy. Some languages are cumulatively more efficient
in training, while others in inference. Which programming
language consumes the most highly depends on the algorithm
considered. Ultimately, algorithm implementation might be the
most determining factor in Green Al, regardless of the language
used. As conclusion, while making AI more environmentally
sustainable is paramount, a trade-off between energy efficiency
and implementation ease should always be considered. Green Al
can be achieved without the need of completely disrupting the
development practices and technologies currently in place.

I. INTRODUCTION

As artificial intelligence (Al) is becoming more and more
ubiquitous, the resources required to train and deploy Al
models have surged in recent times [1], [2]. While the devel-
opment of sophisticated Al algorithms has led to remarkable
innovations, it has also introduced new challenges related to
their energy consumption and carbon emissions. In a world
of limited environmental resources, the ever-growing energy
required to power Al is now a pressing concern [3].

The field of Green AI [4] tackles this issue by studying how
Al-centric applications can be designed, deployed, and used to
make Al more environmentally sustainable. Among a rapidly
growing corpus of literature, research focused primarily on
topics such as Al footprint monitoring, tradeoffs between
accuracy and energy consumption, energy efficient algorithm
design, and sustainable Al model deployment [5].

By considering at large the software sustainability research
landscape, some studies investigated the impact that program-
ming languages have on energy consumption [6], [7], [8].
Results show that language choice plays a crucial role in the
energy efficiency of software-intensive systems.

* The first three authors contributed equally to this work.
Corresponding author.

Albeit both Green Al and environmental sustainability of
programming languages are widely investigated subjects, the
intersection of the two topics appears to date to be still an
uncharted territory. In this research, we aim to make a first
step into the domain opened by the question:

“What is the impact of programming languages on
Al energy efficiency?”

To answer the question, we present an empirical experi-
ment considering popular Al libraries of five programming
languages (Python, C++, Java, R, and MATLAB), seven
exemplary Al algorithms (k-nearest neighbors, support vector
machine, AdaBoost, decision tree, logistic regression, naive
bayes, and random forest), and three broadly used Al datasets
(Iris, Breast Cancer, and Wine Quality).

Results show that choosing one language over another can
have up to a 54x increase in energy consumption. Addition-
ally, programming language energy efficiency differs when
considering the training and inference phases, making their
adoption to improve software sustainability highly depend on
the application context considered. Finally, as a conjecture
based on the empirical measurements collected, ultimately
the most important factor influencing Al energy efficiency
could be how algorithms are implemented, rather than the
specific algorithm or programming language considered. This
consideration may hold true even if, despite potentially using
pre-compiled libraries, the overhead of interpreted languages
cannot be fully offset by code optimization.

The main contributions of this study are:

o A rigorous empirical comparison of Al energy consump-
tion across multiple programming languages,

o A statistical and discursive interpretation of the results
collected via the empirical experiment,

« A comprehensive replication package, including all data,
scripts, and settings necessary to reproduce in their en-
tirety the presented results.’

II. EXPERIMENTAL METHODOLOGY

In this section we report all details regarding our experi-
ment, including research goal and questions (Section II-A),
experimental objects (Section II-B), dependent and indepen-
dent experimental variables (Section II-C), and experimental
procedure (Section II-D).

IReplication package: https://doi.org/10.6084/m9.figshare.27645786

https://doi.org/10.6084/m9.figshare.27645786

A. Research Goal and Questions

By considering the goal-question metric experiment defini-
tion by Basili et al. [9], our goal is formulated as follows:
Analyze Al model training and inference
For the purpose of understanding the energy consumption
With respect to programming languages
From the viewpoint of software researchers and practitioners
In the context of artificial intelligence.

Our goal takes a pragmatic stance, by studying in a black-
box fashion the energy consumed by popular Al libraries im-
plemented in different programming languages that developers
widely use “in the wild”.

The research goal is directly translated into our main
research question (RQ) guiding this study, namely:

RQ, What is the impact of programming languages on Al
energy efficiency?
The research question is further decomposed into two sub-
RQs to isolate the Al phase considered. Accordingly:

RQ1.1 What is the impact of programming languages on Al
training energy efficiency?

RQ1.5 What is the impact of programming languages on Al
inference energy efficiency?

With the two research questions, we aim to gain a com-
prehensive understanding on the impact that programming
languages can have not only on the creation of Al models
(RQ@1.1), but also on their follow-up utilization (RQ1 2).

B. Experimental Objects

For our experiment, we consider tree different datasets
taken from the popular University of California Irvine Ma-
chine Learning Repository.> The three datasets, used in the
experiment for classification tasks, are (i) “Iris”, comprising
150 tabular instances and four features, (ii) “Breast Cancer
Wisconsin (Original)”, comprising 699 multivariate instances
and 30 features, and (iii) “Wine Quality”, comprising 4.9K
multivariate instances and four features.

The datasets are chosen by ensuring heterogeneity in terms
of subject areas, number of instances, features, and data types.
As further detailed in Section V, the selection of the datasets
is guided by a tradeoff between external and internal validity
to ensure the rigor of the collected experimental data.

C. Experimental Variables

Our experiment is characterized by (i) a set of independent
variables, namely programming languages, algorithms, and Al
phase, the latter of which is also used as blocking factor, and
(i1) one dependent variable, namely energy consumption.

1) Programming Languages: The focal independent vari-
able of this study are programming languages, picked by
considering their popularity and Al applicability. The chosen
languages are: Python, C++, Java, R, and MATLAB.

Zhttps://archive.ics.uci.edu/ml/datasets. Accessed 23rd October 2024.

2) Algorithms: To gain a comprehensive understanding on
how programming languages can impact Al energy consump-
tion, we consider a heterogeneous range of popular Al algo-
rithms. The seven algorithms selected are k-nearest neighbors
(KNN), support vector classifier (SVC), AdaBoost, decision
tree, logistic regression, naive bayes, and random forest.

Algorithms selection is guided by algorithmic heterogeneity,
representativeness of different algorithmic families, popularity,
and cross-language off-the-shelf availability in de facto stan-
dard libraries such as scikit-learn.

We purposely opt not to focus in this study on GPU-
intensive algorithms such as deep-neural networks, due to their
different algorithmic and hardware setting nature, leaving their
consideration as future work (see Section VII).

3) Al phase (training and inference): The blocking factor
of our experiment are the Al training and inference phases.
Experimental results are collected and analyzed separately for
each of the two phases in order to answer our RQs (see
Section II-A). An 80-20 split is used to measure the energy
consumption of the two phases.

4) Energy Consumption: Trivially, our dependent variable
is the total energy, in Joules, consumed by all hardware
components used to execute the computations set up in our
experiment. Specifically, in the following we simply refer to
energy consumption as the sum of the energy required by
all hardware components involved, namely CPU, GPU, and
RAM. For details regarding the process used to collect energy
measurements, refer to Section II-D.

We purposely refrain from considering as dependent vari-
ables other software sustainability metrics, e.g., carbon foot-
print, as these metrics are highly influenced by external in
vivo factors, such as execution date, location, and energy
availability, making results hard if not even impossible to be
compared and reproduced.

D. Experimental Setup

In this section we document the experimental setup, in terms
of experimental hardware and software infrastructure utilized.

The entirety of the experiment is executed on a machine
featuring an Apple M2 chip with an 8-core CPU, an integrated
10-core GPU, 8GB of unified memory, 256GB SSD, running
on macOS v14.0.

To collect energy measurements, we utilize the CodeCarbon
library* (v2.2.2), a Python library collecting unified memory
architecture energy usage data based on a native utility pack-
age of the operating system used for the experiment.

Regarding algorithm implementation, to avoid potential
threats to internal validity, we rely on popular open source off-
the-shelf Al libraries available online. Specifically, for Python
we use scikit-learn (v1.5.1), providing the source code of all
algorithms considered. For C++ we use the implementation of
all algorithms provided in the milpack library (v3.8.6), except
AdaBoost, which is found in the XGBoost library (v2.1.2).

3https://scikit-learn.org. Accessed 23rd October 2024.
“https://github.com/mlco2/codecarbon,. Accessed 23rd October 2024.

https://archive.ics.uci.edu/ml/datasets
https://scikit-learn.org
https://github.com/mlco2/codecarbon

All Java algorithms are taken from the WEKA library (v4.5.0),
with the exception of Naive Bayes, that is implemented in the
OpenCV library (v4.10.0). The implementation of MATLAB
algorithms are taken from the Statistics and Machine Learning
Toolbox (v24.1). Finally, R algorithms are taken from the
caret library (v6.0.94). Further software environment specifics,
such as all dependencies of the packages reported above
accompanied by their version number used in our experiment,
are provided for replication and scrutiny purposes in our
replication package (see Section II-F)

All algorithms are compiled and run in their default settings,
by ensuring that all variables characteristic of the algorithms
studied (e.g., number of nearest neighbors for KNN), are set
as equal across the different implementations considered.

E. Experimental data collection procedure

To mitigate potential threats to internal validity each ex-
perimental run, i.e., combination of independent variables, is
executed 30 times, leading to a total of 6.3k experimental
executions conducted for this research. The median energy
consumption collected across the 30 run repetitions is then
utilized as representative sample of the experimental run.
Via this methodology, we ensured that our study design is
statistically resilient to random confounding factors that may
affect our measurements at runtime.

To further mitigate the the influence of possible confounding
variables affecting our experimental measurements, e.g., un-
noticed execution of a background process or CPU throttling,
time series of all run repetitions are collected and analyzed
to identify potential dependencies between executions. For
completeness, an example of time series used for such quality
assurance process is reported in Figure 1.

Algorithm
—e— naiveBayes
randomForest
logisticRegression
decisionTree
—— KNN
adaBoost
—— SVC

B o ©

Energy consumed (Joules)

N

0 ——

16:40 16:45 16:50

16:55
Timestamp

17:00 17:05 17:10

Fig. 1: Example of energy time series used for results quality
assurance

The experiment is run in a controlled in vitro environment,
by enforcing that solely computations related to the experiment
are run during the experimental measurements.

Measurements are conducted by isolating at line of code
level the training and inference operations of the utilized
library. Specifically, dataset operations such as loading and
splitting, and ancillary operations required to execute the train
and inference operations, e.g., code compilation and Java

Virtual Machine startup time, are rigorously omitted to focus
the energy measurements exclusively on algorithm executions.

In order to gain comprehensive insights into the program-
ming language energy consumption, the measurements col-
lected across the three considered datasets are jointly analyzed
for interpretation in the Results Section (Section III), by
summing measurements of each run across the three datasets.

E Replication Package and Study Reproducibility

To reproduce our experiment, we designed a comprehen-
sive companion package (see Section I). To ensure rigorous
replicability, extension, and scrutiny of our results, we tailor
the replication package based on environments specific to each
programming language. For Python, virtualenv and conda are
used, while for MATLAB we bundle scripts and data in Live
Scripts and .mat files. R findings reproducibility is supported
by the packrat and renv environments, while for Java we
rely on the Maven dependency manager. Finally, C++ result
replication is supported by rigorously documented build scripts
and package dependencies.

IIT. RESULTS

In this section, we report the results of our experiment,
namely the energy required to execute different Al algo-
rithms implemented in various programming languages (see
Section II-C).

As documented in Section II-C, we focus separately on two
distinct Al phases, namely the model training phase and the
inference phase.

A. Results RQ1 1: Training Energy Efficiency of Programming
Languages

An overview of the cumulative energy consumed by the
different programming languages during the training phase is
depicted in Figure 2.

As we can observe from Figure 2, the overall energy
consumed by the different programming languages during the
training phase drastically differs. Overall, a clear ranking of
energy consumption across the programming languages can
be recognized, with C++ being the most energy efficient
language, followed by Java, MATLAB, Python, and R. By
considering the most and least energy efficient languages,
namely C++ and R respectively, we note that in absolute terms
R consumes 37 times more than C++ in the training phase.

The energy efficiency difference between other languages
is less remarked, with the minimum energy increment being
between C++ and Java, the latter of which however still
requires four times the energy consumed by C++.

Overall, regardless of the pair of languages considered,
we deem the difference in energy consumed across different
programming languages remarkable.

The described cumulative energy consumption figures pro-
vide fundamentally more insights when we zoom in into the
energy consumed by the individual algorithms implemented
in the different programming languages (see bar stacks of
Figure 2). Here we note that the implementation of a single

1

@
|
~

1400 Algorithm
2 1200, ™= KNN
= SvC
51000 B AdaBoost
3 BN Decision tree
g 8001 mmm Logistic regression
2] .
£ 600 HEE Naive bayes
o Random forest
>
5 400 I
3]
[=]
=200
] —
0 . e —— T T T
X & & Rt
o A\ ?6\33’ Qé?
%\
Language

Fig. 2: Energy Consumption by Language and Algorithm (Training Phase)

algorithm can single-handedly lead a language to be drastically
less energy efficient in absolute terms.

A prime example of this is the energy consumed by the
logistic regression implementation in R, that contributes to
a staggering 71.1% of the total energy consumed by the
language. Intuitively, one could assume that linear regression
is per se a very computational-intensive algorithm. However,
by considering the other programming languages, we note that
linear regression consistently ranks second or third in terms of
training energy efficiency (out of seven algorithms), and in no
other instance displays such a remarked difference in energy
consumption compared to the other algorithms.

A similar case of profound impact of a single algorithm
on total programming language energy consumption can be
noted in the Python implementation of SVC, which contributes
to 63.38% of the total energy consumed by the language.
Similarly, decision tree in Java accounts for approximately half
(52.48%) of the total energy consumed by such language.

A granular documentation of the energy consumed by each
algorithm implemented in the different languages is provided
in Table I. By considering the most energy efficient lan-
guages we note that, while C++ showcases the overall lowest
cumulative energy consumption, Java is the language that
provides the highest number of most energy efficient algorithm
implementations (four out of seven algorithms, namely KNN,
SVC, decision tree, and naive bayes, see Table I). Again, this
fact is attributed to the major impact on total language energy
consumption that single algorithm implementations can have.

On the other side of the training energy efficiency spec-
trum, while the high cumulative energy consumption of R is
mostly due to its logistic regression implementation, R is also
the programming language reporting the highest number of
energy greedy algorithm implementations (three out of seven,
namely decision tree, logistic regression, and random forest,
see Table I). Despite the overall energy inefficiency of R,
two algorithms in this language, namely KNN and AdBoost,
report the second less energy greedy implementation across all
languages, with the latter algorithm consuming approximately

six time less than its closest competitor (AdaBoost in Java).

B. Results RQ1.o: Inference Energy Efficiency of Program-
ming Languages

The energy consumed by the programming languages during
the inference phase is depicted in Figure 3.

As we can observe in Figure 3, the energy efficiency
of languages during inference drastically changes w.r.t. the
training phase (see Figure 2). In fact, not a single programming
language maintains its energy efficiency ranking across both
phases. Further considerations on this matter, supported by
joint discussion on the training and inference phases, are
documented in our Discussion Section (Section IV).

When focusing on the inference phase, we note that Java
results the programming language with the overall lowest
cumulative energy consumption. Compared to the other lan-
guages considered in our experiment, Java consumes approxi-
mately two times less than the the second most energy efficient
programming language (C++), and 54 times less than the most
energy greedy language (R).

A notable difference is present in the energy consumed
by models implemented in Java and C++ when these are
compared to the other languages. While the cumulative en-
ergy difference between Java and C++ is a 2x increase, by
considering the third most energy efficient language (Python),
such difference drastically increases by a 18x factor.

At a refined level of granularity, we can consider the energy
consumed by each algorithm during inference (see bar stacks
of Figure 3 and Table I). As for the training phase, the
implementation of single algorithms plays a crucial role in
the overall energy efficiency of a language. As most notable
example, SVC contributes to 64.8% of the cumulative energy
consumed by Python during the inference phase. Similarly,
naive bayes in MATLAB contribute to 62.7% of the total
energy consumed by the MATLAB language.

By considering the highest number of energy efficient
algorithm implementations, we note that Java is not only
the language consuming less cumulative energy, but also the
language presenting the highest number of energy efficient

TABLE I: Energy Consumption by Language and Algorithm in Joules (values multiplied by 107 for readability). Bold and
underlined values represent respectively the lowest and highest value of a column.

Train energy consumption (107 Joules)

KNN SVC AdaBoost Decision tree Logistic regression Naive bayes Random forest All
C++ 2.67 4.87 1.44 12.21 1.91 0.44 13.54 37.08
Java 0.34 0.38 32.76 0.33 38.31 0.35 80.06 152.54
MATLAB 7.83 29.55 43.05 7.79 56.35 21.12 106.46 272.14
Python 1.61 366.85 72.81 10.57 14.82 1.70 110.43 578.78
R 0.65 163.10 5.27 21.74 996.18 523 209.05 1401.23
Inference energy consumption (107 Joules)
KNN SVC AdaBoost Decision tree Logistic regression Naive bayes Random forest All
Java 0.36 0.34 0.35 0.35 0.34 0.33 0.34 241
C++ 1.74 0.89 0.27 0.21 0.17 0.69 0.78 4.75
Python 13.70 54.83 7.08 0.81 0.67 0.87 6.61 84.58
R 12.41 16.76 24.94 2.96 6.08 24.70 8.17 96.02
MATLAB 8.01 6.20 7.74 2.06 6.67 81.35 17.63 129.66
le=7
Algorithm

2 1207 mm KNN

[}

S 100, ™= SVC

=) I AdaBoost

® go{ M Decision tree

g B Logistic regression

§ 601 I Naive bayes

o Random forest

B 40

8

=}

M 204

0 7 .
4’0 XX OQ
¢ o &
Language

Fig. 3: Energy Consumption by Language and Algorithm (Inference Phase)

algorithms (four out of seven, namely KNN, SVC, naive
bayes, and random forest). C++ follows closely, with the rest
of the most energy efficient algorithms implemented in such
language (three out of seven, namely AdaBoost, decision tree,
and logistic regression).

The most energy greedy language in the inference phase,
namely MATLAB, is also the one reporting the highest number
of less energy optimized algorithms (three out of seven,
namely logistic regression, naive bayes, and random forest).
Python and R follow up closely, by presenting each two out
of seven most energy greedy algorithm implementations.

As corollary note on the above reported results, also for
the inference phase we are not able to identify algorithms that
display an intrinsic energy-greediness, i.e., specific algorithms
that consume more when compared to the others regardless of
the programming language they are implemented in.

IV. DISCUSSION

In this section, we report our interpretation of the results
presented in Section III, with the aim of providing a clear and
motivated answer to our RQs (see Section II-A).

Regarding the training phase, to explicitly answer RQ1.1
(see Section II-A), the impact of programming language on
Al energy consumption is considerable (see Section III-A for
related results). From a minimum magnitude of four times an
energy increment, up to a maximum of 37 times, choosing
one programming language over another can have a profound
influence on training energy efficiency. By considering the cu-
mulative energy consumed by programming languages across
algorithms, a clear ranking emerges: C++ is far more efficient
than Java, which is more efficient than MATLAB, and follow-
ing Python and R. Therefore, we conclude that, regardless of
the pair of programming languages considered, each one is
associate to a distinct cumulative energy consumption.

@ Training Energy Efficiency of Programming Lan-
guages. In terms of cumulative training energy consump-
tion, the most efficient language is C++, followed by Java,
MATLAB, Python, and R. C++ consumes for training 4
times less than Java, 7 times less than MATLAB, 15 times
less than Python, and 37 times less than R.

Regarding the cumulative energy consumed in inference, a

different ranking of programming language energy efficiency
emerges, namely Java, C++, Python, R, and MATLAB. As
observation on the cumulative energy consumption a notice-
able gap in energy consumption between compiled / semi-
compiled languages (C++, Java) and interpreted languages
(Python, R, and MATLAB) is present. Overall by considering
the inference phase, to explicitly answer R(Q)1 .2, we conclude
that programming languages have a considerable impact on Al
inference energy efficiency.

@ Inference Energy Efficiency of Programming Lan-
guages. By considering total inference energy consump-
tion, the most efficient language is Java, followed by C++,
Python, R, and MATLAB. Java consumes in inference
2 times less than C++, 35 times less than Python, 39 times
less than R, and 54 times less than MATLAB.

By jointly considering training and inference, to explicitly
answer our main R(), we conclude that programming lan-
guages have a considerable impact on Al energy consumption.
Regardless of the phase, C++ and Java are in vast majority of
the cases the most energy efficient languages. Albeit Python,
MATLAB, and R may use to various extents pre-compiled
binary libraries, the overhead the interpreted languages per se
introduce cannot be completely evened out via code optimiza-
tion heuristics to improve their energy efficiency.

Our study takes a pragmatic stance on Al energy consump-
tion of programming languages by considering popular Al
libraries available “in the wild”, rather than crafting ad-hoc
algorithm implementation as a purely academic exercise. In
concrete terms, when choosing among different programming
languages to optimize energy consumption, it is crucial to
consider also which AI phase is most important in the spe-
cific context at hand. For example, MATLAB results to be
rather efficient in training terms, while being considerably
more energy-greedy during the inference phase. Therefore,
as could expected, MATLAB is more suited for preliminary
experimentation and proof of concept development, rather than
for being deployed in a production environment at scale.

@ Green Al: Context matters. Some languages are more
energy efficient in training, others in inference. Which
language to pick to optimize energy consumption highly
depends on the specific application context considered.

Despite the reported clear-cut energy-efficiency rankings,
which language to pick for Al tasks when software environ-
mental sustainability is a primary concern is not trivial. In fact,
when focusing at a refined level of granularity on different
algorithms, which programming language is overall most en-
ergy efficient becomes fuzzy. Picking C++ or Java would with
very high probability be a sound choice for energy efficiency,
but such selection could lead to accidentally picking one of
the most energy greedy algorithm implementations across all
languages. For example, while C++ could be deemed overall
as the most energy efficient language of the training phase,

its decision tree implementation results to be the second most
energy-greedy among all languages, making it a suboptimal
language choice if only this specific algorithm is needed.

Perhaps as most important finding of this inquiry, we
observe that the specific source code implementation of an
algorithm plays a fundamental role in energy consumption,
regardless of the programming language and algorithm con-
sidered. Therefore, while programming languages have a clear
impact on Al energy consumption, anecdotally we conjecture
that the particular source code implementation of an algorithm
is the most determining factor for its energy consumption.

In a sense, this research serves as a cautionary tale,
grounded in empirical data, warning to be wary about holistic
statements such as “Language X is the most energy efficient”.
As observed in this study, while some general conclusions
regarding programming language energy efficiency in Al can
be drawn, we note that algorithm implementation could be
the most determining factor of this results. Therefore we have
to be wary not to wrongfully assume that one programming
language is always more energy efficient than another, as this
is empirically proven not to always be the case.

@@ Algorithm implementation may be the most impor-
tant factor of Al energy efficiency. Algorithm implemen-
tation plays a fundamental role in Al energy consumption.
Picking one language over another does not per se guar-
antee the energy efficiency of a specific Al algorithm.

As final consideration we want to mention the trade-off,
neglected in this study, between energy efficiency and im-
plementation ease. While programming languages lying at
a lower level of abstraction might be more energy-efficient,
implementing and maintaining Al algorithms in such lan-
guages might in some cases be or become unsustainable from
a technical and/or economical point of view. The tradeoff
between the environmental and the other dimensions of sus-
tainability should be carefully evaluated, in order to avoid that
an Al product becomes unmanageable just for the sake of
energy efficiency. As last resort, if environmental sustainability
is a primary target, the trade-off between energy efficiency
and implementation ease should still be balanced by trying
to optimize energy consumption without disrupting current
development practices and technologies in place (e.g., via
heuristics such as pre-compiled binary libraries implemented
in more energy-efficient languages).

@ Al environmental sustainability needs to be balanced
with implementation and maintenance ease. Focusing
solely on environmental sustainability is not an option.
Trade-offs between environmental sustainability of Al and
other sustainability dimensions, such as the technical and
economic ones, should always be carefully considered.

V. THREATS TO VALIDITY

In this section, we report the most prominent threats to
validity that could have affected our results, by following the

threats to validity categorization for controlled experiments
outlined by Wholin et al. [10], and the recent considerations
on how to address threats to validity in software engineering
research by Lago et al. [11].

A. Conclusion Validity

In terms of internal validity, to mitigate potential threats
caused by low statistical power, we repeat each experimental
run 30 times (see Section II-E). Such mitigation strategy
allows us also to strengthener our experimental design against
threats to reliability of measures. As additional precaution
against unreliable measurements, we use time series analysis
to identify potential confounding factors polluting our experi-
mental setting, e.g., CPU throttling (see also Section II-E). To
mitigate possible result fishing, in addition to our documented
sampling strategy, we report our raw and processes results for
independent scrutiny and interpretation (see Table I and the
companion replication package linked in Section I). At the
intersection of conclusion and external validity, the Al libraries
chosen for this experiment (see Section II-D) may constitute a
threat to treatment implementation reliability. To mitigate this
threat, we use for our experiment de facto standard libraries
for each programming language, such as scikit-learn, mlpack,
and WEKA (see Section II-D and Section V-D).

B. Internal Validity

Given the nature of our experiment, as no control group is
used in our study, we focus on single group threats. Regarding
potential history and maturation threats, confounding factors
such as CPU throttling and hardware heat dissipation could
influence our measurements. As mitigation strategy (i) we
consider for analysis the median values sampled across 30
subsequent execution, and (ii) conduct an a posteriori data
quality assurance process based on time series analysis of the
measurements (see Section II-E). Regarding instrumentation
threats, as we rely on a library providing native kernel-level
energy consumption measurements (see Section II-D), we
deem our energy measurement to be both accurate and reliable.

C. Construct Validity

A major threat to construct validity lies in the inadequate
preoperational explication of our construct. To mitigate this
threat, we actively refrain from adopting convoluted derived
metrics of software environmental sustainability such as car-
bon footprint or software carbon intensity’. As further detailed
in Section II-C, sustainability metrics of such nature would
make our results very hard to be compared, reproduced, and
generalized. For this reason, we use as construct the most
simple and closest to bare metal interpretation of software
environmental sustainability we are aware of, namely hardware
energy consumption.

As a posteriori discovered construct validity threat influ-
encing our study, the construct level influences our results,
as rather than focusing solely on programming languages,

Shttps://github.com/Green-Software-Foundation/sci. Accessed 1st Novem-
ber 2024.

a more correct scoping to achieve our research goal (see
Section II-A) would be to understand which algorithm im-
plementation choices in different programming languages are
more energy efficient. To partially address this threat, we
thoroughly discuss the impact of algorithm implementation
on energy consumption, highlighting such result also as our
most relevant finding while leaving a complete mitigation of
this threat as future work.

D. External Validity

In terms of external validity, the results presented in this
study should not be deemed in any way as conclusive or
generalizable in absolute terms.

Albeit as mitigation strategy the experimental objects are
chosen by following selection criteria that enforce heterogene-
ity, the datasets represent only a fraction of the application
scenarios the chosen algorithms can be used for. Future
research should be conducted to study if, and in case to what
extent, the results presented in this study hold when other
datasets are considered.

Similarly, the empirical experiment conducted for this study
focuses on seven algorithms representative of different al-
gorithmic families (e.g., SVC for support vector machines).
The choice to focus on a set of representative algorithms
constituted a trade-off of external validity in favour of internal
validity, which allowed us to collect sound measures via a
high number of reruns, while keeping the experiment feasible
in terms of execution time. To strengthener the external
validity of this study, future research should consider further
algorithms of each algorithmic family.

As prominent related threat, in our experiment a single
implementation is considered for each pair of algorithm and
programming language (see Section II-C). To mitigate this
threat, we select the out of the box implementation of the
algorithms provided by de facto standard libraries of each
programming language. As for the previous threat, this con-
stituted a trade-off between internal and external validity.
To strengthen the external validity of the presented results,
future research should consider different implementations of
an algorithm in the same programming language.

VI. RELATED WORK

In this section, we discuss the researches related the closest
to this study. To the best of our knowledge the topic we con-
sider, namely the energy efficiency of different programming
languages in the context of Al, constitutes a research gap in
the existing Green Al body of literature [5].

The most relevant related work is potentially the work of
Georgiou et al. [12], which explores the energy efficiency of
two Python deep learning frameworks. In contrast to such
study, we focus on traditional Al rather than deep learning,
and consider different programming languages, rather than
different frameworks of one programming language.

As other closely related literature to this study, a set of
researches investigate the impact that programming languages
have on software energy consumption, albeit without a focus

https://github.com/Green-Software-Foundation/sci

on Al Pereira et al. [8], [6] explore how energy, time,
and memory relate across different programming languages
by considering different computing scenarios (e.g., DNA-
matching, binary tree operations, and packing problems).
Georgiou et al. [13] instead study how different compiled,
semi-compiled, and interpreted languages compare in terms of
energy-consumption on a set of classic programming problems
taken from the Rosetta Code chrestomathy repository®. In a
more recent work by Gordillo et al. [14], the energy effi-
ciency of different programming languages is evaluated on five
classic programming problems, such as binary tree operations
and n-body simulations. By considering more fine-grained
contexts, Chandra et al. [15] analyze programming language
energy efficiency by focusing on different sorting algorithms,
Mahadevappa and Figueira [16] on mobile applications, and
Maleki et al. [17] on design patterns. As main difference to all
of the above mentioned studies, the focus of this research is
investigating the impact that different programming languages
can have in the context of Al

VII. CONCLUSIONS AND FUTURE WORK

In this study, we report a controlled empirical experiment
conducted to understand the impact of different programming
languages on the energy consumption of Al. The research
considers five programming languages (C++, Java, Python,
MATLAB, and R), seven Al algorithms (KNN, SVC, Ad-
aBoost, decision tree, logistic regression, naive bayses, and
random forest), and two Al phases (training and inference).

From the results collected in this study, we draw the follow-
ing conclusion. First, compiled and semi-compiled languages
(C++, Java) are overall more energy efficient than interpreted
languages (Python, R, and MATLAB), with an overall energy
consumption going up to a maximum of a 54 times increase
when using interpreted languages. Second, energy efficiency
of programming languages can vary considerably when we
consider the training or the inference phase. Third, despite po-
tentially using pre-compiled libraries, the overhead introduced
by interpreted languages might not be completely evened
out via code optimizations. Finally, algorithm implementation
might be the most determining factor when considering the
energy efficiency of Al algorithms.

As a word of warning in interpreting the collected results,
and as underlying message these entail, the findings do not
necessarily suggest to refactor codebases into more energy
efficient languages. Rather, the results hint to the importance
that algorithm implementation holds in energy efficiency,
regardless of the language considered. In addition, tradeoffs
between the environmental sustainability dimensions and other
ones, such as technical and economic sustainability, should be
carefully considered when optimizing Al energy consumption.

As future work, we are eager to mitigate the threats to
validity of our study (see Section V), firstly by consider-
ing a wider range of experimental objects and languages.

Shttps://rosettacode.org. Accessed 1st November 2024.

In addition, we are also curious to measure how energy
consumption compares across libraries implemented in the
same programming language. Finally, we are also interested to
conduct studies based on the same research method in other Al
contexts, with the ultimate goal of making, through systematic
research steps, Al more environmentally sustainable.

CARBON FOOTPRINT OF THIS STUDY

The carbon footprint required to run the experiment con-
ducted for this study is approximately 42.9 grams of COo,
the same amount required to power an average electric car for
0.39 kilometers (0.24 miles) [18].

REFERENCES

[1] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in nlp,” 6 2019.

[2] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quantifying the
carbon emissions of machine learning,” 10 2019.

[3] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On
the dangers of stochastic parrots: Can language models be too big?,”
pp. 610-623, Association for Computing Machinery, Inc, 3 2021.

[4] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AL~
Communications of the ACM, vol. 63, pp. 54-63, 11 2020.

[5] R. Verdecchia, J. Sallou, and L. Cruz, “A systematic review of Green
Al Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 13, no. 4, p. e1507, 2023.

[6] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Ranking programming languages by energy efficiency,”
Science of Computer Programming, vol. 205, p. 102609, 2021.

[71 S. Georgiou, M. Kechagia, and D. Spinellis, “Analyzing programming
languages’ energy consumption: An empirical study,” in Proceedings of
the 21st Pan-Hellenic Conference on Informatics, pp. 1-6, 2017.

[8] B. Pereira and et al., “Energy efficiency across programming lan-
guages: How do energy, time, and memory relate?,” arXiv preprint
arXiv:1709.00329, 2017.

[9] V. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric

approach,” Encyclopedia of software engineering, pp. 528-532, 1994.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in software engineering. Springer Science

& Business Media, 2012.

P. Lago, P. Runeson, Q. Song, and R. Verdecchia, “Threats to validity in

software engineering—hypocritical paper section or essential analysis?,”

in 18th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, ESEM’24, pp. 314-324, Association for

Computing Machinery (ACM), 2024.

S. Georgiou, M. Kechagia, T. Sharma, F. Sarro, and Y. Zou, “Green

AlL: Do Deep Learning Frameworks Have Different Costs?,” in 2022

IEEE/ACM 44st International Conference on Software Engineering

(ICSE), 2022.

S. Georgiou, M. Kechagia, and D. Spinellis, “Analyzing programming

languages’ energy consumption: An empirical study,” in Proceedings of

the 21st Pan-Hellenic Conference on Informatics, PCI 17, (New York,

NY, USA), Association for Computing Machinery, 2017.

A. Gordillo, C. Calero, M. Moraga, F. Garcia, J. P. Fernandes, R. Abreu,

and J. Saraiva, “Programming languages ranking based on energy

measurements,” Software Quality Journal, vol. 32, pp. 451-470, 2024.

T. B. Chandra, P. Verma, and A. K. Dwivedi, “Impact of programming

languages on energy consumption for sorting algorithms,” in Software

Engineering: Proceedings of CSI 2015, pp. 93-101, Springer, 2019.

S. Mahadevappa and S. Figueira, “Energy-efficient programming lan-

guages for mobile applications,” in 2021 IEEE Global Humanitarian

Technology Conference (GHTC), pp. 33-38, 2021.

S. Maleki, C. Fu, A. Banotra, and Z. Zong, “Understanding the impact of

object oriented programming and design patterns on energy efficiency,”

in 2017 Eighth International Green and Sustainable Computing Confer-

ence (IGSC), pp. 1-6, IEEE, 2017.

L. Zhao, E. R. Ottinger, A. H. C. Yip, and J. P. Helveston, “Quantifying

electric vehicle mileage in the United States,” Joule, vol. 7, no. 11,

pp. 2537-2551, 2023.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

https://rosettacode.org

	Introduction
	Experimental Methodology
	Research Goal and Questions
	Experimental Objects
	Experimental Variables
	Programming Languages
	Algorithms
	AI phase (training and inference)
	Energy Consumption

	Experimental Setup
	Experimental data collection procedure
	Replication Package and Study Reproducibility

	Results
	Results RQ1.1: Training Energy Efficiency of Programming Languages
	Results RQ1.2: Inference Energy Efficiency of Programming Languages

	Discussion
	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Related Work
	Conclusions and Future Work
	References

