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Abstract

Artificial Intelligence is increasingly pervasive across domains, with ever more complex models delivering impres-
sive predictive performance. This fast technological advancement however comes at a concerning environmental
cost, with state-of-the-art models—particularly deep neural networks and large language models—requiring
substantial computational resources and energy. In this work, we present the intuition of Green AI dynamic model
selection, an approach based on dynamic model selection that aims at reducing the environmental footprint of AI
by selecting the most sustainable model while minimizing potential accuracy loss. Specifically, our approach takes
into account the inference task, the environmental sustainability of available models, and accuracy requirements
to dynamically choose the most suitable model. Our approach presents two different methods, namely Green Al
dynamic model cascading and Green AI dynamic model routing. We demonstrate the effectiveness of our approach
via a proof of concept empirical example based on a real-world dataset. Our results show that Green AI dynamic
model selection can achieve substantial energy savings (up to /s25%) while substantially retaining the accuracy of
the most energy greedy solution (up to ~95%). As conclusion, our preliminary findings highlight the potential
that hybrid, adaptive model selection strategies withhold to mitigate the energy demands of modern Al systems
without significantly compromising accuracy requirements.
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1. Introduction

The popularization of Al models, ranging from simple classifiers to complex large language models, has
taken the world by storm. With the widespread and evergrowing adoption of Al and all the benefits
it implied, the environmental resources needed to power such models is also surging, and this trend
is no longer negligible [1]. To contrast the invisible impact that Al is having on the limited resources
of our planet, the field of Green AI [2] rapidly developed, and has seen a considerable growth in the
most recent years [3]. By quoting the words of Schwartz et al. [2], Green Al is a field of Al research
that yields novel results while considering its computational cost and encouraging the reduction of
resources spent. Under the research field of Green Al fall a plethora of heterogeneous solutions, ranging
from ad hoc hyperparameter tuning to trade-offs between model accuracy and energy consumption,
energy-aware model deployment strategies, data-centric techniques [3], and software engineering
approaches [4]. Despite the wide array of Green Al solutions that have been conceived to date, Green Al
approaches based on selecting different models by factoring in their energy consumption results to date
to be an uncharted territory. In this work, we explore the potential that dynamic model selection based
on the task at hand, model validation accuracy, and energy efficiency can have on Al environmental
sustainability. More specifically, we present the very idea of Green AI dynamic model selection by
presenting two methods that lend their core intuition from the related literature on dynamic model
selection, namely model cascading and model routing [5, 6]. Intuitively the first method we present,
namely Green AI dynamic model cascading, subsequently invokes different models from less to more
energy greedy till a sufficient level of prediction confidence is achieved. The second method instead,
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referred to as Green Al dynamic model routing, selects exclusively the most efficient model to be used by
considering the predicted model accuracy for the input task and the energy efficiency of the model.
In addition to a formal presentation of both energy-aware dynamic model cascading and routing
methods, we also document the results of an empirical proof of concept evaluation that we execute to
showcase the viability of our intuition. The empirical proof of concept, which should be by no means
be interpreted as exhaustive or conclusive, is based on an exemplary classification task relying on
the widely utilized scikit-learn and keras Python libraries, two Al models of different complexity, and
an ad hoc implementation of the energy-aware dynamic model cascading and routing methods. The
preliminary results we collect point to the potential that dynamic model selection methods have to
achieve Green Al As a complementary portion of our contribution, we also delve into reflecting on the
various nuances, potential challenges, and benefits that may arise when building further onto the Green
Al dynamic model selection approach.

2. Related Work

The field of Green Al has experienced a swift growth in popularization in the past few years and is
increasingly becoming an established discipline [3]. The rise of interest in the topic could have stemmed
from diverse effort of the research community to quantify the environmental impact of Al ranging from
generic high level figures of COy emissions [7] to fine-grained measurements of specific models, e.g.,
deep learning ones [8]. The overall picture studies of this nature draw is consistent, the environmental
impact of Al is an issue that needs to be addressed. Answering such call, numerous research endeavors
focused on improving the energy efficiency and environmental sustainability of Al The proposed
solutions to achieve Green Al are heterogeneous and span a wide range of approaches.

A family of Green AI techniques focuses on designing AI models by factoring in their energy
consumption [9], e.g., by improving model execution times [10], optimizing models for specific hardware
components [11], compressing models [12], or seeking more energy efficient model implementations [13,
14]. In contrast, another family of Green Al techniques focus instead on the a posteriori optimization of
models via hyperparameter fine-tuning [15, 16, 17, 18, 19].

As a green Al research area that might somewhat be more related to the topic considered in this
research, a set of studies investigated how different model deployment strategies can impact their energy
consumption. Contributions of this type consider solutions such as inference on the edge [20, 21],
model deployment in virtualized cloud fog networks [22], and distributed machine learning [23].

Taking a different standpoint, other Green Al approaches consider instead exclusively the data the
models are trained with, rather than the design of the algorithm themselves, a discipline referred to as
Data Centric Green Al [24, 25, 26, 27, 28].

All of the above mentioned areas of Green Al research result orthogonal to the topic considered in
this study, as they focus exclusively on the optimization of one specific model. In contrast, in our work,
we do not aim to improve the energy efficiency of a single model, but rather to select the most fitting
one (or set thereof) by keeping Al energy efficiency in mind. To the best of our knowledge, this topic
has to date only marginally be explored in the related literature.

The work of Nijkamp et al. [29] is potentially the one that is most closely related to the approaches
presented in this contribution. Nijkamp et al. consider an ensemble learning context within the text
processing domain, where a subset of pre-trained and trained models are selected for inference and
results are merged a posteriori. The selection of models can be executed either statically, where an
optimal subset of models is chosen for an entire domain considered, or dynamically, i.e., an optimal
subset is selected for every queried property within the domain. Differently from such approach, we
do not focus on ensemble learning, and trigger the inference of multiple models only in the case of
energy-aware model cascading (see also Section 3.1).

In another work that considers ensemble learning, Omar et al. [30] consider the impact that three
different design decisions for ensemble learning, namely ensemble size, fusion methods, and partitioning
methods, can have on energy consumption. As for the previous study, our contribution differs by not
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Figure 1: Overview of the dynamic model selection methods for energy efficient inference.

considering the context of ensemble learning, but rather dynamic model selection for energy efficiency.
A related work by Matathammal et al. [31] presents EdgeMLBalancer, an approach that balances
resource utilization via dynamic model switching in the context of edge-devices. In contrast to such
work, our dynamic model selection approach is not concerned with the allocation between different
resource-constrained edge devices, is not specific to real-time object detection, and is not based on the
MAPE-K Feedback Loop to conduct the selection of models (see also Section 3).

As mention of another branch of related work, at the core of this study lies a plethora of foundational
research endeavors conducted in the realm of model selection [32, 33, 34], with particular emphasis
on approaches based on model cascading and model routing [5, 6]. Our contribution builds upon such
literature, by borrowing the intuition of such approaches to embed environmental sustainability as part
of the dynamic model selection process.

3. Green Al Dynamic Model Selection Methods

In this section we present two methods to build energy aware classification models via cascading and
routing. An overview of the proposed dynamic model selection methods for energy efficiency are
depicted in Figure 1 and are further described below.

Intuitively the first strategy, named Green Al dynamic model cascading, is based on a cascading
methods where models at an increasing level of energy consumptions are invoked subsequently when
required. The second method instead, named Green Al dynamic model routing, is based on an upfront
energy-aware router component that selects the best suited model based on the task at hand, the
validation accuracy of models, and their energy efficiency.

As a note on terminology, in the following documentation both methods we present consider a
labeled dataset D = (x;, ¥;)i=1....n of n data points with x; € X being the feature vector of data point
1 and y; € Y being its label. Also, we let M be a classification model, namely a function M : X — Y



that given an input x € X predicts its class as § = M (x) € Y.

3.1. Green Al Dynamic Model Cascading

For the cascading model C' : X — Y, we need: a sequence of k£ > 2 models My, M, ..., My, ordered
by increasing energy consumption and typically increasing complexity and accuracy; a family of
prediction confidence functions a;(x) : X x Y — [0, 1], depending on each model M;; a parameter
€ € [0, 1] to control the confidence tolerance.

At inference time, for an input instance x, the cascading mechanism proceeds as described in
Algorithm 1. In particular, the cascading model evaluates the first model M; and obtains both the
predicted label M (x) and its confidence score o (x). If the confidence satisfies o (M7(x)) > 1 — €
for some € € (0, 1), we accept the prediction and terminate. Otherwise, we move to the next model
M and repeat the procedure. This continues until either a model M; produces a sufficiently confident
prediction or the first £ — 1 models are exhausted, in which case we use the last model M, as a fallback.

Algorithm 1 Energy-Aware Cascading Inference

Require: Instance x
1: fori=1tok —1do
2 if a;(x) > 1 — e then
3: return M;(x)
4: return M (x)

3.2. Green Al Dynamic Model Routing

An alternative method to reduce inference cost is to directly learn a routing function that selects, for
each input, the most appropriate model in terms of energy-accuracy tradeoff. In this case, we define a
routing model R : X — {1,..., k}, which maps each input instance to one of the k available models
My, My, ..., My, again ordered by increasing energy consumption.

At inference time, for a given input x € X, the routing model selects an index i = O(x) and returns
the prediction M;(x), as described in Algorithm 2.

Algorithm 2 Energy-Aware Routing Inference

Require: Instance x
1 i+ O(x)
2: return M;(x)

The goal is to train a model O so that it selects the least energy-consuming model capable of producing
a correct prediction. To train the routing model, we assume access to a validation dataset D, C D,
and we construct training labels for the routing task as follows: for each input x € Dy, we identify
the lowest-index model M; that correctly classifies x (i.e., M;(x) = y); if no such model exists, we
select the lowest-index model regardless of accuracy to minimize energy cost. This label construction
assumes that we can evaluate the correctness of each model on the validation set and that the energy
consumption associated with each model is known.

Formally, we define an oracle routing function O* : X — {1, ..., k} that given x returns:

O*(X) — {min {Z € {17' . 'ak} : Mz(X) = y} if 37 s.t. Ml(x) =19,

1 otherwise.

We then train the model O to approximate the oracle O, using standard classification techniques.



4. Empirical Proof of Concept

In this section, we demonstrate the advantages of our approach through a concrete example, comparing
the performance and energy consumption of our dynamic model selection classifiers with those of their
basic components. As described in Section 3, we consider a cascading model C' and a routing model R.

We consider the standard multi-class classification task on the scikit-learn digits dataset!. The
dataset consists of 1797 8x8 grayscale images of hand-written digits (0-9). We use 60% of the dataset for
training, a 20% for validation, and 20% for testing. The validation set is only used by the routing model
R to training the oracle, while it is not used by the cascading model C' for a fair comparison.

For simplicity, in this proof of concept we use only two components for each of the two models:
a shallow (depth 5) decision tree G (the simpler and greener model), and a deep (5 hidden layers of
decreasing sizes) feedforward neural network A (the more accurate and energy-costly model). The
confidence score a used for the cascading model C' corresponds to the fraction of training samples in
the reached leaf node that belong to the predicted class. We use € = 0.2 as a parameter for C, i.e., for
an instance x we use the prediction of G when the confidence score a¢(x) is at least 1 — ¢ = 0.8, or
the prediction of A otherwise. As an oracle for the routing model R we use a logistic regressor with
balanced class-weights (to account for potentially imbalanced classes coming from the predictions of G
and A in the validation set).

For each of the competitors, we measure its accuracy (i.e., fraction of correctly classified instances),
total prediction time (measured on the whole test set, in ms), and energy consumption (measured on the
whole test set, in uW h). Moreover, for our methods C' and R we also report the fraction of predictions
performed by the simpler component GG and the time overhead required for the model selection procedure
itself?. The running time is measured using the python function time.perf_counter(). The energy
consumption is estimated using the python package CodeCarbon®. In order to smooth the time and
energy measurements, they are averaged over 1000 predictions of the entire test set. The example is
run on a MacBook Air (M1, 16GB Memory) and the measurements are reported in Table 1.

Table 1

Performance and energy consumption of classifiers
Classifier Fraction of G Overhead (ms) Accuracy Time (ms) Energy (uW h)
(G) Decision Tree 1.00 0.00 0.73 0.13 0.13
(A) Neural Network 0.00 0.00 0.98 37.44 40.80
(C) Cascading 0.65 0.22 0.92 29.48 32.12
(R) Routing 0.62 0.19 0.88 33.13 30.83

We observe that our hybrid methods C and R, respectively based on cascading and routing, are effec-
tive in balancing accuracy and energy consumption relative to their components, the lightweight model
(G and the accurate, energy-intensive model A. Importantly, the computational overhead introduced by
the model selection process is negligible, adding only ~0.2 ms to an average inference time of ~30 ms.
Quantitatively, the cascading method C retains 94.7% of the accuracy of A (a reduction of only 0.05),
while improving inference speed by 21.25% (7.95 ms) and reducing energy consumption by 21.27% (8.68
puW h). The routing method R trades slightly more accuracy, retaining 89.7% of A’s performance (a
reduction of 0.1), for even greater energy efficiency, cutting consumption by 24.44% (9.97 uW h) and
improving speed by 11.51% (4.31 ms). These results highlight the potential of hybrid inference strategies
to deliver substantial energy savings with only modest accuracy degradation.

"https://scikit-learn.org/1.5/auto_examples/datasets/plot_digits_last_image.html
*The energy overhead is not reported because it is minimal and difficult to measure accurately.
*https://codecarbon.io
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5. Discussion

In this section, we discuss the key aspects we deem paramount to be considered while further developing
the idea of Green Al model selection. More specifically, we cover aspects regarding the generalizability
of our intuition, potential impediments connected to porting the presented techniques to practice, and
other nuances that may arise while further developing Green Al dynamic model selection.

On the generalizability to other tasks. While our study focuses on classification, the proposed
approach can in principle be extended to other inference paradigms, including generative tasks, e.g., text
generation and image synthesis, and large language models [35, 36]. However, cascading in such settings
poses new challenges: Unlike classification, generation tasks often produce variable-length outputs
and lack a clear, standardized notion of “confidence”, making it harder to decide when to accept early
outputs. Furthermore, in autoregressive models, energy cost and quality are tightly coupled over long
sequences, which complicates dynamic routing or early termination. Designing confidence surrogates
or lightweight proxies for generation quality is an open and non-trivial research direction [37].

On the consumption of the oracle. Routing strategies rely on a pre-trained oracle that predicts the
most suitable model to use for a given input. While our results show that routing can outperform static
selection in terms of energy efficiency, this advantage must be weighed against the energy and latency
overhead introduced by the oracle itself. Although this cost can often be amortized, especially when
the oracle is lightweight compared to the target models, it is nonetheless a relevant factor in real-world
deployments and should be included in life-cycle assessments [38].

On the precision-energy consumption tradeoff. A central trade-off in energy-aware inference lies
in balancing precision and energy consumption [39, 40]. Tuning the confidence threshold € in cascading
or adjusting the routing oracle’s decision boundary directly affects both the fraction of queries routed
to low-cost models and the overall accuracy. This trade-off is highly application-dependent: For some
critical tasks even minor drops in accuracy may be unacceptable, while for others tolerating occasional
misclassifications may be worthwhile for substantial energy savings.

On the specificity of the task at hand. The benefits of dynamic model selection depend heavily
on the characteristics of the task. Tasks with highly skewed input difficulty, where many inputs are
easily handled by simple models, stand to benefit most from cascading or routing [41]. In contrast,
tasks that are uniformly hard may offer little opportunity for savings, as most queries will require the
most complex model regardless. This suggests that per-task calibration or meta-learning strategies
could further enhance the adaptability of energy-aware approaches. Specific task might also dictate the
dynamic model selection strategy. For example, by considering image generation quality and energy
consumption [42], model routing might be to date the only solution applicable.

On the energy cost of loading models. Energy measurement methodologies must carefully account
for the cost of loading models into memory, especially when switching between models incurs overhead
due to I/O or hardware constraints [43]. In scenarios where models are not kept in memory persistently,
the benefit of selecting a low-cost model may be offset by the loading cost. This points to the importance
of deployment-aware design: in serverless or constrained edge environments, keeping a subset of
models “warm” may be necessary for real energy savings.

On the development cost of maintaining models updated. The practical deployment of multi-
model systems introduces non-trivial maintenance costs. Each model in the pool must be monitored,
updated, and re-validated to cope with data drift, distribution shifts, or evolving application requirements.
This adds complexity to the life-cycle management of the Al system and raises questions about the



long-term cost-benefit balance. Approaches such as continual learning may help reduce redundancy
and maintain performance with a smaller, more efficient model pool [44].

On the optimization of model carbon footprint. In this work we primarily focused on model
energy consumption, i.e., the raw energy consumed by the models. In a broader perspective however,
the carbon footprint of the models, i.e., the total amount of greenhouse gases required to produce the
energy consumed by the models, might be instead the primary metric we want to optimize for [45].
Distinguishing between energy consumption and carbon footprint is necessary in contexts where models
are not powered by the same energy grid, e.g., in a distributed deployment scenario. By considering
the core intuition behind the presented methods, we argue that these can be effortlessly adapted by
considering the measured carbon footprint of the models instead of the energy consumption considered
in this contribution.

6. Conclusions and Future Work

With the great technological advancements Al brought, its evergrowing popularization, and its non-
negligible environmental impact, we are responsible to conceive novel solutions that preserve tech-
nological advancements while optimizing environmental sustainability. In this work we present the
concept of Green Al dynamic model selection, which lives at the intersection of dynamic model selection
and model environmental sustainability. The core contribution presented in this study is twofold, by
proposing two distinct techniques through which Green Al can be achieved by dynamically selecting
models according to their environmental sustainability. The two methods are referred to in this work as
Green Al Dynamic Model Cascading and Green AI Dynamic Model Routing. To support our documented
intuition, we report an empirical proof of concept, which showcases in practical terms the potential
of the proposed idea. While the results of our experimentation are by no means to be considered as
generalizable or conclusive, they support us in arguing that Green AI dynamic model selection is a Green
Al strategy that is worth to be further investigated. To further support our intuition, we also further
delve into speculating on the core concepts, impediments, and benefits of Green AI dynamic model
selection, in the hope that our contribution can support other researchers in making Al greener.
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