
Architectural Technical Debt Identification:
Moving Forward

Roberto Verdecchia∗†
∗Gran Sasso Science Institute, L’Aquila, Italy
†Vrije Universiteit Amsterdam, The Netherlands

roberto.verdecchia@gssi.it

Abstract—Architectural technical debt is a metaphor used to
describe sub-optimal architectural design and implementation
choices that bring short-term benefits to the cost of the
long-term gradual deterioration of the quality of software.
Architectural technical debt is an active field of research.
Nevertheless, how to accurately identify architectural technical
debt is still an open question. Our research aims to fill this gap.

We strive to: (i) consolidate the existing knowledge of archi-
tectural technical debt identification in practice, (ii) conceive
novel identification approaches built upon the existing state
of the art techniques and industrial needs, and (iii) provide
empirical evidence of architectural technical debt phenomena
and assess the viability of the conceived approaches.

Keywords- Software Architecture; Technical Debt; Software
Maintenance;

I. INTRODUCTION

In software development processes, a high number of
heterogeneous (and sometimes conflicting) goals have to
be considered. Fulfillment of functional requirements, ad-
herence to quality standards, time to market (TTM) and
budget management are among the constraints that steer
the administration of development processes. This leads to
the establishment of tradeoffs in order to deliver software
products by meeting the prefixed goals.

Architectural technical debt (ATD) is a metaphor, re-
lating a software engineering phenomenon to economic
debt, used to describe sub-optimal decisions resulting in
the conceivement of immature architectural artifacts [1].
During the development phases, software architecture plays
a crucial role in the implementation of software systems [2].
Hence it can also lead to the introduction of high impact
ATD Items (ATDIs). When ATDIs are neglected, software-
intensive systems tend to slowly deteriorate through time,
often leading to obsolete or even failing system.

To date, how to accurately identify ATDIs is still an open
question. In particular, a challenge lies in the avoidance of
ad-hoc identification approaches and the generalizability of
results. Technical debt results to be particular sensitive to
context [3], which by itself is difficult to analyze if a well-
defined model for contextual analysis is missing [4]. Due to
its abstract nature, lack of research, and scarcity of tools,
ATD is regarded by Kruchten et al. as one of the most chal-
lenging TD to be uncovered [5]. Most of the current methods
aiming to identify ATDIs rely on summary code dependency
analyses, or interviews with software architects [6].

II. GOAL

In order to further the identification of ATDIs, it is vital
to identify what information of software systems is already
available, and how this can be used to identify ATDIs. By
developing methods utilizing pre-existing software artifacts,
it is possible to conceive methods for the evaluation of ATD
that are cost- and time-efficient. The ultimate goal of our
research is to understand how to efficiently and effectively
identify ATDIs present in software-intensive systems.

The conceivement of (semi-)automated approaches will
enable us to utilize as subjects for extensive empirical
experimentation Open Source Software (OSS) artifacts,
which can be easily accessed through version control
repositories. In particular, by adopting approaches based on
repository mining, it becomes possible to carry out analyses
characterized by being non-intrusive. Such characteristic
is particularly interesting when industrial contexts are
considered, as the potential chance of adoption result to
be much higher w.r.t. intrusive approaches (e.g. based on
structured interviews). In addition, it becomes possible
also to carry out our analysis processes in an iterative
fashion, enabling us to efficiently consider also the temporal
dimension, which results to be a crucial aspect of ATD [7].
We identify three research questions underlying our
research, namely:

RQ1: “Do modification summaries, commit log messages,
issue trackers and other software artifacts of version repos-
itories provide ATDI related information that cannot be
derived from source code analysis alone?”

H10 (null hypothesis): Artifacts of version repositories con-
tain the same ATDI related information that can be found
by exclusively analyzing source code.

RQ2: “Which ATDI can be identified automatically from
artifacts of version repositories?”

H20 (null hypothesis): “No ATDI can be identified automat-
ically from artifacts of version repositories”

RQ3: “Which ATDI tend to require additional human input
to be identified?”

H30 (null hypothesis): “There are no ATDIs which tend to
require more often human input ”



III. METHODS

As stated by Martini et al. [8] source code metrics might
not be sufficient to convey information at the architectural
level. In fact, tools focusing on source code alone appear
to be able to identify only a small subset of TDIs. Hence
code analysis tools alone are not sufficient to identify ATD.
In the majority of the cases, ATD is not directly related
to code and its intrinsic qualities, but is rather involving
structural or architectural choices and technological gaps [5].
Nevertheless, it is possible to lend metrics and approaches
designed for code TD and port them to a higher level of
abstraction. This can lead to the conceivement of different
strategies that can be adopted to identify ATD, namely:
(i) Self-admitted ATD: This results to be one of the most
consolidated approaches of TDI identification through repos-
itory mining techniques [9]. The intuition is to explore code
bases in search of portions of code mapped to a comment
where developers (“self-admittedly”) document the presence
of TDIs. Being able to identify automatically such instances
can lead to a more efficient overview of the current state
of TD in systems and potentially lie the groundwork towards
its management. A similar approach can be considered in
order to process other software artifacts (e.g. repositories of
models) or to extract self-admitted ATDI from code bases.
(ii) Abstracted code evolution analysis: This method,
appositely conceived for this research project, entails the
extraction of architectural information from code bases and
its subsequent analysis to identify architectural deterioration.
Specifically, subsequent commits of a software repository
are considered by analyzing the most important architec-
tural changes, potentially through an evolution analysis of
reverse engineered models of the software architecture. A
possible approach entails a compliance checking through
model comparison between implemented and intended ar-
chitecture [10]. Existing tools, such as NDepend1 or Scitools
Understand2, can be utilized to support this strategy.
(iii) Combination of multiple sources: An innovative
idea entails gathering information from multiple sources,
e.g. source code, commits, user reports, documentation,
knowledge markets etc., in order to identify where ATDIs
are located in software systems and where these items
are discussed upon. By considering multiple sources where
ATDIs are mentioned, it is possible to abstract from the
source code and identify ATDIs which cannot be found
by code analyses alone. Such methods may involve the
parsing of issue trackers, questions and answer sites (e.g.
Stack Overflow), documentation and other software artifacts
where developers report issues relating to the architectural
level. Results can then be validated through semi-structured
interviews with software developers. The preliminary goal
of this approach is to establish a taxonomy of ATDIs.

1https://www.ndepend.com/. Accessed 10th April 2018
2https://scitools.com/. Accessed 10th April 2018

IV. ENVISIONED RESULTS

Our envisioned contribution resulting from this research
is manyfold. It builds upon a comprehensive analysis of the
state of the art in ATD identification techniques [6]. This
revealed the need for a clear and operational definition of
the types of architectural items relevant for technical debt.

Our ultimate result envisioned is the conceivement of
efficient and effective approaches for ATDI identification in
software-intensive systems.

A second target result is a set of instruments that allow
to assess the impact of ATDIs on the overall quality of
software-intensive systems. This requires serious experimen-
tation that can focus on estimation, measurement, and/or
prediction as validation strategy. We plan to adopt as exper-
imental subjects heterogeneous case studies obtained both
from industrial partners and OSS repositories.

When available, such instruments will provide the nec-
essary data to rank the ATDIs according to their relative
significance. This is the first step to get a reliable overview
on where to invest for ATD elimination.

Ultimately, our aim is to equip software architects with
the tools for ATD monitoring, e.g. through documentation,
visualization, and communication means. This would pro-
vide a definite step forward towards a clear understanding
of ATD, and its management.

REFERENCES

[1] T. Besker, A. Martini, and J. Bosch, “A Systematic Literature
Review and a Unified Model of ATD.” IEEE, Aug. 2016,
pp. 189–197.

[2] H. van Vliet, Software engineering: principles and practice,
3rd ed. Wiley, 1993.

[3] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Manag-
ing technical debt in software engineering (dagstuhl seminar
16162),” in Dagstuhl Reports, vol. 6, no. 4. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[4] A. Bedjeti, P. Lago, G. A. Lewis, R. D. De Boer, and
R. Hilliard, “Modeling Context with an Architecture View-
point,” in Software Architecture (ICSA), 2017 IEEE Interna-
tional Conference on. IEEE, 2017, pp. 117–120.

[5] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” Ieee software, vol. 29, no. 6,
pp. 18–21, 2012.

[6] R. Verdecchia, I. Malavolta, and P. Lago, “Architectural Tech-
nical Debt Identification: The Research Landscape,” in Inter-
national Conference on Technical Debt (TechDebt), 2018.

[7] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study
on technical debt and its management,” Journal of Systems
and Software, vol. 101, pp. 193–220, Mar. 2015.

[8] A. Martini, L. Pareto, and J. Bosch, “Towards introducing ag-
ile architecting in large companies: the CAFFEA framework,”
in International Conference on Agile Software Development.
Springer, 2015, pp. 218–223.

[9] A. Potdar and E. Shihab, “An Exploratory Study on Self-
Admitted Technical Debt.” IEEE, Sep. 2014, pp. 91–100.

[10] R. Verdecchia, “Identifying Architectural Technical Debt in
Android Applications through Compliance Checking,” in In-
ternational Conference on Mobile Software Engineering and
Systems, 2018.


