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Abstract—Our planet urges for a more responsible use of its
resources, and since information technology contributes substan-
tially to the global energy consumption, software engineering
research has promptly embraced this request and is actively
working towards more sustainable processes. An indispensable
activity in software development is testing, which is known to
be very costly in terms of time and effort. On top of this, a
recent study by Zaidman has shown that software testing can be
a voracious energy consumer as well. In this work we introduce
the very concept of energy-aware testing as the adoption of
strategies designed to reduce the energy consumption of existing
practices. We discuss some possible strategies and, as an example,
we conduct a first study of an energy-aware variant of a simple
similarity-based test prioritization approach considering both
energy consumption and test suite effectiveness, which provides
evidence of perceptible savings. We encourage future research
in energy-aware software testing that needs to address further
studies and to think up more strategies.

I. INTRODUCTION

With the ever-growing adoption of software-intensive sys-
tems, the environmental impact of software can no longer be
neglected [1]. While so far many studies in the literature fo-
cused on improving the energy efficiency of software-intensive
systems [2], very little is known on the energy required to test
them, yet alone on how it can be optimized. In the recent work
“An Inconvenient Truth in Software Engineering? The Envi-
ronmental Impact of Testing Open Source Java Projects” [3]
Zaidman demonstrated that testing software systems comes
at a hefty price, with the energy required to test a single
software project amounting yearly to as much as 117 kWh,
the same energy needed to power an average electric car for
about 363 miles (584 kilometers) [4].

This issue could in the imminent future be further exac-
erbated by the growing adoption of Large Language Models
(LLMs) for code generation tasks. As a disruptive technology,
the widespread inclusion of LLM-generated code will with
high probability raise the necessity of adopting more thorough
and exhaustive testing practices. On top of this, with recent
advancements in test automation [5] and the potential impact
that LLMs will play also in test case generation, extensive
test suites—which to date already count tests in the order of
hundreds of millions [6]—may become even more bloated.

In this work, we focus on the question: What can be done
to optimize the energy consumption of software testing? To be
clear, in this work we intentionally do not focus on modifying
a software under test (SUT) to improve the energy efficiency
of its testing, nor do we delve into how testing practices
can improve the energy efficiency of a SUT. Instead, in this

paper we introduce energy-aware software testing, i.e., the
introduction of techniques and solutions, or the adaptation of
existing ones, specifically designed for the explicit purpose of
reducing the test energy consumption. In fact, most of the
solutions proposed in the literature for improving the cost
effectiveness of testing, since they tend to remove redundancy
and make testing more systematic, can already contribute as
a by-product to reduce energy: an excellent example of such
an experience can be read in the Green Testing callout box
in [1]. Our aim here is to identify further measures that can
be taken on top of already virtuous test processes.

We first explore the intersection between software testing
and software environmental sustainability, by examining how
different aspects of software testing, such as test prioritization,
batching, and cost-aware testing can be tuned to improve the
energy efficiency of testing processes (Section III). Following,
we reflect upon the potential challenges that could impede the
way towards making test suites more sustainable (Section IV).
Finally, we make a concrete step into energy-aware software
testing by reporting a small exploratory experiment (Sec-
tion V), used to study the potential effectiveness of the proto-
typical energy-aware test prioritization algorithm GREEDYE ,
designed to optimize test suite energy consumption without
hindering its effectiveness. Early results show that GREEDYE

can save up to 54% energy consumption, while expectedly
not impacting considerably test suite effectiveness. Closing up,
we detail our future plans to refine and extensively evaluate
our energy-aware test prioritization approach (Section VI),
followed by a discussion of the long term follow-up research
directions implied by this work.

II. RELATED WORK

A considerable corpus of literature focuses on the environ-
mental sustainability of software-intensive systems. Studies in
this category consider heterogeneous topics [2], such as source
code analyses to identify energy-greedy portions of code [7],
[8], coding practices to optimize energy consumption [9], [10],
energy efficiency of programming languages [11], [12], [13],
and deployment strategies to limit the environmental impact
of software applications [14], [15].

As potential incipit to the energy-aware software engineer-
ing topic, in a 2021 IEEE Software article, Verdecchia et al.
stated that “testing not only consumes most of the time and
effort in a software project, but it also heavily contributes
to energy waste”, without however providing any concrete
evidence to support such statement [1]. In a more recent



study of 2024, Zaidman empirically showed the consider-
able energy consumption required to test a software-intensive
system [3]. To the best of our knowledge, this is the study
related the closest to our work, and the only one to date
that explicitly focuses on the energy consumed per se by
software testing. In contrast to the study of Zaidman, in this
work we take a step further, by studying how software testing
energy consumption can be concretely optimized, instead of
exclusively measuring it. As another closely related work,
Cruz and Abreu compared the energy consumption of different
mobile testing frameworks, without however digging deeper
into how the testing processes per se could be optimized other
than changing testing framework [16].

Worth mentioning as related work, a set of studies focused
on applying testing techniques to measure and improve the
energy efficiency of a SUT, such as test case generation to
assess the SUT energy efficiency [17], source code energy
consumption estimation (including test code) [18], [19], and
training software energy models via automated testing [20]. As
pointed out in the introduction, while related to this work, the
corpus of software testing for sustainability is deemed as out of
scope for a deeper discussion in this new idea on energy-aware
software testing, i.e., how we can improve the environmental
sustainability of software testing processes themselves.

III. ENVISIONING THE GROUNDWORK OF ENERGY-AWARE
SOFTWARE TESTING

Software testing is costly but necessary: because of this, in
the past decades the largest part of software testing research
has been devoted to reducing testing cost while maintaining as
much as possible its fault-detection effectiveness. In this effort,
the trend towards test automation has resulted into increasingly
large test suites, which have to be maintained and executed.

Somehow the leading axiom is that the more test cases you
can afford to run, the higher confidence you can gain in the
proper functioning of the SUT. The forward-looking idea that
we advance here is that the execution of such huge test suites
can consume much energy, and the time is ripe for taking
proper measures that can contain such consumption. Software
testing research needs to: i) gain awareness of the neglected
impact of software testing activities on energy consumption,
and ii) identify strategies that can help reducing this impact
(but still without impairing test effectiveness).

In the following we propose a (certainly not exhaustive) list
of strategies that could be developed for this purpose.

Energy-aware test suite prioritization/reduction: There
exist plenty of techniques (as surveyed, e.g., in [21], [22]) that
reorder (prioritization) or select (reduction) test cases, based
on some proxy criterion for their fault detection effectiveness.
In both cases the aim is that of detecting possible failures after
running less test cases: this aim per se can already contribute
to reducing energy consumption. However, during the test
case reordering or selection, if along with their potential
effectiveness we also take into account the respective energy
consumption, we could eventually obtain a more sustainable
test suite. The study we present in Section V provides a

first evidence in this direction. After all, more than 20 years
ago Elbaum and coauthors [23] already argued that APFD
(Average Percentage of Faults Detected), which measures the
rate of fault detection and is the de facto standard metric
to assess test prioritization techniques, does not take into
account the different costs of test cases. They thus proposed
a cost-cognizant version of such metric, denoted as APFDc.
Along this line of reasoning, we could define a new metric
APFDe, where the e would be related to the respective energy
consumptions of the test cases.

Follow-the-Sun test scheduling: Follow-the-Sun strate-
gies have already been considered in software engineer-
ing [24], especially in the context of global software develop-
ment projects. Here we propose to adapt this strategy, where
feasible, for scheduling the execution of large test suites: the
idea would be to program test execution towards regions or
in clock/calendar times in which energy is green or carbon
intensity is low. If we think this solution at “Google scale” [6],
energy savings could be significant. Related to this strategy we
can also think of adapting test batching to take into account
energy consumption. In the context of continuous integration,
batch testing consists of not re-executing the relevant test
cases after each commit; instead multiple test cases (relative
to a series of commits) are collected into groups that are
then executed altogether [25]. Batching allows for saving test
resources (especially when the test builds require expensive
environments) and thus already contributes to reducing energy
consumption. Energy-aware test batching could further en-
hance savings by for instance scheduling energy-heavy batches
in regions where cleaner energy sources are available.

Mocking highly consuming functions: When testing large
complex systems consisting of several functions, it can be the
case that the large part of energy consumption is due to a
limited subset of functions: for instance, functions with high-
computation profiles or driving costly hardware resources.
Indeed the results of our study presented later in Section V
show already in Figure 1a that CPU energy consumption
across the executed test cases is not uniform. Thus, to reduce
energy consumption during the execution of test suites the
highly consuming modules could be mocked by lightweight
software emulators (we are not saying this is easy, though).

Static detection of flaky tests: Flaky tests [26], i.e., tests
that exhibit unreliable behavior, are well known for their large
impact on testing budget [27]: in fact, the common practice for
identifying flakiness consists of repeating test execution, which
of course can notably increase energy consumption. Recently,
researchers have proposed strategies that can help predict
the potential flakiness of test cases based on static analyses
(e.g., [28], [29]). By routinely adopting one such strategy, the
rerunning of test cases to identify flaky behavior could be
limited only to those test cases that static analyses have pointed
as potentially flaky, thus reducing energy consumption.

Predict energy consumption of tests statically: The key
solution at the basis of any energy-aware testing strategy we
can conceive would be the capability of predicting statically
the potential level of energy consumption of a test case: with



such an estimate, in fact, we could: i) avoid the execution of all
test cases for measuring their consumption and directly apply
the above outlined strategies; and ii) we could possibly un-
derstand the factors that impact the most on test consumption
and learn how to design test cases that consume less. There
already exists a proposal to do this by applying a big-data
approach [30]: in their work Chowdhury and Hindle already
showed that energy consumption can be estimated based on
CPU usage and system calls count. More models like theirs
need to be developed for supporting energy-aware testing.

IV. POTENTIAL CHALLENGES AHEAD

Challenges related to the adoption of software sustainability
practices in software engineering have at length been already
discussed in the related literature [31], [32], [33], [15], [34].
In this section, we briefly comment on the impediments
we subjectively deem could impact the most the domain of
energy-aware software testing.

Trade-offs between test suite reliability and testing energy
consumption: The first and potentially most important chal-
lenge of energy-aware software testing is intuitively the pos-
sible loss of test suite reliability in favor of energy efficiency
gains. While important, active effort should be spent to balance
the environmental sustainability of testing with other equally
important sustainability dimensions, such as the technical,
social, and economic ones. Narrowing down the larger sustain-
ability discourse to the technical dimension, focus should be
given, as already done for test suite prioritization/reduction via
consolidated metrics and processes [21], to empirically show
that energy-aware software testing techniques do not imply a
significant loss in test suite reliability.

Embedding energy measurements and consumption opti-
mization into testing processes: The effort required to modify
current testing practices to include environmental sustainabil-
ity considerations should not be underestimated. Despite the
landscape of software energy measurement tools is making
leaps in recent years, and efficient and effective tools such
as CodeCarbon1 are gaining traction, collecting sound energy
measurements and integrating energy-aware testing strategies
could be a substantial endeavor. Among other crucial factors,
key related challenges may lie in i) systematically collecting
accurate test energy consumption measurements, ii) adapting
existent testing pipelines to make them energy-aware, and
iii) ensuring the additional effort, complexity, and energy
overhead introduced by energy-aware testing do not become
a burden for one or more sustainability dimensions (including
the environmental one itself).

Rethinking the testing landscape: From continuous inte-
gration testing to testing only when necessary, the next step
envisioned in this work is to reimagine testing practices in
light of the finite environmental resources they consume. This
uncharted point of view might face resilience in its adoption,
bring to light unknown complexities, and could potentially
require considerable time to become a reality. Despite all

1https://codecarbon.io. Accessed 10/10/2024.

impediments, we believe that a systematic route towards
energy-aware software testing is possible.

V. DIGGING DEEPER: STARTING TO COLLECT USABLE
EVIDENCE via TEST PRIORITIZATION

As hinted in Section III, test prioritization is the process
of ranking and executing tests in an order that maximizes the
likelihood of detecting software bugs earlier [35]. A common
strategy involves similarity-based approaches [36], where tests
that differ—according to some notion of dissimilarity—from
those already prioritized are given higher priority, ensuring
diverse software areas or functions are tested sooner [37], [38],
[39]. In this section, we present a proof of concept approach
that integrates energy-awareness into similarity-based priori-
tization, with the goal of achieving a more energy-efficient
execution of the test suite. We test the approach on one
software project, assessing the energy savings achieved from
this prioritization strategy. While our approach is designed to
balance energy optimization with test suite effectiveness, our
preliminary experiments focus on investigating its potential for
reducing energy consumption, leaving considerations regard-
ing test suite effectiveness as future work (see also Section VI).

A. The Approach

Let T = {t1, . . . , tn} be a test suite, where each test ti
is represented by its source code. We embed the tests into a
d-dimensional space by modeling them as vectors of features
weighted by their TF-IDF score [40], with d being the number
of unique tokens among all tests in T . Analogous represen-
tations solely based on the source code of the tests have
already been successfully used in similarity-based software
testing approaches [41], [42], [43]. We define the dissimi-
larity/distance of two tests as the cosine distance between
their vector representations. Given two vectors t1, t2 ∈ Rd,
their cosine distance is defined as d(t1, t2) := 1 − ⟨t1,t2⟩

∥t1∥·∥t2∥ ,
where ⟨·⟩ denotes the dot product and ∥·∥ the Euclidean norm.

We first consider a basic similarity-based greedy approach
denoted as GREEDYR, and then compare it with an energy-
aware variant, GREEDYE .

GREEDYR works as follows. Let P be the sequence of
prioritized tests, which is initially empty. The first test is
selected randomly and added to P . At each step, we maintain
a representative vector r := 1

|P |
∑

t∈P t, i.e., the average of
the vector representations of the prioritized tests. To determine
the next tests to prioritize, we compute a set of candidate tests
C := argmaxA⊆T\P ; |A|≤κ

∑
a∈A d(a, r), namely the set of

κ tests that are the furthest from r. We then pick the next
ρ ≤ κ tests to prioritize uniformly at random from C and we
add them to P . Note that ρ, κ are positive integer parameters
that can be tuned to achieve different results. The algorithm
proceeds until all tests are prioritized.

The energy-aware test prioritization algorithm GREEDYE

follows the same steps, except after computing the candidate
set C, where the next tests to prioritize and add to P are
selected as those with the lowest energy consumption.

https://codecarbon.io


B. Experimental Material

We consider Apache Maven2 version 3.9.9 as our experi-
mental subject. This Java project consists of 14 modules and its
test suite includes 191 test classes. CPU energy consumption
for each test is measured using CodeCarbon, averaged over 50
executions, on an M1 MacBook Air with 16 GB of memory.
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Fig. 1: Apache Maven test suite energy consumption data

Figure 1 provides an overview of the energy consumption of
the Apache Maven test suite. Figure 1a shows the distribution
of CPU energy consumption across tests, which ranges from
3.83 to 27.42 mWh, with a total consumption of around
2 400 mWh. It is clear that not all tests have the same energy
cost, with some consuming up to 7 times more energy than
others. Figure 1b compares the dissimilarity of test pairs with
their energy consumption differences, revealing that highly
similar tests tend to have comparable energy consumption,
while more dissimilar tests show weaker correlation. We
leverage this property with GREEDYE : given the high dimen-
sionality of the vector space, the candidate set C will very
likely contain dissimilar tests with a wide range of energy
consumptions, and GREEDYE will prioritize the cheap ones.
In other words, diversity serves as the primary criterion for
prioritization due to its proven effectiveness, while energy-data
act as a secondary criterion to break ties in the prioritization,
helping to reduce overall energy consumption.

C. Experimental Study

We prioritize the Maven test suite using both GREEDYR

and GREEDYE and respectively generate the prioritized test
suites PR and PE . Then for each budget B ∈ {1, 2, . . . , 100}
we measure the energy consumption of running the first B%
of the tests in PR and PE . We set the parameters κ = 30 and
ρ = 1 for both approaches.
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Fig. 2: Experimental comparison of prioritization algorithms

2https://maven.apache.org. Accessed 10/10/2024.

Figure 2 presents the results of our experimental study.
Figure 2a shows that PE , compared to PR, achieves an energy
saving of at least 30%, with a peak of 54%, when running up
to 27% of the test suite in the prioritized order. As expected,
the saving decreases to 0 as the entire suite is executed, where
the total energy consumption is order-independent. Figure 2b
shows that, for a fixed energy budget, PE allows to run more
tests than PR—for example, with an 800 mWh budget, PR

covers only 30% of the test suite, while PE covers up to 40%.
Finally, the energy consumed by each prioritization algo-

rithm is approximately 1 mWh, which is less than one third
of the energy required to run the cheapest test class and is
negligible compared to the cost of the entire test suite.

While the results of this study show promising savings using
energy-aware test prioritization strategies, it is important to
acknowledge its preliminary nature. The results herein should
be viewed as insights rather than conclusions. Also note that
we did not assess the effectiveness of the approach in terms of
fault detection capability, but we expect it to be comparable
to that of other similarity-based approaches [36].

We have made a replication package available online3.

VI. FUTURE PLANS

To further develop the ideas proposed in this paper, we plan
to work on two different temporal horizons.

Short-term horizon: To complete the preliminary research
on energy-aware test prioritization presented in Section V, we
plan to make the energy-aware prioritization concept more
scalable and capable of handling large test suites efficiently,
as other similarity-based approaches [42], [43]. In fact, while
GREEDYE has a negligible computational cost for the rela-
tively small test suite considered, this cost grows rapidly—
potentially more than linearly—as test suites increase in size.

In terms of validation, as pointed out in Sections IV and V,
it is crucial to assess not only the energy gains, but also
the impact on test suite reliability of testing techniques. To
this end, we will use software repositories with documented
real-life bugs, such as Defects4J [44] and SIR [45], to assess
the effectiveness of the approach in detecting bugs without
resorting to fault injection. To gain more insights into the
real-world applicability of our approach, we will also use
open-source projects belonging to software ecosystems, e.g.,
Apache, and obtain fault matrices via mutation testing.

Long-term horizon: The research agenda implied by
this work reaches far beyond the short term refinement and
evaluation of energy-aware test prioritization approaches. On
the one hand, in light of the challenges energy-aware software
testing will face (see Section IV), we are keen to conduct in
vivo industrial case studies to assess how energy-aware testing
can be integrated in existing testing pipelines, the related
effort, and challenges. On the other hand, we are eagerly and
curiously driven to explore how other energy-aware testing
strategies (see Section III) can be concretely implemented to
study their potential in making software testing energy-aware.

3https://figshare.com/s/776b99b9328aefe1114e. Accessed 10/10/2024.

https://maven.apache.org
https://figshare.com/s/776b99b9328aefe1114e
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