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Abstract—Context. Android is the largest mobile platform
today, with thousands of apps published and updated in the
Google Play store everyday. Maintenance is an important factor
in Android apps lifecycle, as it allows developers to constantly
improve their apps and better tailor them to their user base.
Goal. In this paper we investigate the evolution of various
maintainability issues along the lifetime of Android apps.
Method. We designed and conducted an empirical study on
434 GitHub repositories containing open, real (i.e., published
in the Google Play store), and actively maintained Android
apps. We statically analyzed 9,945 weekly snapshots of all apps
for identifying their maintainability issues over time. We also
identified maintainability hotspots along the lifetime of Android
apps according to how their density of maintainability issues
evolves over time. More than 2,000 GitHub commits belonging to
identified hotspots have been manually categorized to understand
the context in which maintainability hotspots occur.
Results. Our results shed light on (i) how often various types of
maintainability issues occur over the lifetime of Android apps,
(ii) the evolution trends of the density of maintainability issues
in Android apps, and (iii) an in-depth characterization of devel-
opment activities related to maintainability hotspots. Together,
these results can help Android developers in (i) better planning
code refactoring sessions, (ii) better planning their code review
sessions (e.g., steering the assignment of code reviews), and (iii)
taking special care of their code quality when performing tasks
belonging to activities highly correlated with maintainability
issues. We also support researchers by objectively characterizing
the state of the practice about maintainability of Android apps.
Conclusions. Independently from the type of development activ-
ity, maintainability issues grow until they stabilize, but are never
fully resolved.

Index Terms—Maintainability, Android, Empirical study

I. INTRODUCTION

As of March 2018, there are more than 3.3 million Android
applications available [1], with more than one thousand apps
being published everyday [2]. Also, according to the official
Android developer portal [3] there are more than 1.5 billion
downloads from Google Play Store every month. A platform
of such a large scale leads to an extremely crowded market
and fierce competition. If developers are to succeed in such a
competitive environment, it is of paramount importance that
the mobile apps they produce are of extremely high quality.

Software maintenance is the activity of modifying a soft-
ware product after its delivery in order to improve perfor-
mance, add functionalities or perform corrective tasks on the
existing product [4]. Software maintainability can be defined
as the property of software that provides insights about how
easily a software system (in this case an Android app) can be
maintained [4]. In principle, apps with higher maintainability

can be released and updated with less effort and provide the
users with high quality features. Maintenance can be seen as
one of the most important activities within the mobile app
lifecycle. For example, updates of widely popular mobile apps
like Facebook are consistently published on a daily basis [5].

Apart from the Android guidelines [6], there is little guid-
ance about Android apps maintainability. If developers would
be able to characterize their own apps w.r.t. the maintainability
issues they are prone to encounter over timethey would be able
to make better informed development choices.

In this paper we present a large-scale empirical study on the
evolution of statically-detectable maintainability issues across
the Android ecosystem. In particular, in this study we refer to
“maintainability issue” as code that is classified as high risk by
the Software Analysis Toolkit (SAT) [7], an industrial toolset
developed by the Software Improvement Group (SIG) [8].
From a methodological perspective, we firstly built a dataset
of 434 Android apps that are (i) open (i.e., available as open-
source projects in GitHub), (ii) real (i.e., distributed through
the Google Play Store), and (iii) actively maintained (i.e.,
no single-commit or toy projects). Then, we (i) mined their
GitHub repositories and extracted 9,945 weekly snapshots1

from 106,689 commits, (ii) analysed each snapshot via an
industrial tool for static analysis, and (iii) identified the occur-
rences of 5 types of maintainability issues in each snapshot.
Afterwards, we manually analyzed 1,230 apps for building
a reusable taxonomy of the trends in which the density of
maintainability issues of Android apps can evolve over time. In
order to do so, we considered the notion of commit-level issue
density (cd) [9] reported in Formula 1. Moreover, we identified
3,374 maintainability hotspots, defined as the points along the
lifetime of an Android app where developers are injecting an
anomalous number of maintainability issues with respect to the
current app size. Finally, in order to understand the context in
which maintainability hotspots occur, we investigated on the
(self-reported) activities performed by developers in the con-
text of all identified maintainability hotspots. We carried out
the latter step by manually inspecting and categorizing 2,112
GitHub commits belonging to the identified maintainability
hotspots by conducting independent content analysis sessions.

The main contributions of this paper are:
• a characterization of the frequency of maintainability issues
in Android apps;

1A “snapshot” is defined as the state of a repository after a week of active
development, i.e. a week in which at least one commit occurred.



• a taxonomy and characterization of the evolution trends of
the maintainability issues’ density in Android apps;
• a characterization of maintainability hotspots for Android
apps, together with an investigation about the Android devel-
opment activities performed when those hotspots occur;
• the replication package of our empirical study containing its
results, raw data, and mining- and data analysis scripts.

The target audience of this paper includes both Android de-
velopers and researchers. We support developers by providing
a set of actionable and evidence-based insights for improving
the maintainability of Android apps; we support researchers
by objectively characterizing the state of the practice about
maintainability of Android apps.
Paper structure. Section II provides background information.
Section III presents the design of the study. Section IV presents
and discusses obtained results. Sections V and VI describe
threats to validity and related work, respectively. Section VII
closes the paper and discusses future work.

II. BACKGROUND

Software maintainability. This study relies on the software
quality model defined in the ISO/IEC 25010 standard [10]. The
standard defines a generic software quality model composed
of the following characteristics: functional suitability, perfor-
mance efficiency, compatibility, usability, reliability, security,
maintainability and portability. There, software maintainabil-
ity is defined as the degree of effectiveness and efficiency with
which a product can be modified to improve it, correct it or
adapt it to changes in environment, and in requirements [10].
The ISO/IEC 25010 software quality model further divides
software maintainability into 5 sub-characteristics: modularity
(degree of change impact of one component w.r.t. others),
reusability (degree to which an asset can be used to build other
systems), analyzability (extent to which a software product
can be analyzed, with the goal of identifying parts to be
modified), modifiability (extent to which a software product
can be modified without lowering its quality), and testability
(extent to which a software product can be tested).
Source code quality tools. In order to minimize maintenance
costs, developers can track and improve their source code
quality with the help of open-source tools. For example,
Lint [11] is an Android Studio source code scanning tool.
The Lint tool provides support in finding potential bugs and
optimization improvements with respect to security, perfor-
mance, usability, correctness and internationalization. Another
open-source solution is FindBugs [12]. It reports nearly 300
different bug patterns in Java and reported bugs are categorized
and assigned a priority level. SonarQube [13] is also a
prominent open-source static code analyzer which focuses on
the detection of bugs, code smells and security vulnerabilities.
SonarQube currently supports more than 20 programming
languages including Java and offers a vast range of customiza-
tion parameters for ad-hoc analyses. PMD [14] is a popular
source code analyzer, able to find common programming
issues such as empty catch blocks, unused variables etc. PMD
supports a variety of different languages, among which are

Java and XML, making it suitable for analyzing source code of
Android applications. Furthermore, PMD provides support for
identification of duplicated code in Java source files. Another
freely-available tool is CheckStyle [15]. Although it does not
identify bugs, it allows Java developers to write code that
adheres to coding standards, thus increasing code readability.
JArchitect [16] is instead a commercial static analysis tool
that, in addition to code metrics, provides capabilities to in-
spect the quality of software architecture through dependency
analyses and validation of architectural rules. SciTools Under-
stand [17] is another commercial tool aimed at providing an
overview of a software product through a mix of code metrics
analyses and dependency visualization techniques.

In this study we use SAT, a toolset developed by SIG, a
software consultancy company providing insights into soft-
ware systems’ source code quality. SAT is based on the SIG
maintainability model, which defines metrics to measure ISO
25010 maintainability based on source code. SIG has used
this model in a consulting practice for the past 10 years,
measuring hundreds of systems and billions of lines of code.
Empirical studies have shown that the metrics used by the SAT
tool are correlated with the maintainability issue resolution
performance of software developers [18]. As such, this model
is a very good candidate for this study, also due to its com-
pliance with the well-acknowledged ISO/IEC 25010 standard
and to the full automation enabled by the SAT analysis tool.
SAT allows us to automatically perform static code analysis
on snapshots of multiple apps, and provides maintainability
metrics for further statistical analysis.

III. STUDY DESIGN

To provide objective and replicable findings, a complete
replication package is available2 with the source code of all
the developed mining and analysis software, and raw data.

A. Goal and Research Questions

The goal of this study is to analyze the source code
of Android mobile apps for the purpose of characterizing
their evolution with respect to maintainability issues from the
viewpoint of software developers, in the context of open-
source apps published in the Google Play Store. The related
research questions are described in the following.
RQ1 – Which are the most recurrent types of maintainability
issues in Android apps?

Answering this research question enables developers and
researchers to get a better understanding of Android-specific
maintainability issues through empirical evidence, lying the
groundwork for the efficient management of maintainability
issues in Android apps (e.g., by taking special care of code
duplication issues, which are the most recurrent ones).
RQ2 – How does the density of Android maintainability issues
evolve over time?

RQ2 investigates whether the evolution of the density
of maintainability issues exhibits identifiable characteristics
(i.e., specific trends). It provides insights about how each

2https://github.com/S2-group/ICSME2018ReplicationPackage



type of maintainability issues tend to remain/grow/decrease
in Android apps over time, potentially with a negative or
positive impact on the overall maintainability of the app in
future releases. The trends emerging from this study can
guide developers in classifying their own apps, comparing
them with others, and taking action depending on the level of
maintainability they want to achieve. For example, if a team
of developers recognizes that their activities are falling in the
stable increase pattern, then they can counteract it by planning
refactoring-specific sessions.
RQ3 – What are the development activities in which main-
tainability hotspots occur?

RQ3 aims at identifying the relation between the activities
performed by developers and the occurrence of maintainability
hotspots. The identification of those relations helps in under-
standing what are the Android development activities that are
more sensible to the injection of each type of maintainability
issues. Android developers can use this information for (i)
better planning code refactoring sessions, (ii) better planning
their code review sessions (e.g., steering the assignment of
code reviews), (iii) taking special care of their code quality
when performing tasks belonging to activities highly correlated
with maintainability issues.

B. Context and Dataset

1) Context selection: Since this study is focused on real-
world Android apps for which we can track their maintain-
ability and development activities over time, the context of
this study consists of a set of Android apps that (i) are
freely distributed in the Google Play store and (ii) have their
versioning history hosted on GitHub.

2) Dataset building: The dataset building process of this
study is similar to the one proposed in [19]. As shown in
Figure 1, we consider the following initial sources: GitHub,
FDroid, and Wikipedia. From Github, a custom search was
performed that targeted all the repositories containing a link
to a Google Play Store app page in their readme files. The
second source for our dataset is FDroid [20], a largely known
online catalogue of free and open-source Android projects.
From this catalogue, a search was applied that locates apps
that contain: a) a link to the respective GitHub repository,
and b) a link to the respective Google Play store page. The
third source is a Wikipedia [21] containing a maintained list
of free and open-source Android applications. We performed
a manual selection from this list. The merging step (1) of the
three considered data sources resulted in a total of 9,400 apps.

Some of the apps were not published on the Google Play
store, and were therefore excluded (2). This occurs if devel-
opers decide to remove the app from the store or if Google
takes down apps for violating some publishing policies. Next,
duplicate entries have been removed (3).

In the next filtering step we identified repositories contain-
ing actual Android app source code (4). This filtering step has
been done by considering only the repositories containing the
mandatory AndroidManifest.xml file.

Fig. 1: The dataset building process

Then, we filtered out repositories which did not contain
an Android manifest file in the source code folder (5). The
rationale for this step is that the folder containing the Android
manifest file should also contain the complete source code for
each application.

In order to avoid inactive or unmaintained repositories [22],
we considered only repositories with at least 6 commits and
having a lifetime span of at least 8 weeks (6). The 6-commits
threshold corresponds to the median of the number of commits
for all considered repositories before this filtering step, while
the 8-weeks threshold comes from the fact that 8 weeks is the
average development time for an Android app [23].

We further cleaned up the dataset by filtering out all those
GitHub repositories containing (i) commit dates which were
manually modified by developers (our study has a strong em-
phasis on the time dimension), (ii) forks of other repositories
(to avoid duplicates), and (iii) source code not analyzable by
the SAT tool, e.g., Kotlin-based apps (7).

The last filtering step involved (i) the identification and
removal of all the snapshots for which there were no commits
in the GitHub repositories and (ii) the subsequent filtering of
all the GitHub repositories having less than 8 snapshots after
the snapshots removal (8). After this step, our final dataset
contains 434 GitHub repositories containing open, published,
and actively maintained Android apps, for which an analyzable
commit history is available.

Finally, we extracted all commits of the main branch of each
GitHub repository, leading to a total of 106,689 commits (9).

3) Demographics: In the following we provide an overview
of the apps included in our dataset.

As shown in Figure 2, the median app of the dataset
results to be developed for 16 active weeks of development
(hereafter, snapshots).
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Fig. 2: Distribution of snapshots per app

As we may expect, the number of commits per app is
characterized by a high variance, ranging from a minimum of



12 to a maximum of 2,407 commits per app. The median app
of the dataset has 123 commits (see Figure 3).
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Fig. 3: Distribution of commits per app
The number of commits per snapshot varies from a mini-

mum of 1 commit (which was required in order to characterize
a snapshot as active) to a maximum of 251 commits. The
median snapshot is composed of 6 commits (see Figure 4).

1 2 5 10 20 50 100 200

Number of commits per snapshot

Fig. 4: Distribution of commits per snapshot

Regarding the period of development, we ensured that the
apps within our dataset are heterogeneous, in order to do not
bias our study due to some specific versions of the Android
platform. In particular, the earlier app development start date
is close to the initial release of the Google Play market (end of
2008) till early 2017 (close to when our crawling process was
executed, see also Section III-B). In Figure 5 the development
start date of all the apps is reported.
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Development start date per app

Fig. 5: Distribution of development start date per app

Finally, by considering the number of unique contributors
per app, the median shows that apps developed by 3 unique
contributors result to be the most common in our dataset. In
Figure 6 the distribution of number of unique contributors per
app is depicted.
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Fig. 6: Distribution of unique contributors per app

C. Data Extraction

Snapshots Extraction. This study considers the evolution of
maintainability issues of an Android app as a sequence of
snapshots (S1, S2, ..., Sn), where a snapshot is defined as a
set of source code files of an app at a given point in time.

A time-windowing approach has been adopted and closely
follows the approach presented in the work by Di Penta et
al.[9]. A snapshot series can be extracted from an app’s GitHub
repository by considering all the commits performed between
the begin and end of a snapshot interval. For this research, the
time interval between two snapshots in a snapshot series is
defined as one week, mainly because it has been empirically
shown that Android apps are updated once a week or less
frequently [24]. Once the snapshot series has been obtained,
each app repository has been cloned and subsequently checked
out for each snapshot in the series.

In total, the whole analysis process of extracting snapshots
and applying static code analysis to each snapshot spanned a
period of 2 months. Furthermore, a total of 800 million LOCs
have been processed, and more than 7,000 GB of file system
resources have been considered across 9,945 snapshots.
Maintainability Issue Density Identification. In this step we
used the SAT to process every snapshot of each app, producing
the source code metrics related to maintainability issues of
Android apps. The total static code analysis processing of all
snapshots took 12.45 days, with an average execution time of
8.73 seconds per snapshot. As mentioned before, the metrics
in SAT are based on the ISO/IEC 25010 quality model. The
model underlying SAT measures the properties of a software
product at four levels of abstraction, namely: unit, module,
component and overall system level. In the context of this
study, unit is a Java method, a module is a Java class, a
component is a Java package, and a system is the whole app.

In this study, we consider the maintainability issues defined
by SAT ([7]), namely:
• Unit Size (US): Methods exceeding 30 lines of code3.
• Unit Complexity (UC): Methods whose McCabe Cyclo-

matic Complexity exceeds 10 [28].
• Unit Interfacing (UI): Methods having more than 4

(formal) parameters.
• Module Coupling (MC): Classes exceeding 20 incoming

dependencies (eg. method invocations, class extensions,
interface implementations).

• Duplication (DP): Code clones of at least 6 lines of code.
SAT detects type-1 clones [29] after a cleaning process
that removes empty lines and comments.

• Maintainability (MT): The total count of occurrences of
the previous issues types.

Once the maintainability issues have been identified, a
unified and comparable measure of their amount is needed,
in order to allow for objective comparisons between apps
with different size and between different issue categories.
Therefore, in this study we consider a notion of commit-level
issue density (cd) [9], defined as follows:

cdica = |
⋃

x∈Ii
ca

x|/NKLOCca (1)

where i uniquely identifies one of the types of maintainability
issues according to the ISO/IEC 25010 quality model (e.g.,

3The thresholds for maintainability issues have been defined based on the
results of empirical studies involving the SAT tool [25], [26], [27].



unit complexity), a is the app being considered, ca ∈ Ca

is a commit in the GitHub repository of a, Iica is the set
of identified issues of type i in the repository of a after
checking it out at commit c, and NKLOCa,c is the number
of thousands of lines of Java source code in the repository of
a after checking it out at commit c. Intuitively, cd indicates
the number of issues of a specific type that are introduced by
a commit, normalized by considering the current size of the
repository. Being Sa the set of all weekly snapshots of a, the
issue density disa of each sa ∈ Sa is defined as cdica , where c
is the last commit performed within the time window of sa.

D. Data Analysis

1) RQ1: In order to test whether the issue types exhibit a
significant difference w.r.t. issue density, we adopt the omnibus
Kruskal-Wallis test, i.e., a non-parametric test for testing the
difference among multiple medians. In order to avoid potential
threats to validity due to fishing rate we adjust the significance
level by means of the Bonferroni correction [30]. In addition
to the Kruskal-Wallis omnibus test, in order to assess if there
is a significant difference between the pair-wise comparison of
issue types, we conduct a series of two-tailed Mann-Whitney
tests. This is not required in order to test the null hypothesis,
i.e. that all means of the issue density among issue types is
equal. Nevertheless we use this statistical tests to get further
insights in the data. As the previous test, the Bonferroni
correction is used to adjust the significance level.

Apps characterized by long-lasting active development
might affect the results due to their high number of snapshots
present in the dataset. In order to mitigate this potential threat
to internal validity, the above presented tests are carried out
both on the complete dataset of snapshots and on the median
values of the snapshots aggregated per app. Due to space
limitations, and as the results do not significantly differ, in
the result section we report the results relative to the analysis
of the complete dataset.

2) RQ2: For each app a and maintainability issue i, we
firstly create a time series representation TSi

a by temporally
ordering all the density values dis across all snapshots s ∈ Sa

of a. The time of the first and last observations of each TSi
a

are set to the timestamp of the first commit among the set of
all commits Ca of a and the timestamp of the end of the time
window identified by the last snapshot in Sa, respectively.

As initial exploration, we check if the obtained time series
exhibit a stationary behaviour. From a statistical perspective,
the mean and variance of a stationary time series are constant
over time [31] (i.e., it has no trend over time). We apply to
each TSi

a the Augmented Dickey-Fuller test (ADF) [32] (with
α = 0.05), which is a unit root test for stationarity with H0 =
the time series has a unit root (it is non-stationary) and H1 =
the time series does not have a unit root (i.e., it is stationary).
We adjust the obtained p-values via the Bonferroni correction
since we are applying the ADF test 6 times, one for each type
of maintainability issue. From this preliminary test, apps result
to be mostly non-stationarity for all types of maintainability
issues, motivating us to further inspect their exhibited trends.

We decompose each TSi
a into its seasonal, trend and irregu-

lar components [33] using the STL algorithm [34]. Intuitively,
given a time series, STL iteratively extracts its seasonal
component by loess smoothing the seasonal sub-series (e.g.,
the series of the first values of all seasons, of the second
values of all seasons, etc.). Then, the seasonal values are
removed, and the trend component is extracted by smoothing
the remainder. The irregular component is computed as the
residuals from the seasonal plus trend fit [34]. We use the
STL algorithm as it does not assume any distribution of the
time series, it has been successfully used in previous software
engineering studies [30], [35], and an efficient implementation
is available as an open-source R package4.

For answering RQ2, we perform a qualitative study on
the plots of the trend components of all TSi

a. Since the
manual analysis of all the collected trend components is
infeasible, we randomly selected a sample composed of 205
apps and analyzed their trend component for each type of
maintainability issues5 (summing up to 1,230 distinct trends),
and manually scrutinize and categorize them into relevant
groups by applying the open card sorting technique [36]. To
minimize bias, two researchers have been involved in this
activity and the results have been checked by a third researcher.
This activity resulted in the taxonomy of maintainability issues
presented in Section IV-B.

3) RQ3: We answered RQ3 by following two main phases.
The first phase targets the identification of maintainability
hotspots along the lifetime of an Android app. Given an app
a and its density time series TSi

a (one for each type of
maintainability issue), the set of maintainability hotspots Hi

a

is defined as follows:

Hi
a = {sj | (disj − d

i
s(j−1)

) > σ(TSi
a),

j = 2, . . . , |TSi
a|, sj ∈ TSi

a}

where disj is the density of the maintainability issue of type
i in snapshot sj and σ is the standard deviation of the
density values along the time series TSi

a. In other words, we
consider as hotspot every snapshot sj in which the density of
a maintainability issue i w.r.t. its preceding snapshot s(j−1) is
higher than the standard deviation of the whole time series of
i. We build upon this standard-deviation-based strategy since
(i) it is not feasible to build upon more advanced models for
outliers detection (e.g., ARIMA [37]) for all 434 apps since
they require delicate manual tuning for each app and (ii) it
is computationally efficient. Despite its apparent simplicity,
an independent manual exploration of a subset of the apps
by two researchers confirms that this strategy proves effective
in correctly identifying maintainability hotspots. This phase
led to the identification of 3,374 maintainability hotspots over
46,873 GitHub commits.

In the second phase, we consider GitHub commit messages
as indicators of the actual activities performed by developers

4http://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html
5By considering 205 apps we achieve a 95% statistically significant sample

of the 434 apps of our dataset with a 0.05 confidence interval.

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html


and we manually analyze the commits performed during the
occurrence of maintainability hotspots. As manually analyzing
all 46,873 GitHub commits is unfeasible, we build a repre-
sentative sample of commits for each type of maintainability
issue (95% confidence level, 0.05 confidence interval), leading
to a set of 2,112 unique commits to be manually analyzed.
To this aim, we conduct content analysis sessions [38] on
all 2,112 commit messages and categorize them according to
the taxonomy of self-reported activities of Android developers
proposed and empirically validated by Pascarella et al. [39].

For answering RQ3, we present (i) the frequency and
distribution of maintainability hotspots within all Android apps
and (ii) how frequently each category of Android developers’
activities appears in maintainability hotspots.Finally, we reuse
the publicly-available dataset of 5,000 manually categorized
commits produced in [39] as ground truth for all commits i.e.,
commits either belonging to maintainability hotspots or not.
We use a Chi-Square test to assess the relationship between
the activities performed in all commits and those performed in
commits belonging to maintainability hotspots and Cramer’s
V to establish the effect size [30].

IV. RESULTS

A. RQ1. Which are the most recurrent types of maintainability
issues in Android apps?

Figure 7 shows that on average almost 18 issues, spread out
throughout different issue types, are present every NKLOC
(M=15.65, m=17.87)6. The aggregated maintainability issue
distribution is reported in the leftmost violin plot of Figure 7.
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Fig. 7: Distribution of unique contributors per app

From the remaining violin plots we observe that the issue
density varies among the different issue types. From the
Kruskal-Wallis omnibus test we evince that the distributions
significantly differ (p-value < 2.2·10−16). We hence reject the
null hypothesis, i.e. that all means of the issue density among
issue types is equal. From an additional pair-wise comparison
between issue types we see that all issue types occur with
different rates. The most recurring maintainability issue re-
sults to be duplication (M=7.393, m=10.230), followed by
unit size (M=4.290, m=4.249), unit complexity (M=1.4510,
m=1.6150), unit interfacing (M=0.7736, m=1.1030), and mod-
ule coupling (M=0.6258, m=0.6746). Apart from duplication

6Where M is the median value and m the mean value.

and to a certain extent unit size violations, the remaining issue
types present only small differences in distribution.

Not all code duplicates are bad [40]. We conjecture that
the higher frequency of code duplication issues is primarily
due to the Android programming idiom and code duplication
in Android can be related to the templating phenomenon due
to the activity-intent-based nature of the Android program-
ming model. Nevertheless, idiom-based templating can lead
to introducing bugs (if not carefully used) and overlooking
inconsistencies [40], which might be remarkably detrimental
for the maintainability of mobile apps.

Different types of maintainability issues occur with dif-
ferent rates. Code duplication is the most recurrent main-
tainability issue in Android apps, followed by unit size
violations, unit complexity violations, unit interfacing
violations and module coupling violations. In our dataset,
the overall maintainability of the analyzed apps is highly
impacted by code duplication issues.

B. RQ2. How does the density of Android maintainability
issues evolve over time?

Firstly, we assess if the density of maintainability issues
exhibits a stationary trend in time. We applied the ADF test
for obtaining the number of stationary and non-stationary apps
for each type of maintainability issue. As shown in Table
I, the ADF test reveals that 93.01% of all apps exhibit a
non-stationary behaviour (p-value < 0.008 because of the
Bonferroni correction), whereas only 6.99% are stationary in
at least one type of maintainability issue.

TABLE I: Number of stationary and non-stationary trends per
maintainability issue type

Maintainability issue Stationary Non-stationary
MT 1 433
US 4 430
UI 61 373

MC 67 367
UC 37 397
DP 12 422

TOTAL 182 (6.99%) 2,422 (93.01%)

This finding provides evidence that, according to our
dataset, the density of maintainability issues in Android apps
is not stable over time. This means that Android developers
actually have an impact on the overall maintainability of their
apps over time. Developers can use the instantaneous value of
disa for keeping the maintainability of apps under control and
taking informed decisions when planning for maintainability-
related activities (e.g., refactoring sessions).

The vast majority of apps do not exhibit a stationary
behaviour across all types of maintainability issues.



Fig. 8: Examples of evolution trends of the density of maintainability issues of Android apps

As the majority of apps does not exhibit stationarity, we
further inspect their trends as detailed in Section III-D2.
The manual analysis of the 1,230 trend components led to
the elicitation of the taxonomy presented in Table II. The
taxonomy objectively represents the categories in which the
density of maintainability issues of Android apps can evolve.
The taxonomy is composed of two levels, where the first one
represents trends with similar overall characteristics (e.g., den-
sity growth or reduction), whereas the second level represents
trends at a finer grain (e.g., stable increase, valley). Figure 8
shows an example of each trend category of the taxonomy.

TABLE II: Taxonomy of evolution trends

Trend category Description
Growth (G) In the first weeks the app has a low density of

maintainability issues, followed by an overall
non-decreasing trend

Increase (I) The density follows a generally increasing
trend (some minimal decreasing parts could be
present)

Stable Increase (SI) The density is relatively low in the initial
weeks, then it gradually increases throughout
the whole lifetime of the app

Increasing Plateau (IP) The density reaches plateau(s) after an overall
non-decreasing trend

Plateau Increasing (PI) The density is stable and relatively low in the
first weeks, then it increases for the whole
lifetime of the app

Reduction (R) In the first weeks the app has a high density of
maintainability issues, followed by an overall
non-increasing trend

Decrease (D) The dual of I
Stable Decrease SD) The dual of SI

Decreasing Plateau (DP) The dual of IP
Plateau Decreasing (PD) The dual of PI

Mixed (M) Mixed trend where the density of maintainabil-
ity issues grows and declines over time

Hill (H) The density is relatively low in the initial
weeks, it gradually increases up to a certain
peak, and then it gradually decreases

Valley (V) The dual of H
Anomalous (A) It does not fall into any of the previously

defined categories

Constant (C) The density of maintainability issues is the
same over time

Constant (C) Same as C

In order to interpret the manually gathered results, we

represent the frequency of each trend across issue types in
the heatmap in Figure 9. We evince that the trend category
G (composed of I, SI, IP, and PI) is the most recurrent. For
the majority of maintainability categories new issues are intro-
duced over time in the apps by following different increasing
trends. Only seldom are maintainability issues resolved.

Fig. 9: Evolution trends by maintainability issue types

Of the subcategories composing G, IP is the most recurring
one. We conjecture that this is the result of the introduction
of maintainability issues in the early stages of development,
followed by a “saturation period”. This later period of the IP
trend is attributed to a higher awareness that is given by devel-
opers to maintainability issues after reaching a certain level of
technical debt. From this recurrent trend we observe that devel-
opers, while not actively resolving issues, avoid to introduce
more in the more mature stages of the app, potentially before
maintainability issues become unmanageable in number. Issues
characterized by an initial period of stability before increasing
(PI) are less frequent: if maintainability issues are introduced,
usually it starts from the early development stages.

The only exceptions opposing the higher occurrence of the
G trend can be observed for the issues of type UI and DP,
which exhibit more frequently an H trend. This can be caused
by the nature of such type of issues. In fact, UI issues manifest
themselves as Java methods become more complex, directly
impact development time required to use them, and can be
easily spotted by developers. Hence, after a period of initial
growth, effort might be spent to resolve such issues and avoid
cumbersome development activities in the future. A similar
reasoning can be applied to the H trend of DP issues: while
due to time constrains DP issues can be acceptable at initial
stages of development, in time resolving such apparent issues
can be a valuable activity which eases future development.



Fig. 10: Frequencies of Android development activities performed during a maintainability hotspot

From the lower frequency of R trends (D, SD, DP, PD)
we evince that only seldom development activities lead to
a consistent decrease of maintainability issues. This may be
attributed to scarce effort put into structured refactoring pro-
cesses aimed to improve and maintain apps’ software quality.

Constant trends also result be less occurrent. We can
conjecture that this is due to the selection criteria adopted
to systematically filter the weeks of development considered
in our dataset. In fact we selected exclusively active weeks of
development, i.e. when changes were carried out on the apps,
which reflected in a changing number of issues.

The scarce occurrences of anomalous trends (A) shows that
our taxonomy proved to be effective, and encompassed the
vast majority of the trends of maintainability issues analyzed.

Maintainability issues in Android apps exhibit mainly a
growth in time. Reaching a plateau after an initial increase
is a particularly recurrent trend. Unit interfacing and code
duplication issues result to be outliers, displaying a hill
like trend, which can be motivated by the nature of these
issues. Only seldom maintainability of apps exhibits an
overall decrease or constant trends in time.

C. RQ3. What are the development activities in which main-
tainability hotspots occur?

As anticipated in Section III-D3, we identified a total
of 3,374 maintainability hotspots involving 46,873 GitHub
commits. Their descriptive statistics are reported in Table III.

Overall, the number of maintainability hotspots per app
ranges between 0 and 8, with a median of 1 (similar values for
the mean and standard deviation). The low values for standard
deviations also tell us that the distribution of the number of
hotspots across apps is very compact, with a strong tendency
towards one hotspot per app.

Maintainability hotspots do not occur often in the lifetime
of each app. Nevertheless, on average each app has at least
one maintainability hotspot.

Now we zoom into the activities performed by developers
during the occurrence of maintainability hotspots. To do so,
we manually categorized 2,112 commit messages according
to a taxonomy of self-reported Android development activ-
ities [39]. The taxonomy entails a wide variety of different
activities at different levels of abstraction (e.g., bug fixes,
functionality implementation, release management, access to
sensors, etc.). The taxonomy is composed of two levels, where
the first layer groups together activities with similar overall
purpose (e.g., app enhancement, bug fixing, API manage-
ment), whereas the subcategories (49 items) in the lower
level provide a finer-grained categorization [39]. Figure 10
shows the frequency of each category of Android developers’
activities across the various types of maintainability hotspots7.
The colour of each tile reports the sum of all occurrences
of each development activity in correspondence of a hotspot
of a specific type of maintainability issue (note that multiple
activities can be assigned to each hotspot). The order of
development activities follows the rank of most frequent
activities in Android apps, as emerged in [39] (e.g., group A
is more frequent than group B, activity A.1 is more frequent
than activity A.2).

TABLE III: Descriptive statistics for the hotspots of each
maintainability issue type per app (SD = standard deviation,
CV = coefficient of variation)

Issue type Min. Max. Median Mean SD CV

MT 0 6 1.0 1.38 1.03 0.75
US 0 6 1.0 1.35 1.03 0.76
UC 0 8 1.0 1.16 1.09 0.94
UI 0 8 1.0 1.16 1.09 0.94
MC 0 7 1.0 1.31 1.16 0.88
DP 0 6 1.0 1.41 1.12 0.79

Overall, our categorization follows the same trends iden-
tified in [39], with the most prominent categories of ac-
tivities being app enhancement (specially for new and up-
dated features), followed by (app specific) bug fixing, and
project management. Interestingly, the category user experi-
ence improvement is quite frequent in the presence of hotspots

7In Figure 10 we depict in bold the top level categories and in plain text
all the subcategories of the taxonomy.



(+7.28% more than it is for "standard" commits, i.e., commits
unrelated to hotspots), specially for those activities related to
the graphical user interface (E.1 - GUI). This result can be an
indication that Android developers should pay special attention
when working on the business logic related to buttons, UI
layouts, event listeners, etc., as those activities are potentially
more related to the presence of maintainability hotspots.
Moreover, we noticed an increase also for the category Android
lifecycle (+2.86% w.r.t. all commits), which refers to the
activities about the management of Android components life-
cycle events and transitions (e.g., the onCreate of Activity).
Finally, also the Documentation category exhibits an increase
in frequency when maintainability hotspots occur (+ 3.23%);
this kind of activities refers to adding/refining comments
in the source code and working on the documentation of
the app (e.g., description of the app, its requirements, UI
mockups). This result happened for 85 commits and was
quite unexpected as in principle this category should not
be related to maintainability at all. A deeper investigation
reveals that all snapshots containing the 85 documentation-
related commits include also other commits, which may be
related to other development activities playing a role in the
occurrence of hotspots. Nevertheless, the co-occurrence of
documentation-related activities and maintainability hotspots
may be an indication that commits chronologically close to
documentation-oriented activities are correlated with hotspots.
We leave this analysis for future work.

In order to better characterize how Android development
activities may be correlated with maintainability hotspots, we
test if there is a significant difference between the frequencies
in our categorization of 2,112 commits and the ones observed
in the 5,000 manually categorized commits in [39]. It is im-
portant to note that the commits categorized in [39] have been
randomly selected, they can belong either to maintainability
hotspots or not. For all maintainability issue types we obtained
a statistically significant measure of correlation between these
two categorizations (p-value < σ, where σ = 0.008 because
of the Bonferroni correction), allowing us to reject the null
hypothesis that the two categorizations are independent. The
Cramer’s V test reveals a small effect size for all maintain-
ability issue types (0.19 ≤ V ≥ 0.22). Together, those results
(i) confirm our preliminary exploration that the frequencies
of Android development activities in commits belonging to
maintainability hotspots are in line with those involving all
commits and (ii) such a relationship is only weak.

Maintainability hotspots in Android apps tend to occur
independently of the type of development activities per-
formed by developers. Activities related to the GUI and
the management of the Android lifecycle are slightly more
prone to co-occur with maintainability hotspots.

V. THREATS TO VALIDITY

Construct validity. The results of this study are based on the
current implementation of SAT, the used static code analysis

tool. It is hence paramount that the tool was implemented and
configured correctly. This major threat was mitigated through
different strategies. Firstly, the tool documentation is made
available in order to detail the maintainability issue detection
processes and the configuration settings adopted. Furthermore,
interviews have been conducted with the tool developers
to investigate the details related to the identification of the
identified maintainability issues. Additionally, an inspection of
several detected issues across issue categories was performed
manually. Finally, the SAT tool is utilized on a daily basis in
industrial settings, and was also utilized in previous researches
carried out by independent researchers [41], [42], [43].

An additional threat to construct validity is constituted by
the representativeness of the selected apps. This threat was
mitigated by carrying out an in-depth data quality assurance
process (reported in Section III-B2). In addition, we ensured
that the data was encompassing and heterogeneous in terms
of development lifespan, number of commits, and number of
contributors etc.
Conclusion validity. The most prominent threat to conclusion
validity is constituted by the data extraction and analysis pro-
cesses adopted to gather the results. In order to mitigate it, we
strictly adhered to a set of a priori defined data extraction and
analysis processes. Such processes were explicitly conceived
to gather and analyze significant data to answer our research
questions. In addition, a replication package with the raw
data and analysis scripts is made available for the complete
reproducibility of the results.

The majority of the statistical tests produced p-values far
below the chosen significance level of 0.05. To minimize the
error rate of the results, the Bonferroni correction was adopted
to adjust the significance level, when required. In order to
further mitigate potential threats to conclusion validity, the
data analysis process was jointly discussed by the researchers
and the results were inspected independently. The level of
agreement, especially for the manual labelling processes, was
assessed statistically. Disagreements were jointly discussed to
scrupulously align the data extraction and analysis processes
and ensure a high quality level of the gathered results.
Internal validity. As repositories containing the app source
code differ in structure, it is possible to obtain false results
with the inclusion of non-app related source code (e.g., third
party libraries). This threat has been mitigated both before
and during the static code analysis. Firstly, the root app folder
containing the app source code has been identified for each
repository, and the code metrics have been collected only for
the source code contained within this folder. Also, the SAT
tool allows the selection of different files during static code
analysis, and this was exploited in the sense that .jar files and
library directories have been excluded from the analysis.

Another threat relates to the exclusion of component-related
maintainability metrics from the measurements. In order to
ensure the envisioned quality of the analyzed data, an in-depth
data quality assurance process was carried out (see Sec-
tion III-B2). All instances presenting inconsistencies led to the
total exclusion of the entire app data from which the instance



belonged to. In this way, we were able to strictly control the
quality of the analyzed data by including exclusively the apps
of which every piece of data adhered to our quality criteria.
External validity. In this study we consider a set of Android
apps sampled from a real-world setting. This was possible by
considering exclusively those apps which are published in the
Google Play Store. In order to further mitigate potential threats
to external validity, we ensured that the apps considered were
representative of the apps present in the Android ecosystem.
From an inspection of the gathered dataset the apps resulted
to be highly heterogeneous in terms of size, development
lifetime, number of contributors etc. (see section III-B3).

This research considers Android apps published in GitHub
since we require access to their full versioning history. We do
not target app binaries in the Google Play store as it only pro-
vides the latest release of each app. Further, we are interested
in the maintainability issues introduced by developers in the
Java code of their apps; in Google Play only the binary code
of the app is available, which may be structurally different
from the source code produced by developers (e.g., because of
code obfuscation). Nevertheless, due to the high heterogeneity
of the dataset (see Section III-B3) and the presence of all the
considered apps in the Google Play Store, we do not deem
this as a major threat to external validity.

VI. RELATED WORK

The state of the art on the maintainability evolution of
Android apps is quite scarce, yet it exhibits some related work
on Android source code quality and software evolution.

Hecht et al. [24] presented an approach for performing
static code analysis on Android app’s bytecode and detect-
ing software antipatterns. They analyzed the evolution of
the quality across 3,568 versions of 106 different Android
apps obtained from the Google Play Store. They identified
relationships between antipatterns and five different quality
evolution trends. This work ties into our research with a similar
methodology and focus on quality aspects and their evolution
in the context of mobile (Android) apps. Differently, we
focus on maintainability-related issues (rather than software
antipatterns) and on how development activities are related to
them. Our research scope involves the analysis of over 400
Android apps, compared to the 106 analyzed in [24].

Di Penta et al. [9] analyzed the evolution trends of stati-
cally detectable vulnerabilities of software projects. For the
detection of vulnerable source code lines, they have used 3
different static code analysis tools, namely Splint, Rats and
Pixy. Three different networking systems were analyzed by
means of executing the static code analysis tools on different
snapshots of the system. This study is methodologically simi-
lar to ours. However, the subjects and therefore the outcomes
of their study differ from ours, as we are specifically focussing
on Android apps and their maintainability, as opposed to
vulnerabilities in source code of generic software systems.

Tufano et al. [44] investigated on when and why code smells
are introduced in a software project. Their study involves
investigating the circumstances and rationales behind bad code

smells introduction, and is conducted on a change history of
200 open-source projects. Our research is specific to Android
apps, and thus our results are more fine-grained with respect
to the ones obtained in [44]. The focus of our study is on
maintainability-related issues at a higher level of abstraction
(i.e., units, models, and components) w.r.t. Tufano et al. who
focus on fine-grained code smells at the level of source code.

Similar to our research, Koch [45] set out to analyze the
evolution of open-source software systems on a large scale.
Utilizing the data of 8,621 projects coming from SourceForge,
the evolutionary behaviour of the systems was characterized
by applying both linear and quadratic models to the systems,
where the quadratic model outperformed the linear one. Fur-
thermore, the evolutionary behaviour has been modelled as
a function of lines of code and time since the first commit.
Both Koch’s and our study focus on large-scale, open-source
systems. However, we focus on Android apps and Android-
specific development activities.

VII. CONCLUSION AND FUTURE WORK

This study uncovers the frequency and evolution of main-
tainability issues of Android apps. Its results show that code
duplication is the most recurrent maintainability issue (RQ1),
which is intrinsic in the Android programming model and
can be mitigated by a more careful programming style. In
general, notwithstanding the issue type, maintainability issue
density grows until it stabilizes, but issues are seldom fully
resolved, which represents an important hidden lack of quality.
Also, maintainability hotspots are independent from the type
of development activity (RQ3), which means: whatever you
do, your development style will matter.

Finally, during dataset building we faced many challenges
related to the data obtained from GitHub (e.g., manually-
changed commit dates, repositories with long periods of inac-
tivity, etc.): to ensure a high-quality dataset we had to remove
many data points, going from 9,400 to 434 repositories. As
also confirmed in [22], this is an important reflection point
for improving how researchers approach the data in GitHub.

As future work, we will investigate the survivability of
maintainability issues in Android apps, specifically on the
issues duration, the nature and time of the commits either
introducing or solving them, and the activities performed in
those commits. This will require an in-depth analysis of the
commit logs in order to trace, for each issue, its inducing
commits, its changes of location within the repository, and
its issue-resolution commit. Moreover, we are planning to
investigate on how the maintainability issue evolution trends
compare between different static code analysis tools and on a
larger dataset of GitHub repositories such as the one in [46].
Finally, we will select a subset of representative apps, build
and fine tune prediction models for their maintainability issues
(e.g., by using ARIMA), and assess the accuracy of those
models in predicting how maintainability issues evolve in the
future.
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