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Abstract—A promise of cloud computing is the reduction of
energy footprint enabled by economies of scale. Unfortunately,
little research is available on how cloud consumers can reduce
their energy footprint when running software in the public cloud.
Moreover, cloud consumers do not have full access to information
regarding their cloud infrastructure usage, which is required to
understand the impact of design decisions on energy usage. The
purpose of our study is to support cloud consumers in developing
energy-efficient workloads in the public cloud. To achieve our
goal, we collaborated with a large cloud solution provider to
discover an initial set of reusable architectural tactics for software
energy efficiency. Starting from interviews with 17 practitioners,
we reviewed and selected available tactics to improve the energy
efficiency of individual workloads in the public cloud, and
synthetized the identified tactics in a reusable model. In addition,
we conducted a case study to assess the impact of utilizing a
tactic, which was selected following a prioritization provided
by the practitioners. Our results demonstrate the possibility to
architect cloud workloads for energy efficiency through reasoning
and estimation of resource optimization. However, the process is
not (yet) straightforward due to the current lack of transparency
of cloud providers.

Index Terms—Software Architecture, Tactics, Energy Effi-
ciency, Public Cloud, Edge Computing

I. INTRODUCTION

An increasing number of organizations migrate their ICT
infrastructures to the public cloud. Cloud computing involves
the shift from performing computation and data storage on-
premise to a geographically remote Data Center (DC). The
global cloud computing market was worth over 300 billion
dollars in 2020 and is predicted to reach 832 billion dollars
by 2025 [1].

An important benefit of migrating software to the pub-
lic cloud is shifting the responsibility of maintaining and
operating hardware resources to cloud providers. Moreover,
migrating ICT workloads to the public cloud is expected to
reduce the energy footprint of cloud consumers. Research from
Accenture shows that shifting from on-premise DCs to the
public cloud can reduce an enterprise’s energy usage by 65%
and cut carbon emissions by more than 84% [2]. This is due to
efficient hardware, economies of scale, and resource sharing.

Nevertheless, the gain in energy reduction that cloud
providers offer can be overshadowed by the rapid growth of
highly accessible and available ICT services. The energy foot-
print of the ICT sector grows exponentially and significantly

contributes to the global Greenhouse Gas Emissions (GHGEs).
Belkhir et al. [3] estimated that the global GHGEs of the ICT
sector relative to the worldwide footprint doubled from 1-1.6%
in 2007 to 3–3.6% in 2020. If this trend continues, the share of
ICT will increase to 14% of the total global GHGEs by 2040.
Currently, DCs have with 45% the largest energy footprint
within the ICT sector [3].

To reach global climate goals, the energy consumption of
hyperscale cloud DCs needs to be reduced, e.g., by utilizing
Green Software techniques [4]. By quoting Amazon Web Ser-
vices (AWS), ICT energy reduction is a shared responsibility
between cloud providers and consumers [5]: cloud providers
are responsible for optimizing the sustainability of the cloud
(e.g., by delivering efficient infrastructure), whereas cloud
consumers are responsible for sustainability in the cloud (e.g.,
by optimizing workloads).

Numerous researches have been conducted to increase the
energy efficiency from the perspective of cloud providers.
Nevertheless, as of today, no peer-reviewed research has been
conducted to increase the energy efficiency in the public cloud
from the perspective of cloud consumers. In this research we
address this gap by focusing on the research question (RQ):
“How can cloud consumers architect energy-efficient software
in the public cloud?”. Consumer-centric energy optimization
in the public cloud is a challenging topic, as the cloud forms
an opaque abstraction between cloud consumers and the actual
energy-hungry DCs. To tackle our RQ, we collaborate with
SBP, an ICT consultancy company focusing, among others,
on cloud migration and digital transformation. We opted to
collaborate with professionals from a ICT firm experienced in
optimizing software infrastructure in the cloud. This collabora-
tion allowed us to gain access to valuable industrial experience,
which we used to identify tactics for resource optimization and
energy efficiency in the cloud.

The main contributions of this study are:

• A set of reusable tactics to optimize energy efficiency in
the public cloud (Section IV);

• A review of methods to monitor the energy consumption
of individual workloads in the public cloud (Section V);

• A case study to assess the impact on energy efficiency
of one of the tactics discovered, namely “Apply edge
computing” (Section VI);
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• A proposed definition of energy efficiency in the public
cloud (Section VII).

II. RELATED WORK

Numerous researches on improving the energy efficiency of
software and hardware in hyperscale DCs have been published
throughout the years [6], [7]. Nevertheless, these studies
assume full control over the cloud infrastructure, and can
hence only be applied by cloud providers. In contrast, we
did not identify any peer-reviewed literature focusing on the
perspective of cloud consumers, which is instead adopted in
this research.

A set of studies closely related to our investigation reflect on
the integration of energy efficiency aspects while architecting
software-intensive systems. Kazman et al. [8] performed a case
study exploring the management of energy efficiency as an ar-
chitectural quality attribute, concluding that energy efficiency
should be considered on par with other quality attributes, e.g.,
availability. These findings serve as a foundation to our study.

Similarly, other related studies focus on identifying architec-
tural tactics to improve energy efficiency. In contrast to such
studies, which discovered tactics based on literature reviews
or in vitro experimentation, in this investigation we base our
findings directly on industrial knowledge. In addition, we
explicitly focus on identifying practical and actionable tactics,
while the tactics elicited in the related studies result to lie at
a higher level of abstraction. As an example, Procaccianti et
al. [9] discovered tactics for software energy efficiency in the
cloud through a systematic literature review. Procaccianti et al.
defined three categories to classify tactics: (1) Energy Monitor-
ing, i.e., tactics to gather and presenting energy consumption
information; (2) Self-Adaptation, i.e., tactics implementing
mechanisms to modify runtime software configurations to
improve energy efficiency; and (3) Cloud Federation, i.e.,
tactics allowing cloud-based software systems to select cloud
services based on energy consumption information.

The study of Procaccianti et al. [9] offers a useful catego-
rization of tactics for energy efficiency which is later modified
and extended by Paradis et al. [10]. Paradis et al. performed a
taxonomic literature review to discover architectural tactics for
energy efficiency. The authors classify 10 tactics providing a
basis for architectural design and analysis focusing on energy
efficiency. The tactics are organized into the categories Re-
source Monitoring, Resource Allocation, and Resource Adap-
tation. In this study, we extend this categorization of tactics.
Therefore, in the remainder of this section, we focus on
documenting the categories identified by Paradis et al., by
additionally describing tactics constituting such categories.

Tactics falling into the category Resource Monitoring
are Metering, Static Classification, and Dynamic Classifica-
tion [10]. The tactic Metering concerns real-time data col-
lection of the energy consumption via sensors. When cloud
users do not have access to real-time data reflecting the energy
consumption (e.g., in a public cloud), a Static Classification
of the resources is necessary to drive decision making. Dy-
namic Classification is positioned in between the previous

two tactics, it can be applied when real-time data collection
is infeasible, but the estimation can be based on transient
conditions (e.g., workload).

The Resource Allocation category contains the tactics Ver-
tical Scaling, Horizontal Scaling, Scheduling, and Broker-
ing [10]. Vertical Scaling concerns adding or activating re-
sources (e.g., CPU or RAM) to meet processing requirements.
In the context of energy efficiency, Vertical Scaling is utilized
to deactivate or remove computing resources to save energy.
A related tactic is Horizontal Scaling, which involves adding
resources (e.g., servers or VMs) to the currently available set of
resources. A frequently adopted example of horizontal scaling
tactic is VM consolidation, i.e., multiple VMs are consolidated
onto the same physical server to save energy. The Scheduling
tactic instead involves the allocation of tasks among available
resources. This tactic aims at improving energy efficiency by
scheduling tasks across machines to realize optimal vertical
and horizontal scaling. Lastly, the tactic Brokering involves
including energy-related information to services, enabling ser-
vice requests to prioritize service execution based on energy
efficiency information.

The final category presented presented by Paradis et al. [10]
is Resource Adaptation. The tactics within this category are
Service Adaptation, Increase Efficiency, and Reduce Overhead.
The tactic Service Adaptation extends the Brokering tactic
by emphasizing that services should be selected based on
provided energy-related information. The tactic Increase Effi-
ciency instead entails increasing the resource efficiency of soft-
ware and algorithms, hence improving also their overall energy
usage. Finally, the tactic Reduce Overhead involves reducing
redundant processes. This tactic often introduces a trade-off
between energy efficiency and other quality attributes.

Paradis et al. [10] stress that the current body of literature
lacks cloud energy-efficiency research based on industrial
insights. To fill this gap, in this study we extend the model of
Paradis et al. [10], by grounding our findings in the knowledge
of industrial practitioners.

III. STUDY DESIGN

With this study, we aim at providing concrete guidance to
cloud consumers in architecting their software workload in the
public cloud to optimize energy efficiency. More formally, by
applying the template introduced by Basili et al. [11], the goal
can be defined as follows:

Analyze Cloud-Native Tactics
For the purpose of Optimizing
With respect to Energy Efficiency
From point of view of Cloud Consumers
In the context of Public Cloud

In terms of research questions (RQs), the main RQ of this
study is: “How can cloud consumers architect energy-efficient
software in the public cloud?”. In order to answer our RQ,
we adopt a four-phased research process, with each phase
associated with a specific sub-RQ. An overview of the research
process is illustrated in Figure 1 and is further detailed below.



 Phase 4 - RQ4

 Phase 1 - RQ1  Phase 3 - RQ3

Literature
Study Interviews Survey

Conceptual 
Framework Practitioners SBP

Tactics to Optimize 
Resource Efficiency 

 

Peer-reviewed 
literature and white papers 

 Phase 2 - RQ2 

Literature
Study

Review of Methods to  
Monitor Energy Consumption 

in the Public Cloud Energy Consumption  
Analysis of Selected Tactic 

Case  
Study

3x

Selected  
Tactic 

Practitioners  
SBP

Reflection

Definition of 
Energy Efficiency 
in the Context of 
the Public Cloud 

Gray literature

Fig. 1. Research process overview

Phase 1 aims to answer the first sub-RQ, namely “Which
cloud-native tactics are available to optimize the energy effi-
ciency of cloud workloads?”. We start by inspecting related
literature presenting tactics for energy efficiency (see Section
II). From this inspection, we extract the most representative
single source, namely, the work from Paradis et al. [10]. Next,
we conduct 3 iterations of interviews to extend the tactics
from the literature. In the first iteration, we interview 17
practitioners (selected based on experience in the software in-
dustry with diverse roles such as developer, architect, operation
officer, cloud vendor relation manager) at SBP to define an
initial set of tactics for resource optimization. A replication
package containing the interview questions and an overview
of the participants is made available online1. Next, we map
the tactics from the literature to the discovered tactics and
created a model of reusable tactics. As many practitioners
at SBP refers us to the Well-Architected Framework (WAF)
introduced by AWS, we opt to incorporate this framework into
our model as well. In the second iteration of interviews, we
ask each practitioner to review the model and tactics. In the
final iteration, we ask the AWS technical practice lead at SBP
to verify the constructed model of tactics. This contribution is
presented in Section IV.

Conducted in parallel to Phase 1, Phase 2 aims to answer
the sub-RQ: “What methods are available to monitor the
energy consumption of individual workloads in the public
cloud?”. Such method enables to measure the sustainability
impact of the discovered tactics in the public cloud. Answering
this sub-RQ is achieved via a gray literature study[12], as no
peer-reviewed literature is available on the subject. We review
blog posts from the computer science community and the
documentation provided by the most popular cloud providers,
namely, AWS, Azure, and GCP. The output of this research
phase is an overview of existing methods to monitor the energy

1https://github.com/S2-group/ICT4S-2022-cloud-tactics-rep-pkg

consumption of software running in the public cloud. The
results of this review are presented in Section V.

Subsequently, with Phase 3, we aim to answer the sub-RQ:
“What is the impact of a selected tactic on energy consump-
tion?”. In order to answer this sub-RQ, we conduct a case
study to assess the impact on energy consumption in the public
cloud of a specific tactic, namely “Apply edge computing”.
The tactic is selected via a survey with practitioners at SBP,
in order to identify the tactic which showcases higher potential
w.r.t. energy efficiency improvement. The results of the case
study are presented in Section VI.

Finally, Phase 4 involves a reflection on the definition of
energy efficiency in the context of the public cloud to answer
the final sub-RQ, namely: “How can energy efficiency be
defined in the context of the public cloud?”. This reflection
is presented in Section VII.

IV. TACTICS FOR ENERGY OPTIMIZATION IN THE PUBLIC
CLOUD

The interviews show that energy efficiency is not well
adopted as a quality attribute in the industry. Fortunately,
the industry is well experienced in increasing the resource
efficiency of cloud software. We therefore start from the
assumption that resource efficiency leads to energy efficiency,
as energy usage is correlated to resource usage, and utilizing
resources more efficiently and less frequently leads hence to
energy saving. Accordingly, we begin with discovering tactics
for resource efficiency in the public cloud and from there
derive potential tactics for energy efficiency. We mainly focus
on AWS as SBP utilized this platform in numerous projects,
and AWS is currently the market-leading cloud provider [13].

A. A Model of Reusable Tactics for Energy Efficiency in the
Public Cloud

This section presents the constructed model of reusable
tactics, by describing each of the discovered tactics. The
diagram is presented in Figure 2. In the model, the identified

https://github.com/S2-group/ICT4S-2022-cloud-tactics-rep-pkg


tactics are grouped following the categorization presented by
Paradis et al. [10] (see Section II). Our contribution (tactics
for energy efficiency discovered from SBP) are colored blue.
The tactics that are related to AWS are labeled with its logo.
The discovered tactics are potentially impactful to improve the
energy efficiency of cloud consumers but this still needs to be
(empirically) assessed. The discovered tactics are described
per category, namely resource monitoring (Section IV-A1),
resource allocation (Section IV-A2), and resource adaptation
(Section IV-A3).

1) Resource monitoring
The category resource monitoring considers the metering

and classification of cloud workloads to optimize the per-
formance [10]. Resource monitoring does not directly affect
energy reduction, however, it is a prerequisite for most tactics
of the other two categories (resource allocation and resource
adaptation).

T1: Experiment to discover optimal architecture. De-
scription. The public cloud provides access to a wide variety
of resources without the need for prior investments. Hence, it is
relatively straightforward to compare cloud services of similar
nature, as opposed to purchasing, installing, and operating
similar components on-premise. This enables to measure and
compare the performance of different resources for a specific
workload, allowing a data-driven decision to select the most
efficient architecture. Relation to energy efficiency. Based on
energy-related information, developers can experiment with
design decisions to discover the most energy-efficient archi-
tecture.

T2: Automatically monitor efficiency per workload.
Description. Automatically monitoring the performance of
software provides insights into its behavior and highlights
the sections to focus on for optimization. Relation to energy
efficiency. Automatic monitoring of energy consumption data
is a key prerequisite for optimizing workloads for energy
efficiency.

2) Resource allocation
The category resource allocation involves assigning tasks

and workloads to the instances and resources [10]. The fol-
lowing 8 tactics belong to this category.

T3: Apply auto-scaling. Description. Auto-scaling involves
horizontally and vertically scaling the resources to optimize
performance and costs[14]. The application is automatically
monitored and adjusted to ensure stable performance at the
lowest possible cost. This enables on-demand resource us-
age, which is in contrast with the traditional approach of
allocating extra resources, which are seldom used yet con-
stantly available, to satisfy potential peak loads. Relation to
energy efficiency. When applying auto-scaling, the number of
resources used is adjusted based on the runtime requirements.
Therefore, the energy required by resources is proportional
to the actual workload, thus saving the energy required by
superfluous resources.

T4: Continuously evaluate right sizing. Description. Right
sizing is the process of matching instance types and sizes to
your workload performance and capacity requirements at the

lowest possible cost. Additionally, this tactic involves the iden-
tification of opportunities to downsize without compromising
capacity or other requirements [15]. Relation to energy effi-
ciency. From an energy perspective, it can be assessed which
resources are most suitable to optimize for energy efficiency.
For example, data can be stored using several different services
(e.g., S3 Reduced Redundancy Storage, Glacier, Tape). Where
and how the data is stored, can have a considerable impact on
energy consumption.

T5: Deallocate resources that are not used. Description.
Resources that are no longer used should be deallocated.
Relation to energy efficiency. If a certain resource is not used
during a specific moment in time (e.g., in the weekends),
switching off the (idle) resource saves the energy required to
keep the resource running.

T6: Select nearby regions with better renewable energy
rates. Description. Regions with high renewable energy rates
can be selected to reduce the energy footprint of cloud
instances. Relation to energy efficiency. Replacing gray energy
with green energy does not per se improve energy efficiency.
However, it does decrease the carbon footprint. A trade-
off between the distance of the region to the end-users and
renewable energy rate should in any case be considered.
Selecting a distant region that offers more renewable energy
might not save carbon emissions, as more energy will be
required to transport the data to the end-users.

T7: Use reserved instances. Description. Reserved in-
stances are long-term subscriptions to software services at
a discounted price [16]. Relation to energy efficiency. While
reserved instances consume the same amount of energy as
non-reserved instances, reserved instances increase the pre-
dictability of future energy consumption patterns. Therefore,
cloud providers can plan resource provisioning, lowering the
number of idle resources which may be needed with changing
runtime requirements.

T8: Use spot instances. Description. AWS EC2 spot
instances allow access to spare EC2 capacity [17]. These
instances are offered for a discounted price. The catch is that
these instances are only offered if there are available resources
and can be retracted at a two-minute notice. Hence, they
are suitable for fault-tolerant, stateless applications. Relation
to energy efficiency. If additional resources are unexpectedly
needed, use spot instances first, as they are more sustainable,
and could work as a quick fix for temporary high loads which
will soon go down.

T9: Perform specialized tasks that occur infrequently
in the cloud. Description. Specialized tasks that occur infre-
quently might need specialized hardware (e.g.,, AI accelera-
tors). To benefit from economies of scale, it is more efficient
to share specialized hardware among multiple consumers.
Relation to energy efficiency. A consumer who purchases
hardware that is infrequently used and otherwise runs idle has
a negative effect on energy efficiency. If multiple consumers
share the hardware in the cloud, the hardware will be more
efficiently used and, therefore, is expected to have a positive
effect on the energy efficiency.
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Fig. 2. Model of reusable tactics

T10: Reuse software services. Description. Using services
made available by cloud providers instead of implementing
all functionalities from scratch is expected to increase the re-
source efficiency as the services are native to the infrastructure
and developed by specialists. Relation to energy efficiency.
Software services directly supplied by cloud providers are
expected to be engineered and fine-tuned to best fit the
cloud-native environment they are deployed in. Hence, such
services are expected to be more efficient than ad-hoc services
implemented independently by consumers.

3) Resource adaptation
The category resource adaptation involves changing soft-

ware and hardware resources to increase the efficiency [10].
T11: Apply edge computing. Description. Moving com-

puting resources closer to users decreases network traffic.
Furthermore, the system can be designed in a way that
only processed/aggregated data need to be transported which
reduces the amount of data traffic. For workloads that involve
the generation of high volumes of data (e.g., IoT sensors),
it is shown that performing all computation in the cloud can
be inefficient. This is due to the gap between the relatively
high processing speed in the cloud and the limited bandwidth
capacity to transfer the high amount of data throughput [18].
Relation to energy efficiency. Transporting less data over the
network is expected to reduce the energy consumption.

T12: Optimize data search & query strategies. Descrip-
tion. Data search and query strategies can be optimized to
increase their efficiency. For example, when using (a query
service to analyze data in Amazon S3) consumers are charged
for the amount of data being scanned to retrieve query results

[19], [20]. Hence, to optimize the computing resources of a
query, developers need to ensure that a minimum amount of
data is scanned. Relation to energy efficiency. Processing less
data results in less computing power and memory usage, hence
reducing the associated energy consumption.

T13: Choose fitting deployment paradigm. Description.
Among the most popularly adopted deployment paradigms in
the cloud are VMs, containers, and serverless architectures.
Choosing the fitting paradigm for the workload will optimize
the performance. Relation to energy efficiency. A deployment
paradigm strategy can optimize resource usage in the cloud.
The choice of deployment paradigm is dependent on the cloud
workload. For example, VMs work well with a stable, pre-
dictable workload whereas serverless architectures are suitable
for bursty workloads.

T14: Compress infrequently accessed data. Description.
Infrequently used data should be compressed to optimize the
storage costs. In contrast, data that is more frequently accessed
should not be compressed, as the energy required to compress
and extract the data might outweigh the energy saved by
storing a smaller volume of data. Understanding the exact
threshold to compress the data depends on the underlying
hardware and should be identified via appropriate data usage
monitoring. Relation to energy efficiency. Whenever less data
is stored, less energy is used for storage. A trade-off that needs
to be considered is the amount of energy that is required to
(de)compress the data.

T15: Apply granular scaling. Description. Granular scal-
ing involves breaking down a workload into smaller compo-
nents. Accordingly, the used resources can be scaled down



into smaller chunks, hence allowing a better match between
the physical resources and the workload. Relation to energy
efficiency. Granular scaling allows a precise match between
physical hardware and workloads. For example, if a workload
consists of two components with the same specification and
the resource utilization is 75%, both components are required
to run the workload. In contrast, when the workload consists
of four smaller components, one component can be switched
off to facilitate the 75% resource utilization.

T16: Use batch instead of real-time data processing.
Description. If software product objectives allow, transporting
data in batches rather than in real-time can optimize resource
usage, as there is less overhead. Relation to energy efficiency.
Sending data in batches can reduce energy consumption, as
less data needs to be transmitted over the network due to
reduced network overhead. Appropriate experimentation is
required to measure whether the reduction in overhead has
a significant effect on energy efficiency.

T17: Adopt use-case driven design. Description. As
emerging from the interviews, frequently not all deployed ICT
services create direct business value. Use-case driven design
is an approach enabling to detect redundant software and data
storage, and hence allowing to turn off or eliminate unutilized
software services. Relation to energy efficiency. By eliminating
redundant software services and data storage, the costs and
energy associated to keep them running can be saved.

T18: Rebuild software cloud-native. Description. Instead
of migrating existing software, rewriting cloud-native software
products from scratch can increase the efficiency, as the system
becomes more efficient and optimally uses the underlying
infrastructure [21]. Relation to energy efficiency. Cloud-native
applications are expected to be designed to make best use of
the cloud paradigm and underlying data center hardware. In
addition, cloud provider optimizations, e.g., VM consolidation,
are expected to improve the overall energy consumption of
cloud-native applications.

V. METHODS TO MONITOR ENERGY CONSUMPTION IN
THE PUBLIC CLOUD

The energy consumption of individual cloud workloads
needs to be monitored in order to assess the impact of the
discovered tactics on the energy efficiency. As concepts related
to software sustainability are gaining traction, in the last year
(2021) a laudable “race” towards providing cloud sustain-
ability monitoring services started among cloud providers. In
this section, we discuss the available possibilities to monitor
the energy footprint provided by the major cloud providers
(Section V-A), while Section V-B reports a generic open-
source monitoring solution that can be used across multiple
cloud providers.

A. Monitor energy footprint in AWS, Azure, and GCP

Microsoft Azure offers the Microsoft Emissions Impact
Dashboard. This dashboard allows cloud consumers to trace
carbon emissions related to cloud service usage [22]. An
advantage of the dashboard is that it allows users to categorize

their carbon emissions per geographic location and cloud
service. Another advantage is that the dashboard includes
Scope 1, 2, and 3 emissions [23]. Scope 3 emissions entail
indirect emissions from external vendors and suppliers. Hence,
users have a complete overview of all hidden emissions.
Moreover, the methodology to calculate the emissions is
validated by Stanford University and adheres to ISO standards
for measuring GHGEs. A disadvantage of the dashboard is
that a Power BI Pro subscription is required [24]. Hence,
costs and a setup process are associated with the tool. Another
disadvantage is that the tool only tracks the overall emissions
associated with the workload. This does not allow small-scale
experiments to reduce the energy consumption of individual
workloads.

Google Cloud Platform (GCP) allows users to trace their
carbon footprints using the Carbon Footprint Tool [25]. This
tool provides users with insights into gross carbon emissions
that are associated with their GCP usage. The tool is free of
charge and available directly in the Cloud Console. The carbon
footprint is calculated based on the electricity usage of the
used cloud services together with the carbon intensity of the
region in which the resources are located. This methodology
has as implication that the reported emissions do not include
Scope 3 emissions. This entails that using these emissions for
reporting results in incomplete statistics. On the other hand,
an advantage of this approach is that the emissions are directly
related to the electricity usage of cloud services. Accordingly,
cloud consumers are tracing a metric that they can impact
directly.

Among prominent cloud providers, when it comes to sus-
tainability monitoring, AWS resulted to be slightly behind
its competitors. At the 2021 re:Invent Conference AWS an-
nounced their effort in developing the AWS Customer Carbon
Footprint Tool, a tool allowing cloud consumers to track their
carbon footprint [26]. The tool is expected to be released in
the second quarter of 2022.

B. Cloud Carbon Footprint Tool

An open-source tool to estimate energy consumption in
the public cloud for AWS, Azure, and GCP is the Cloud
Carbon Footprint (CCF) tool [27]. CCF allows the estimation
of emitted CO2 and, in contrast to the dashboards described
in Section V-A, the consumed energy of cloud instances. The
CCF takes as input usage data (computation, storage, and
networking loads) reported by cloud providers and estimates
the energy consumption [Wh] by building upon the conversion
factors introduced by the company Etsy [28]. The estimated
energy is then multiplied by the PUE of cloud providers,
to account for the supporting equipment. Finally, the carbon
intensity of the region where the DC is located is considered
to calculate carbon emissions. An advantage of the tool is the
ability to trace both energy usage [Wh] and carbon footprint. In
addition, the tool enables tracking workloads of multiple cloud
providers in a single unified dashboard. As main limitation,
both energy consumption and carbon footprint are based on
estimations, rather than direct measurements.



VI. CASE STUDY IMPACT OF TACTIC “APPLY EDGE
COMPUTING” ON ENERGY CONSUMPTION

After discovering tactics for energy efficiency (Section IV)
and establishing a method to estimate energy consumption in
the cloud (Section V), we demonstrate the applicability of one
of our tactics and gain further hands-on insights on energy
efficiency optimization via architectural tactics in the public
cloud. The tactic used for this exemplary case study, selected
in collaboration with the practitioners at SBP, was “Apply
edge computing” (see T11, Section IV-A3). The scope of the
example entails a comparison between full cloud adoption
versus edge computing for one software application. The tactic
is selected by considering implementation ease and envisioned
energy saving.

A. Case study description

As case study, we consider a real-life software project of
SBP, which focuses on image-based fall detection. Based on
a sensor (e.g., a camera) an environment (e.g., a bedroom in
a nursing home) is recorded. Based on the images captured
by the sensor, the software detects whether a person fell down
using a ML classification algorithm.

We apply tactic T11 “Apply edge computing” (see Sec-
tion IV-A3) in our context, in order to evaluate the extent
to which such tactic can lead to energy optimization. In other
words, we evaluate the energy efficiency achieved by utilizing
edge computing (Scenario 1) instead of utilizing exclusively
cloud computations (Scenario 2). An overview of the main
components characterizing the two scenarios are depicted in
Figure 3, and further described below.

In Scenario 1, the sensor transmits the raw video data to
an edge device over a Local Area Network (LAN). The edge
device stores the ML model and classifies the incoming video
data to detect whether a person fell down or not. Only when a
fall is detected is data sent to the cloud. The decision-making
is performed in the cloud, as opposed to on-premise, to benefit
from the advantages of deploying in the cloud, such as auto-
scaling and centralization. The alternative Scenario 2 consists
of directly transferring the raw video data to the cloud. In
this case, all steps (from classification to decision-making) are
performed in the cloud.

B. Estimation energy consumption edge computing scenario

This section covers the estimation of the energy consumed
in the edge computing scenario (Scenario 1).

Cameras utilized in the case study project generate
4.1Mbit/s and send the data over a cable to the edge device. As
commonly 8 cameras are connected to the same edge device,
in total 32.8Mbit/s is generated and sent to the edge device.
This data is transferred through a cable.

The edge device used is an “NVIDIA Jetson AGX Xavier”
[29]. The device allows three power modes, corresponding
respectively to 10W, 15W, and 30W. For the case study, the
higher 30W power mode is utilized to make full use of the
edge device resources. The energy consumption of the edge
device for one day can be estimated as E[kWh] = P[W ] ×

t[hours]/1000 = 30 × 24/1000 = 0.72 kWh, where E is the
energy consumption in kWh, based on the power (P) in W
and time (t) in hours.

Based on the above calculation, we conclude that in Sce-
nario 1 the edge device consumes 0.72 kWh in 24 hours.

In addition to the energy consumed by the edge device, we
also have to consider the energy required to transfer the data to
the cloud. In the edge-computing scenario, data is transferred
to the cloud only when a fall event is detected. The data to
be transferred to the cloud for each event is equal to 2.4 KB.
On average, 20 events are recorded for each camera. As we
utilize an 8 camera setup, each day a total of 384.0 KB data
is transferred from the edge device to the cloud (8 cameras ×
20 messages × 2.4 KB = 384 KB).

To calculate the energy necessary to transfer data to the
cloud, we use the electricity intensity rate of 0.06 kWh/GB,
as defined by Aslan et al. [30]. Therefore, in Scenario 1, the
total energy consumed to transfer data from the edge device
to the cloud in 24 hours equals 0.00002304 kWh.

C. Estimate energy consumption cloud-only scenario

As for Scenario 1, we conduct a separate energy estimation
for the computation and data transfer tasks entailed by the use
case for Scenario 2 (see Figure 3).

Regarding the energy estimation of the computational tasks
(i.e., the ML classification) in the cloud, we leverage the CCF
tool [27] presented in Section V-B. The total CPU usage is
84.38% of the edge device and the total memory usage is 5.12
GB. We use this data (together with the hardware specification
from the edge device) to estimate the energy consumption of
the same workload in AWS for 24 hours.

Running the program for one day results in 24 [hours] ×
8 [cores] = 192 vCPU hours. Each threat is represented by
a vCPU and the edge device contains 8 cores running one
threat each [31]. The minimum and maximum watts for a
vCPU in AWS are 0.71 and 3.46 respectively. We calculate
the energy consumption of computing according to the formula
introduced by the CCF tool, i.e.,
Average Watts = Min Watts + Avg vCPU Utilization ×
(Max Watts−Min Watts) = 0.71+0.84×(3.46−0.71) = 3.03.
Compute Watt-Hours = Average Watts × vCPU Hours = 3.03
× 192 = 581.85 Wh ≈ 0.58 kWh.

The energy consumption of the GPU needs to be considered
as well. When connected to 8 cameras, the GPU utilization is
90% of the edge device. This includes the encoder/decoder
that transforms the input stream to the right format through
the hardware. The encoding/decoding processes is expected
to be similar in AWS as most GPUs have this functionality
built in. The CCF tool currently does not provide an energy
coefficient for GPU usage. Hence, we estimate the energy
consumption based on the power consumption of a similar
GPU which is 18 W [32]. Accordingly, in 24 hours, the
expected energy consumption of the GPU is: E[kWh] =
P[W ] × t[hours]/1000 = 18× 24/1000 = 0.432 kWh

Next, we calculate the energy consumption of the memory
usage. According to the formula used by the CCF tool, the en-
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ergy consumption of the memory is equal to: Memory [GB]×
Memory coefficient × Usage amount [hours] = 5.12 [GB] ×
0.000392 [kWh/GB] × 24 [hours] ≈ 0.0482 kWh.

Adding the energy consumption of the CPU, GPU, and
memory together results in 0.5819 [kWh] + 0.4320 [kWh]
+ 0.0482 [kWh] = 1.0621 kWh. Next, we need to multiply
the estimated energy consumption by the PUE of AWS,
resulting in an energy consumption of 1.0621 [kWh] × 1.135
[PUE] ≈ 1.2055 kWh. Hence, the energy consumption of the
computation and memory in the cloud-only scenario for 24
hours is estimated to be 1.2055 kWh.

Regarding the energy consumed to transfer data to the cloud,
we use the same estimate utilized for Scenario 1, namely the
electricity intensity rate of 0.06 kWh/GB, as defined by Aslan
et al. [30]. As in total 32.8 Mbit/s raw data is generated, and
in this scenario the raw data is transferred to the cloud, we
estimate the energy consumption of transferring the camera
stream from the edge device to the cloud over the Internet
in 24 hours to be approximately 32.8 [Mbit] × 60 [minute] ×
60 [hour] × 24 [day] × 0.06 [kWh/GB] = 20.7564 kWh.

VII. DISCUSSION ON ENERGY EFFICIENCY IN THE
PUBLIC CLOUD

Using the previous findings, we consider our last research
question, namely, “How can energy efficiency be defined in
the context of the public cloud?”.

In general, energy efficiency can be defined as: “the ratio
between service output or results and the energy input required
to provide it” [33], i.e., the amount of energy consumed
to provide one “service output”. Based on such definition,
to assess the energy efficiency of a workload, energy con-
sumption needs to be metered. Due to the abstraction the
cloud forms between the cloud consumers and the DCs,
energy consumption can commonly only be estimated, and

not directly measured (e.g., due to multiple software products
running on the same hardware).

Once an energy consumption estimation is calculated, the
estimation needs to be related to a quantifiable service output.
Ideally, the service output would be represented as the concrete
value software services deliver to end-users, as this is the ulti-
mate goal of consuming computing resources. Unfortunately,
end-user experiences are difficult to quantify and monitor in an
automated fashion. To solve this representational issue, service
output is often expressed in terms of resource consumption
metrics (e.g., GBs, vCPU minutes, or data transferred) [34].
However, using these resource usage metrics to calculate
energy efficiency can result in the energy efficiency of the
hardware. To illustrate, the metric energy consumption [kWh]

storage [GB] reflects
the energy efficiency of the cloud DC storage infrastructure.
Such a metric is independent of the architecture of the cloud
consumer, and can therefore not be optimized by the cloud
consumer.

Accordingly, the architecture of the cloud consumer needs
to be included when defining the service output to calculate the
energy efficiency. The process of defining the service output
is highly case-specific. For example, in the edge computing
scenario, the service output can be quantified in terms of
the amount of processed data at a certain time frame. Other
examples to define the service output are: number of pro-
cessed requests, number of transactions completed, number
of simultaneous active users, API calls served [34]. Thus,
an example definition for energy efficiency in the cloud
is energy consumption [kWh]

API calls served . Consequently, cloud practitioners can
optimize the energy consumed for an API call.

Last, we wish to address that resource efficiency can be
used as an alternative metric to optimize energy efficiency as
resource consumption is proportional to energy consumption.
This alternative is recommended when energy estimations
are not precise enough. Resource efficiency can be inter-



preted as resource consumption
service output [34]. An example of a metric is:

vCPU minutes
completed transactions . Optimizing this metric reduces the vCPU
minutes required for a transaction. This implies that also less
energy is consumed by the vCPU enabling the transaction.

VIII. DISCUSSION

In this section, we discuss the results obtained for the four
sub-RQs (Section VIII-A - SectionVIII-D), followed by a
revisitation of our main research question (VIII-E).

A. Phase 1: Tactics for Energy Optimization

The first research phase considers the sub-RQ: “Which
cloud-native tactics are available to optimize the energy
efficiency of cloud workloads?”. We discovered 18 tactics
by surveying both multivocal literature and practitioners. The
tactics we discovered result to lay at a more applicable
and concrete level than the tactics currently available in the
academic literature. While the tactics we identified result to
be straightforward and can be utilized to architect for energy
efficiency in the cloud, a prominent downside has to be
considered before implementing a tactic. Specifically, tactics
may be utilized only for specific use cases, and can hence not
be applied to every workload. For example, the tactic “Apply
edge computing” used in the case study is not relevant for
workloads that are not network-intensive. Therefore, the tactics
cannot be perceived as guidelines, but rather as a catalog
of tactics that may or may not be applicable to a specific
context. To choose the relevant tactics from the catalog, cloud
consumers should have a good understanding of their cloud
infrastructure. Furthermore, some tactics (e.g., “Choose fitting
computing paradigm”) are fundamental architectural decisions
that cannot be easily applied to an existing infrastructure.
Cloud providers could support their consumers in deciding
which tactics are most relevant and applicable.

B. Phase 2: Methods to Monitor Energy Consumption in the
Public Cloud

This phase involves reviewing methods that estimate the
energy consumption in the public cloud. The relevant sub-
RQ is: “What methods are available to monitor the energy
consumption of individual workloads in the public cloud?”.
For cloud consumers, it is currently difficult to monitor their
energy footprint in the public cloud. First of all, all major cloud
providers do not provide cloud consumers with direct energy
consumption measurements of individual workloads. There-
fore, energy consumption estimates have to be used. From our
review, the Cloud Carbon Footprint (CCF) tool [27] resulted to
bridge this gap, by providing energy and carbon footprint es-
timates for individual workloads. The Cloud Carbon Footprint
(CCF), which currently is the only open-source and cross-
platform tool, estimates energy consumption by relying on
billing data. Specifically, the energy estimation is derived from
the billing data by considering the predicted hardware usage
and corresponding wattage. As downside of the Cloud Carbon
Footprint (CCF) tool, its results have to be regarded as coarse

estimations, and hence would not work for fine-tuning energy-
aware optimization. Nevertheless, cloud consumers with larger
infrastructures can utilize the tool to perform experiments,
and understand which tactics are more effective to optimize
their energy consumption. As a final recommendation, we
appeal to cloud providers in order to disclose more accurate
energy-related metrics, in order to jointly move towards more
environmentally-sustainable software products.

C. Phase 3: Case Study to Assess Impact of Tactic “Apply
edge computing” on Energy Consumption

After completing research Phases 1 and 2, we addressed
the sub-RQ: “What is the impact of a selected identified
tactic on the energy consumption?”. The goal of this step
is to gain further hands-on insights on the results of the
previous phases, and consisted in applying the tactic T11
“Apply edge computing”. The study investigated the extent to
which applying edge computing positively affected the energy
consumption of a software product. By considering the energy
required for computation and data transfer, we concluded that
applying the tactic leads to a drastic improvement in energy
efficiency. From the case study results, applying T11 resulted
in a 96% total energy consumption decrease. As discussed
also in Section VIII-A, it is important to note that the degree
of energy optimization implied by a tactic depends on the
specific context. In some cases, applying a tactic may not
be convenient (e.g., due to the refactoring effort involved),
or even possible. With our case study presented in Phase 3,
we showcased how our tactic catalog (see Section IV) and
energy estimation techniques (see Section V) can be applied to
reduce energy consumption in the public cloud. Nevertheless,
successfully applying a tactic ultimately lies in the hand of
who is selecting and implementing it.

D. Phase 4: Energy Efficiency Definition in the Public Cloud

In this phase, we tackled the sub-question: “How can energy
efficiency be defined in the context of the public cloud?”. As
often in computer science, the no-free-lunch theorem applies,
as the metric to define the energy efficiency of a cloud
workload is highly case-dependent. In general, measuring the
energy efficiency of a workload in the public cloud requires
two metrics, energy consumption and service output. Only
cloud providers can directly measure energy consumption. In
contrast, only cloud consumers can define service output. We
argue that an appropriate abstraction level to define the service
output lies in-between resource usage metrics and the (difficult
to quantify) value to the end-users. Examples of appropriate
metrics to express the service output are the amount of pro-
cessed data or the number of handled requests. These metrics
are appropriate as they (i) include design decisions of the
cloud consumer and not solely the efficiency of the underlying
infrastructure, and (ii) capturing these metrics is automatable.

E. Architecting Energy-Efficient Software in the Public Cloud

Finally, we reflect on our main research question: “How
can cloud consumers architect energy-efficient software in



the public cloud?”. First, awareness must be raised on the
importance of energy reduction strategies [35]. On a com-
pany level, relevant strategies and requirements need to be
established and followed. In addition, as for any other quality
attribute, energy efficiency should be measured and monitored
over time. To optimize energy efficiency, two metrics are re-
quired, energy consumption and service output. On one hand,
cloud consumers are currently in need of accurate measures
of their their energy footprint. On the other hand, cloud
consumers need to define an appropriate metric reflecting
their service output. Once the two metrics are established,
cloud consumers are enabled to investigate opportunities to
optimize their energy efficiency. To accomplish this goal, the
tactics discovered with this investigation, and the methods
to monitor energy efficiency, can be used to identify and
evaluate relevant strategies.

IX. LIMITATIONS

Despite our best efforts, our research may be affected by
threats to validity. In this section, we discuss potential threats
to validity and mitigation strategies by following the threats
classification of Wohlin et al. [36].

External Validity. The identified tactics were derived from
interviews with 17 practitioners belonging to the same com-
pany (SBP). Therefore the tactics may not be representative of
the entire sector. Albeit not mitigated, we conjecture this threat
did not significantly influence our results, as SBP collaborates
with many companies from different sectors (e.g., public,
financial, transport) and therefore reflects the experiences of
heterogeneous cloud consumers. Regarding our case study (see
Section VI) we do not claim external validity of its results, also
in light of the goal of the research phase, namely demonstrat-
ing the applicability of the results gained from our previous
findings (see Section IV and Section V). Furthermore, the
case study results are based on estimations, which may vary
according to the specific resource considered as ground data.

Internal Validity. Prominent internal validity threats arise
from the calculations performed in the case studies, which
are of theoretical rather than empirical nature. We mitigated
this threat by relying exclusively on well-known peer-reviewed
energy estimation methods. As additional internal threat, the
identified tactics for energy efficiency rely on the underly-
ing assumption that resource usage optimization is linearly
correlated to energy consumption optimization. While this
assumption may hold in the vast majority of cases, it is
important to note that the impact of the tactics may vary
according to the specific context considered. Also, we have to
be careful that the practitioners lack the scientific background
when making claims on resource efficiency. This threat was
mitigated by reasoning on the impact of applying the tactics
on energy efficiency with the domain experts. Furthermore,
the discovered tactics may not be complete due to the limited
number of interviewees, i.e., other tactics, such as the impor-
tance of caching, did not emerge from our interviews.

Construct Validity. A potential threat to conclusion validity
arises due to only one researcher conducting the interviews and

identifying tactics during Phase 1. Furthermore, the interview
transcripts can not be made public, due to the confidential
nature of the conversations. We mitigated this threat by re-
questing domain experts to review and verify the tactics. In
addition, the interview and tactic identification process was
monitored by two academic supervisors, and an industrial one.

Conclusion Validity. A threat to conclusion validity is due
to the missed involvement of cloud providers and consumers in
the study. We mitigated this threat by ensuring the interviewed
practitioners frequently collaborated with cloud consumers.
Interviewees were selected based on their cloud experience,
while ensuring that their professional roles were diverse,
to reflect experiences from different areas of cloud-centric
expertise. As the most prominent cloud providers supporting
energy monitoring capabilities (see Section V) resulted to
be unavailable for this investigation, we acknowledge their
missing involvement as an unmitigated threat, in the hope to
mitigate this threat in our future work.

X. CONCLUSION AND FUTURE WORK

In this study, we address the research question: “How
can cloud consumers architect energy-efficient software in the
public cloud?”. To answer this question, based on a study of
white literature and interviews with practitioners, we discover
18 architectural tactics to optimize energy efficiency in the
public cloud. As sustainability-aware cloud consumers need
to measure the impact on energy efficiency of their design
decisions, we also review the available methods to monitor
energy consumption in the public cloud. Based on our findings,
we conduct a case study by applying a discovered tactic (T11,
“Apply edge computing”) and identify an energy consumption
monitoring tool (CCF). The case study allows us to gain
further practical insights into our previously obtained findings.
Finally, based on the knowledge acquired, we discuss how
software energy efficiency can be defined in the public cloud.

As conclusion, despite a recent shift towards providing
sustainability measurements to cloud consumers, the topic of
software sustainability in the public cloud is still at an early
stage. With this study, we identified a set of architectural
tactics, and showcased how these can be successfully applied
to improve software energy efficiency in the public cloud.
However, the availability of tactics alone does not suffice.
On one hand, cloud consumers need to be gain sensibility on
their software sustainability, and establish processes to address
it. On the other hand, current sustainability measurements
supported by cloud providers are limited and often coarse-
grained. Cloud providers need to gain responsibility for the
sustainability of their consumers, by supplying easily accessi-
ble, clearly defined, and precise sustainability measurements.

As future work, we plan to empirically evaluate and com-
pare the impact of all the tactics identified in this paper.
In addition, we envision to improve the state of the art
of sustainability measurements in the public cloud, in tight
collaboration with both cloud providers and consumers.
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