
Received April 7, 2021, accepted May 8, 2021, date of publication May 20, 2021, date of current version May 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082424

Know You Neighbor: Fast Static Prediction
of Test Flakiness
ROBERTO VERDECCHIA 1, EMILIO CRUCIANI 2, BRENO MIRANDA 3,
AND ANTONIA BERTOLINO 4
1Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
2Computerwissenschaften, Universität Salzburg, 5020 Salzburg, Austria
3Center of Informatics, Federal University of Pernambuco, Recife 50670-901, Brazil
4Istituto di Scienza e Tecnologie dell’Informazione ‘‘A. Faedo’’, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy

Corresponding author: Antonia Bertolino (antonia.bertolino@isti.cnr.it)

This work was supported in part by the Facebook Research 2019 Testing and Verification Award.

ABSTRACT Context: Flaky tests plague regression testing in Continuous Integration environments by
slowing down change releases and wasting testing time and effort. Despite the growing interest in mitigating
the burden of test flakiness, how to efficiently and effectively detect flaky tests is still an open problem.
Objective: In this study, we present and evaluate FLAST, an approach designed to statically predict
test flakiness. FLAST leverages vector-space modeling, similarity search, dimensionality reduction, and
k-Nearest Neighbor classification in order to timely and efficiently detect test flakiness. Method: In order
to gain insights into the efficiency and effectiveness of FLAST, we conduct an empirical evaluation of
the approach by considering 13 real-world projects, for a total of 1,383 flaky and 26,702 non-flaky tests.
We carry out a quantitative comparison of FLAST with the state-of-the-art methods to detect test flakiness,
by considering a balanced dataset comprising 1,402 real-world flaky and as many non-flaky tests. Results:
From the results we observe that the effectiveness of FLAST is comparable with the state-of-the-art, while
providing considerable gains in terms of efficiency. In addition, the results demonstrate how by tuning the
threshold of the approach FLAST can be made more conservative, so to reduce false positives, at the cost of
missing more potentially flaky tests. Conclusion: The collected results demonstrate that FLAST provides a
fast, low-cost and reliable approach that can be used to guide test rerunning, or to gate the inclusion of new
potentially flaky tests.

INDEX TERMS Software testing, flaky tests, prediction, static analysis, similarity.

I. INTRODUCTION
Flaky tests can intermittently pass or fail even for the same
code version [1]. Flakiness hinders regression testing in many
ways [2]–[5], especially in a Continuous Integration (CI)
environment where ideally all tests must pass before a change
can be integrated, or in other words any failing test must
be fixed before a release. Indeed, in Google, almost 16% of
individual tests contain some form of flakiness [6], and these
flaky tests are the cause of 84% of all observed transitions
(i.e., changes from pass to fail or the vice versa for the test
results across project commits) [7]. A non-negligible percent-
age of flaky tests is observed also in Microsoft: while moni-
toring five projects over a one-month period, 4.6% individual

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio Piccinno .

tests were identified as flaky [8]. Open Source (OS) projects
do not escape flakiness either: a study of 61 projects using
Travis CI assessed that 13% of all observed failures were
attributable to flakiness [9]. A similar percentage of 12%
flaky tests on average was observed for test cases executed
in the IDE over 3,500+ both industrial and OS projects [10].
Test flakiness wastes developers’ effort in debugging a

System-Under-Test (SUT) that is actually correct because an
observed failure is due to a flaky test and not to the latest intro-
duced change. Flakiness also inflates testing time: several CI
platforms now routinely rerun failing test cases a number of
times, e.g., even up to 10 times [5], [11], to ascertain that
failures are not intermittent.

Approaches have been proposed to reduce the rerunning
overhead, e.g., by using code analysis [12], [13], so that
even one only execution might be sufficient. In the following

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 76119

https://orcid.org/0000-0001-9206-6637
https://orcid.org/0000-0002-4744-5635
https://orcid.org/0000-0001-9608-9393
https://orcid.org/0000-0001-8749-1356
https://orcid.org/0000-0003-1561-7073

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

we denote flakiness detection techniques that rely on test
execution (one or more times) as dynamic techniques. In
contrast, other researchers have recently proposed to recog-
nize flakiness based on characteristics of known flaky tests,
e.g., [14]–[16]. These static approaches either rely on manual
identification of such characteristics by experts [14], [16],
or learn them from a vast historical dataset [15]. In either case
they would require large effort to be generalized.

As wished by Harman and O’Hearn from Facebook [17],
research should find a quick yet effective method for test
flakiness assessment. Indeed, Ziftci and Cavalcanti from
Google [18] state that ‘‘it is important to fix flaky tests
as quickly as possible to keep development velocity high’’.
Accordingly, our aim is a method that can timely detect a
flaky test even before it is executed.

In previous studies [19], [20] we have shown that test code
similarity can provide an effective instrument for test suite
prioritization and reduction. Inspired by such studies, in this
work we leverage test code similarity for identifying flaky
tests. This is also in line with a recent empirical study [21]
in which standard Machine Learning classifiers have been
used to identify a ‘‘vocabulary’’ of flaky tests. We propose
the FLAST approach that uses a k-Nearest Neighbor classi-
fier [22] to predict the flaky/non-flaky nature of any new test.

We report the results of evaluating the effectiveness and
efficiency of FLAST over 13 projects utilized in a previous
work on test flakiness [21]. Notably, FLAST could detect
flaky tests with a mean value for precision varying from 0.69
(with 0.48 recall) to 0.83 (with 0.22 recall). Precision values
depend on a threshold σ we can tune to make the approach
more or less conservative: by increasing the threshold value
the percentage of false positives can be decreased (i.e., higher
precision), but at the cost of missing more potentially flaky
tests (i.e., lower recall).

FLAST inherently relies on other detectors for obtaining
an initial set of flaky tests on which it can be trained. How-
ever our evaluation shows that it can reach a good precision
already in projects having quite few flaky tests. In fact,
FLAST is not proposed as an alternative to existing dynamic
techniques, on the contrary static and dynamic analysis could
be used in synergy. A straightforward scenario would be that
FLAST guides the usage of dynamic tools, e.g., the effort
spent with the latter could be prioritized toward those tests
that FLAST predicts as flaky. Another deployment route for
FLAST could be to proactively gate flaky tests from being
included in the test repository. FLAST could be embedded
in the used CI framework, e.g., Travis CI,1 and as new or
modified test cases are committed, it could automatically (and
at negligible cost) identify potentially flaky tests and send
them back to developers.

Summarizing, we provide the following contributions:

• Idea: a novel tunable method for similarity-based flaki-
ness detection based on static analysis of test code.

1https://travis-ci.org

• Evaluation: a study over 13 projects including in total
more than 28K test methods, ∼1,400 of which flaky.

• Replication package: a replication package2 including
a proof-of-concept implementation of FLAST, along
with the entirety of the data used for the empirical
evaluation, the scripts to replicate the evaluation, and
all intermediate and final results obtained. Additionally,
in the replication package, we provide a documentation
of the preliminary experimentation used to tune the
approach, supported by the utilized scripts, data, and
gathered results.

In the next section we overview related work and in
Section III we describe the FLAST approach. The planning of
the empirical evaluation, including goal, experiment material,
design and procedure, is presented in Section IV. Results are
reported in Section V and thoroughly discussed in Section VI.
Finally, we outline potential applications of FLAST in CI
practice in Section VII and draw conclusions in Section VIII.

II. RELATED WORK
In recent years flaky tests are drawing increasing researchers’
attention, also triggered by practitioners’ alerts about the
relevance and spread of the problem [3], [6], [8], [17], [23].
This overview of related work is based on a thorough search
of literature.3

Many empirical studies have been conducted aiming at
better understanding the nature and extent of test flakiness
(e.g., [1], [9], [23]–[31]). Both studies by Luo et al. [1]
and Vahabzadeh et al. [24] examined the causes of flaky
tests over the central repository of the Apache Software
Foundation, whereas Thorve et al. [26] conducted a similar
study over Android apps. Other studies aim at assessing the
relevance and cost of the problem, including the work by
Labuschagne et al. [9] over 61 projects fromGitHubArchive,
and the one by Rahman and Rigby [25] who studied how
many of the crash reports submitted by Firefox users were
associated with flaky tests, while Eck et al. [28] asked devel-
opers from Mozilla to classify previously fixed flaky tests.
The study by Kowalczyk et al. [23] at Apple introduces and
evaluates a quantitative notion of flakiness. Lam et al. [30]
focus on the under-explored class of non-order-dependent
flaky tests, showing that actually they may still depend on
test execution ordering. Another study by Lam et al. [31]
investigates at which commit flakiness is introduced, and
finds that 85% of flaky tests are already so when added or
modified, but the remaining 15% ones become flaky later at
unrelated commits.

Few work aim at preventing flaky tests by early detecting
potential causes of flakiness. Gyori et al. [32] propose the
POLDET technique that timely notices if a new added test
case ‘‘pollutes’’ the state of the shared heap or the file sys-
tem, so to possibly cause other tests to intermittently fail.

2https://github.com/FlakinessStaticDetection/FLAST
3More precisely, we launched a generic query searching for string {‘‘flaky

test’’ OR ‘‘flaky tests’’ OR flakiness} over ACMDL, IEEExplore and Scopus
on 26 February 2021.

76120 VOLUME 9, 2021

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

TABLE 1. Qualitative comparison among existing flakiness detection techniques.

Gambi et al. [33] develop the PRADET approach, which
discovers test dependencies by flow analysis and iterative
testing. Finally, Parry et al. [34] present the FITTER tech-
nique that leverages automated program repair to expose and
help fixing latent flakiness that could be induced by order
dependency or resource leaks.

Other authors aim at identifying flakiness root causes. Both
the RootFinder tool by Lam et al. [8] and the DIVERGENCE
technique by Ziftci et al. [18] execute the flaky tests after
instrumentation and then compare the logs of passing and fail-
ing runs. Terragni et al. [35] propose instead an approach that
reruns the flaky tests within different execution environments,
or ‘‘clusters’’, without any need to use instrumentation.

Different directions are pursued to support debugging and
repairing of different types of flaky tests. Shi et al. [36]
present the iFixFlakies framework that supports the auto-
mated fixing of flakiness caused by test order-dependency.
Malm et al. [37] instead develop an approach that automat-
ically identifies the delays in test code and helps determine
the best wait time to avoid timing-related flakiness.

The work that is more closely related with ours is those rel-
ative to flaky test detection. The state-of-practice approach,
referred to as Rerun [12], consists of rerunning either all
failed test cases or the suspect ones (e.g., the tests that tran-
sited from pass to fail) a number of times, e.g., 10 times [6],
[11]. Researchers aim at approaches that can improve on
Rerun, which is costly and not very precise.4

In Table 1 we summarize schematically the comparison of
FLAST against Rerun and the nine competitor approaches
(listed in the first column) we found from our search of
literature. The comparison is conducted along the following
dimensions (reported from the second to the eighth column
of Table 1):
• Analysis type: Static (no test execution needed) or
Dynamic (test must be executed at least once)

• SUT coverage: Yes (approach uses coverage reports of
the system under test) or No otherwise

• Flakiness type: Generic (approach targets any type of
flaky test) or Specific (only some specific types of flak-
iness can be detected)

4For example in the study by Pinto et al. [21] a good percentage of tests
labeled as flaky passed 99 times (out of 100 reruns) and failed in only one
case, whereas in practice only a few reruns, e.g., up to 10, are routinely done.

• Scope: All (approach is applied to all tests) or Subset
(only a part of tests is analyzed)

• Action type: Proactive (approach actively searches for
flaky tests) or Reactive (approach is invoked only in
reaction to transitions)

• Expert knowledge: Yes (approach needs expert consul-
tancy) or No otherwise

• Training set: Yes (approach needs to be trained on a set
of known flaky tests) or No otherwise

Rerun [6] and five more approaches [12], [13], [38]–[40]
are dynamic, while four approaches [14]–[16], [21] are static,
as is ours (2nd column).

Only one approach, viz. DeFlaker, relies on code cover-
age reports (3rd column): indeed, collecting coverage may
be quite costly in CI practice [41] and because of this the
authors of DeFlaker propose a lightweight technique lever-
aging differential coverage. We also marked Yes in this col-
umn for FLASH that is a domain-specific technique address-
ing probabilistic and Machine Learning (ML) applications.
It aims at detecting intermittent failure of test assertions due
to improper assignment of thresholds, and hence it needs
to instrument the code for monitoring the distribution of
assertion values.

With few exceptions, most approaches can detect generic
type of flaky tests (4th column). NonDex focuses on flak-
iness due to ADINS (Assumes a Deterministic Imple-
mentation of a Non-deterministic Specification) code.
Pattern Search is proposed as an approach to detect
pre-determined types of test code faults, among which
timing dependency. Finally, as above explained, FLASH
addresses test assertion flakiness in probabilistic and ML
applications.

Not all approaches are applied to every test case,
as we do (5th column). Rerun,5 DeFlaker, iDFlakies, and
Association Rules analyze test cases based on their out-
come, thus they can lose valuable time before detect-
ing flakiness and also could possibly miss flaky tests if
they do not fail or pass as expected in the observation
window.

5Although in theory all tests could be repeated a number of times regard-
less of their outcome, the high cost of doing so prevents this in practice, and
Rerun is commonly applied only to those tests that produce a transition from
the previous testing cycle.

VOLUME 9, 2021 76121

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

Almost all approaches, but Rerun and Association Rules,
take action in proactive way for detecting flaky tests
(6th column).

A critical feature is whether an approach is fully
automated, or otherwise it requires manual effort and
expert knowledge for customization/preparation (7th col-
umn), which may clearly hinder their practical adoption. The
latter is the case for NonDex, FLASH, Pattern Search, and
Bayesian Network. In contrast FLAST, as well as Rerun,
DeFlaker, iDFlakies, SHAKER, Association Rules, and ML
Classifiers do not require any human consultancy.

Finally more than half of the approaches requires a training
phase, as does FLAST (8th column).

Based on the above analysis, the work most similar to ours
is the one using ML classifiers: indeed both propose to stat-
ically detect flakiness by supervised learning from a sample
of test cases. However, we can identify notable differences
both in the objectives and in the approach taken. Concerning
the respective objectives, in the work of Pinto et al. [21] the
authors conduct an empirical study to identify a ‘‘vocab-
ulary’’ of flaky tests, which could be leveraged to predict
flakiness. Our objective, instead, is to provide an approach
for predicting flakiness within a Continuous Integration envi-
ronment (as we discuss in Section VII).

Due to the difference in objectives, the two approaches are
quite different: Pinto et al. [21] apply five state-of-the-art ML
classifiers, using standard available implementations. In con-
trast, FLAST develops a novel enhanced implementation of
a Nearest Neighbors classifier, introducing the concept of a
threshold, which permits to tune precision vs. recall, and a
dimensionality reduction technique, which allows for drasti-
cally improving efficiency. We explain such enhancements in
the next section.

III. APPROACH
Let T be a test suite of which we know the flaky nature,
i.e., we know whether each test t ∈ T is flaky or non-flaky.
More formally, let ` : T → {0, 1} be the function such that
`(t) = 1 if t is flaky and `(t) = 0 otherwise, for every t ∈ T .
Given an unknown test s 6∈ T , i.e., a test of which we do not
know the nature, the idea on which our approach is based is
that if s is ‘‘similar’’ (for some notion of similarity) to a test
t ∈ T such that `(t) = 1, then there is a good chance for s
to be flaky as well, because they could share the traits that
make both their behaviors non-deterministic: for example,
they could be testing the same functionality of the SUT or
be both dependent on other test cases or be accessing a same
shared resource. In the same way, if s is similar to a test t such
that `(t) = 0, then s has a good chance to be non-flaky.
To actualize such idea we need to find a notion of similarity

that can capture the flaky nature of a test: we model the
tests in T as points in some vector space, where we fix a
notion of source-code similarity and dissimilarity among test
cases, and then train on T a variation of a k-Nearest Neighbor
classifier [22].

Since FLAST is designed to be used in a Continuous
Integration (CI) environment, where the test suite rapidly
evolves over time, the choice of the classification technique is
crucial. At each new addition or deletion of tests, classifiers
belonging to the ‘‘eager learners’’ category would need to
rebuild their models in order to use the new knowledge, and
such an operation could be costly. Instead, ‘‘lazy learners’’ as
k-Nearest Neighbor are much more suitable for this scenario
since they do not need to build a model, but can directly learn
from data, thus having the capacity of immediately exploiting
new knowledge.

In the rest of the section we explain in detail the kind of
representation we choose for the tests and the algorithm that
we use to predict tests as flaky.

A. VECTOR SPACE MODELING
Similarly to what we did in a previous work [20], we model
the tests in T as points in an n-dimensional vector space using
the bag-of-words model [42]: each test case t is represented
as the multiset (i.e., a set that allows multiple instances of
its elements) of the lowercase tokens composing its source
code, split by whitespace characters and punctuation. We
purposely decided not to manipulate the input data, e.g., we
did not exclude comments, as they are exclusively the original
ones written by developers and not added by researchers a
posteriori, reflecting the real-world nature of our experimen-
tal subjects. As shown by Pinto et al. [21], further manip-
ulating the input data (e.g., stopwords removal, stemming,
include/exclude Java identifier, and others) does not provide
any concrete improvement in the effectiveness of the clas-
sification. A concrete example of the tokenization process
is reported in Listing 1-3, where we consider the source
code of two flaky test methods (Listing 1-2) and a non-flaky
one (Listing 3). The tokens shared among all three of the
test methods are reported in bold (brown), while the tokens
shared exclusively between the two flaky test methods in
italic (violet).

According to the model created via the tokenization pro-
cess, the dimensionality n of the space induced by T is
equal to the number of distinct tokens in the source code
of T . Each test t ∈ T is then represented as a vector
t ∈ Rn with component relative to token i weighted using
the Term-Frequency (TF) scheme, i.e., according to the
multiplicity of i among the tokens of t . By considering
the three test methods presented in Listings 1, 2, and 3,
we can observe in Table 2, Column ‘‘ID’’, how the tok-
enization process leads to the identification of 21 distinct
tokens (i.e., the dimension of the vector space), whose occur-
rences vary among the three test cases (as reported in the
Column ‘‘Token Occurrences’’). The choice of TF instead of
other more common and complex weighting schemes such
as Term-Frequency Inverse-Document-Frequency (TF-IDF),
where frequent terms such as ‘‘assert’’ that appear in most
tests would be penalized, is crucial for the use of our approach
in CI. By using TF-IDF, the weights of a single test would
depend on the entire test suite (in order to count the global

76122 VOLUME 9, 2021

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

Listing 1. Example test method 1 (flaky).

Listing 2. Example test method 2 (flaky).

Listing 3. Example test method 3 (non-flaky).

frequency of a term): hence, whenever the test suite evolves
and new tests are added the vector representation of the entire
test suite would change accordingly. Instead, when using TF
as we do, a new test does not have any impact on the vector
representation of old ones.

B. SIMILARITY AND DISTANCE
Given two vectors s, t ∈ Rn, we measure their similar-
ity using the cosine of the angle θ between them, i.e.,
via the cosine similarity Sc(s, t) = cos θ = 〈s,t〉

‖s‖·‖t‖ ,
whereby 〈s, t〉 =

∑n
i=1 sit i is the dot product between s

and t, and ‖s‖ =
√∑n

i=1 s
2
i is the Euclidean norm of s.

Instead, wemeasure their distance via the cosine dissimilarity
Dc(s, t) = 1− Sc(s, t).

C. DIMENSIONALITY REDUCTION
When working in high dimensional spaces, distances do not
behave as we expect due to the "curse of dimensionality": the
volume of the space increases much faster than the density of
points as the dimensionality increases, making the data look
very sparse; as a consequence distances tend to become uni-
form, i.e., both pairs of similar and dissimilar data points are
far away [43]. As commonly done for the kind of classifica-
tion task we are facing, in order to mitigate such an unwanted
effect we apply a dimensionality reduction technique called
sparse random projection [44], [45]. Roughly speaking,
points are projected onto a random d-dimensional subspace
of Rn, with d = �

(
log |T |
ε2

)
, such that the pairwise distance

of the projected points is preserved up to a multiplicative

TABLE 2. Bag-of-words representations of the example test methods
(Listings 1, 2, and 3).

factor (1±ε); this fact is known as the Johnson-Lindenstrauss
Lemma [46]. Note that the same random projection also
approximately preserves the pairwise angles between points
up to the same multiplicative factor [47], hence their pairwise
cosine similarity/dissimilarity. Such a reduction in the dimen-
sionality, other than mitigating the curse of dimensionality
with a positive impact on the effectiveness of our approach,
also allows to obtain immediate gains in terms of efficiency
while performing the neighbors search. Efficiency can be
crucial in extremely-large-scale scenarios where test suites
are comprised of millions of tests [41], [48].

The dimensionality d of the random subspace onto which
points are projected is independent of the initial dimension-
ality n, i.e, from the content of the tests, and much smaller
than n, since the number of tests |T | is typically smaller
than their dimensionality n and the dimensionality d after
the projection is much smaller than |T |. The value of ε,
i.e., the distortion of the distances after the projection, can
be customized to yield a different effectiveness/efficiency
tradeoff in the distance measurement.

A visual representation of dimensionality reduction via
random projection is depicted in Figure 1, considering the
three test methods reported in Listings 1, 2, and 3.

Once again, we underline that our approach is designed
to work in CI environments, where the test suite changes
over time. In fact, whenever tests are added to the test suite,
the vector representation of the old tests is not affected as well
as their projection. This is essentially due to the TF weighting
scheme we adopted, that sets to 0 the components relative to
the new tokens introduced by the additions. Such a property

VOLUME 9, 2021 76123

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

FIGURE 1. Visual representation of random projections of the example test methods (Listings 1, 2, and 3).

Algorithm 1 FLAST Prediction
Input: test suite T ; flakiness indicator ` : T → {0, 1}; test

to predict s; #neighbors k; threshold σ
Output: Flakiness prediction for s
1: Ns← argmin

R⊆T : |R|=k

∑
t∈R

Dc(s, t) F k nearest neighbors

2: φs←
∑

t∈Ns : `(s)=1

1
Dc(s, t)

F flakiness measure

3: ψs←
∑

t∈Ns : `(s)=0

1
Dc(s, t)

F non-flakiness measure

4: if φs
φs+ψs

> σ : return True F predict the test as flaky
5: else: return False F predict the test as non-flaky

allows us to only project the newly added tests, without
altering the projection of the previous ones. The pairwise
distance of the points could be affected, but in negligible
way for any practical scenario. A more detailed discussion
is deferred to the Appendix.

D. FLAKINESS PREDICTION
After modeling the tests in T as vectors and reducing their
dimensionality, we predict the nature of an unknown test
case s 6∈ T . In particular, as previously mentioned, we use
a k-Nearest Neighbors classifier and train it on the vector
representation of the tests in T . The value of k sets the
tradeoff between variance and bias in the classification: a
low value of k makes the classification more subject to noise
(increased variance), while a high value of k smooths the
decision boundaries (increased bias).

The flakiness prediction performed by FLAST is sketched
in Algorithm 1. First, the unknown test case s is mapped to
a vector s and projected onto the same vector space used
for the tests in T , as discussed in the previous subsection on
dimensionality reduction. Then, FLAST searches for the set
Ns of k neighbor tests, that are closest to s according to the
cosine dissimilarity of their vector representations (Line 1);
in our implementation we look for the neighbors via a naive
linear search, but the description in Line 1 is mathematical

FIGURE 2. Visual representation of FLAST prediction.

rather than procedural since the same operation could be done
using other data structures and algorithms (e.g., using space
partitioning data structures). The flakiness and non-flakiness
measures of s, i.e., φs and ψs (Lines 2-3), are computed as
a function of the neighborhood of s, weighting the nature of
each neighbor by the inverse of its cosine dissimilarity to s.
Test s is predicted to be flaky if φs

φs+ψs
≥ σ , for some threshold

σ ∈ [0, 1], and to be non-flaky otherwise (Lines 4-5); using
φs and ψs we emphasize the similarity between s and its
flaky/non-flaky neighbors, rather than their sole number.

We provide a visual representation of the intuition behind
FLAST prediction in Figure 2. The full black symbols are the
tests in T , represented as points in a plane; the white symbols,
instead, are the tests not in T of which we predict the nature.
We look at the neighborhood of each of these tests, i.e., at
the tests that are similar according to our representation, and
predict if each of them is flaky or not according to the nature
of the similar neighbors.

E. PRECISION TUNING
The threshold parameter σ ∈ [0, 1] in Algorithm 1 has
been introduced to make the approach more flexible, and
in particular to be able to trade-off the precision of FLAST
against its recall. Note that in order for the threshold to have
an effect on the prediction, we need to have k > 1. Precisely,
with reference to Algorithm 1 (Line 4), σ = 0.5 corresponds
to using a default threshold, i.e., we predict a test s as flaky if
φs > ψs, which is the standard for a k-Nearest Neighbor clas-
sifier. Using instead values of σ higher than 0.5 corresponds

76124 VOLUME 9, 2021

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

to requiring higher confidence in predicting a test as flaky,
i.e., to higher precision values. This increase in precision is
obtained though at the cost of a lower recall. At the extreme
value of σ = 1 FLAST would predict a test as flaky only if
all its k nearest neighbors are flaky (independently of their
distance). Values smaller than 0.5 would instead intuitively
increase the recall at the cost of a lower precision, with the
extreme value of σ = 0 that would result in a dummy
classifier that predicts everything as flaky (with recall=1, but
low precision); we do not cover these values.

IV. EXPERIMENTAL PLANNING
A. GOALS
The research objective of this experiment is to: Analyze the
performance of FLAST for the purpose of evaluation with
respect to its ability of predicting test flakiness from the
point of view of potential users in the context of continuous
integration environments. In order to achieve this objective,
we defined the following goals for this study (following the
Goal/Question/Metric method by Basili et al. [49]):
G1 Evaluate the effectiveness and efficiency of FLAST.
G2 Analyze FLAST for the purpose of comparison with a

state-of-the-art technique with respect to effectiveness
and efficiency.

The assessment of the goalG1 is performed by the follow-
ing research questions (Q1 and Q2) and metrics (M1 toM5).
Q1 How effective is FLAST in predicting test flakiness?

P =
TP

TP+ FP
(M1)

R =
TP

TP+ FN
(M2)

where TP, FP, and FN respectively denote true positive,
false positive, and false negative predictions, i.e., the
correct flaky predictions, the incorrect flaky predictions,
and the incorrect non-flaky predictions respectively.
Both P and R values are in the range [0, 1].

M1 measures the fraction of correct flaky predictions over the
total number of flaky predictions, i.e., it could be considered
as a measure of FLAST’s correctness. M2 measures the
fraction of correct flaky predictions over the total number of
flaky tests, so it could instead be thought of as a measure of
FLAST’s completeness.
Q2 How efficient is FLAST in predicting test flakiness?

TT = training time (M3)

PT = prediction time (M4)

SO = storage overhead (M5)

M3 measures the time, in seconds, needed by FLAST to
vectorize the test suite, apply dimensionality reduction, and
store the vectors in the data structure used to search for the
nearest neighbors. M4 measures the average time, in mil-
liseconds, needed by FLAST to vectorize a new test, apply
dimensionality reduction, and perform the nearest neighbors

search in order to predict the nature of a new test. M5 mea-
sures the size in memory and on disk, in megabytes, of the
vector representation of the tests of the entire test suite.

The assessment of the goalG2 is performed by the research
question (Q3) and metrics M1 to M5—introduced before
for G1.
Q3 What is the performance of FLAST when compared to

a state-of-the-art approach with respect to effectiveness
and efficiency in predicting test flakiness?

For selecting a state-of-the-art competitor to FLAST we
refer to the approaches examined in Table 1. As hinted in
the introduction and later discussed in Section VII, dynamic
detectors are seen as complementary rather than as alternative
to FLAST. Among the static approaches, we cannot use the
Association Rules [15] as they have been mined from an
ultra-large set of test alarms available in Microsoft and are
hardly generalizable outside their original context. We also
exclude Pattern Search [14] and Bayesian Network [16] as
both require expert knowledge in contrast with FLAST that
is fully automated. Hence the ML classifiers investigated by
Pinto et al. [21] appear to provide the fairest choice for an
empirical comparison of effectiveness and efficiency.

B. EXPERIMENTAL MATERIAL
1) EVALUATION DATASET
a: DATASET USED TO ANSWER Q1 AND Q2
In order to answer Q1 and Q2, we leverage the test suites
of the software projects gathered by Pinto et al. [21]. Their
dataset was constructed based on the DeFlaker6 benchmark.
The authors complemented the DeFlaker dataset, maintaining
the information on flaky tests, by rerunning 100 times the test
suites of each project in the most recent version present in
GitHub at the time of the study; test cases that had a consistent
outcome across all executions (e.g., the test passes 100 times)
were flagged as non-flaky. The dataset is accessible in a repli-
cation package available online.7 Note that the tests labeled
as flaky could come from different versions of each software
project [12], while the tests labeled as non-flaky all come
from the same version (the last at the time of rerun) of each
software project [21].

It is important to note that the identification of a test as
non-flaky via reruns has to be considered only an estimate
as, while observing an intermittent behavior is sufficient to
label a test as flaky, rerunning can never guarantee non-
flakiness, regardless of a high number of reruns. However,
we can consider a non-flaky estimate based on 100 reruns as
a practical trade-off.

In order to answer Q1 and Q2, we are interested in a
scenario which resembles the closest an in vivo one. We con-
sider the software projects of the dataset by Pinto et al. [21]
separately and in their entirety. In particular, differently from
Pinto et al., we do not merge test suites of different projects
and we do not sample tests to balance the number of flaky

6www.deflaker.org/icsecomp/
7https://github.com/damorimRG/msr4flakiness/

VOLUME 9, 2021 76125

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

and non-flaky ones. In order to have the bare minimum infor-
mation for our experimental evaluation, i.e., enough data for
training and testing the approach, we included in the extended
dataset all the projects from the work of Pinto et al. [21] that
contain at least 4 flaky tests. Due to the approach followed
in the work of Pinto et al. [21] to build the dataset, it could
happen that a same test method is included twice, both labeled
as flaky (because it was originally labeled so in the DeFlaker
dataset) and as non-flaky. This duplication could be either
due to the fact that the 100 reruns could not reproduce the
intermittent behavior observed in DeFlaker, or because the
test method has been modified and Pinto et al. actually rerun
a different version. We decided to remove from the non-flaky
set the 26 test methods that were fully identical to a flaky one
(in package, name, and content), but left the modified ones
in the dataset. Overall, we take into account the test suites
of 13 different software projects for a total of 28,085 tests,
out of which 1,383 flaky and 26,702 non-flaky. More detailed
information on which projects have been selected and on
their number of flaky and non-flaky tests are provided in
Tables 3 and 4.

b: DATASET USED TO ANSWER Q3
To evaluate the performance of FLAST with respect to the
ML classifiers [21], we use the same data configuration
employed by Pinto et al. to assess their effectiveness. In
actual projects, the number of non-flaky tests is normally
much higher than the number of flaky tests. In [21], to miti-
gate issues arising when learning from imbalanced data, the
authors opted to train their models by considering the whole
set of flaky tests (1,4028) and a sample of an equal number
of non-flaky tests: the resulting balanced dataset is hence-
forth referred to as Pinto-DS. Therefore, concerning Q3,
we decided to adopt this Pinto-DS dataset in order to
perform a fair comparison and to be able to directly compare
our results with those reported in [21].

c: REMARK REGARDING THE DATASETS
Given that all included projects are Java-based, in our evalua-
tion we consider a ‘‘test’’ to be a ‘‘Java test method’’. Never-
theless, we remark that FLAST only leverages the syntactical
structure of the test and would work out of the box for any
programming language and any definition of test.

2) REPLICATION PACKAGE
With the aim of supporting independent verification and
replication of the experiments, we make available a
replication package hosted on GitHub.9 It includes a proof-
of-concept implementation of FLAST, alongwith the entirety
of the data used for the empirical evaluation, the scripts to
replicate the evaluation, and all intermediate and final results
obtained. Additionally, in the replication package, we provide

8An attentive reader may notice that this number is higher than the sum of
flaky tests exposed by the 13 projects we consider in Table 3. This is because
as said we did not consider projects having less than 4 flaky tests.

9https://github.com/FlakinessStaticDetection/FLAST

a documentation of the preliminary experimentation used to
tune the approach, supported by the utilized scripts, data, and
gathered results.

3) HARDWARE
All experiments were run on a 2015 MacBook Pro with
a 2.7 GHz Intel Core i5 processor, 8 GB 1867 Mhz
DDR3 memory, running macOS Catalina 10.15.6.

C. EXPERIMENT DESIGN
1) TO ANSWER Q1
From a preliminary experimentation carried out for this study,
reported in the online replication package, we observed how
FLAST behaves by changing the setting of its parameters and
the size of the training set. This led us to identify four different
configurations of parameters of FLAST in our empirical eval-
uation. Specifically we consider two different values of σ ,
namely a default threshold σ = 0.5 and a more conservative
threshold σ = 0.95, and two different values for the number
k of nearest neighbors equal to 7 and 3. The use of a higher
threshold allows to obtain higher precision values at the cost
of lower recall; the use of a low value of k (i.e., k = 3, namely
the smallest odd value of k allowing the use of a threshold)
provides low bias and high variance in the classification,
while increasing it decreases the variance and increases the
bias making the approach more robust to noise. Note also
that the higher value of k (i.e., k = 7) could not be increased
much due to the extremely low number of flaky tests in some
of the projects (sometimes even less than 7 in the training
set). We set the dimensionality d of the tests after the random
projection such that the distortion ε = 0.3.
We infer M1 and M2 through a Stratified Shuffle Split

Cross Validation with 30 splits, using a random 20% subset as
test set and the remaining as training set, separately for each
considered combination of parameters. Stratification ensures
that each fold is a good representative of the original dataset
by preserving the proportion of flaky tests and reducing both
bias and variance of the classifier [50]. Moreover, we guaran-
tee that each fold contains at least one flaky test both in the
training and in the testing sets.

2) TO ANSWER Q2
We measure M3, M4, and M5 as average times and storage
size of FLAST among the runs of a Stratified Shuffle Split
Cross Validation, with 30 splits and using 20% of the dataset
as test set and the remaining as training set, separately for
each considered combination of parameters k and σ (same as
for Q1).

3) TO ANSWER Q3
Our goal is to compare the effectiveness and efficiency of
FLAST against the MS classifiers used by Pinto et al. [21].

As for effectiveness, we apply our approach FLAST over
the Pinto-DS dataset, and compare our results in terms of
precision and recall with those achieved on this same dataset

76126 VOLUME 9, 2021

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

TABLE 3. FLAST’s effectiveness.

by the competitor ML classifiers as reported in [21, Table 4].
The effectiveness results for FLAST were obtained by using
the same combinations of k and σ used for Q1 and Q2.
As for efficiency, the study in [21] does not report any data.

We note that four of the five classifiers studied in the work
of Pinto et al. [21] (namely Random Forest, Decision Tree,
Naive Bayes and Support Vector) are ‘‘eager learners’’ and
hence, as we explained in Section III, they are not apt for
application in a CI scenario. The fifth classifier considered
by Pinto et al. [21] is a standard implementation of Nearest
Neighbors, belonging to the category of ‘‘lazy learners’’ as
ours. For fairness, we hence compare the results of FLAST
against those obtained by applying a Nearest Neighbor clas-
sifier, because it is the only approach investigated by Pinto
et al. [21] that is a suitable competitor for a CI environment.

Precision and recall results of FLAST, as well as training
time, prediction time, and storage overhead, are computed as
average values among the runs of a Stratified Shuffle Split
Cross Validation, with 30 splits and using 20% of the dataset
as test set and the remaining as training set, separately for
each considered combination of parameters k and σ .

D. EXPERIMENTAL PROCEDURE
The k-Nearest Neighbors search used by FLAST is imple-
mented through the python library sickie-learn.10

The implementation of the competitor Nearest Neighbor
approach [21], used to compare its efficiency with that of
FLAST, utilizes the same library and the original parameters.

Training time and prediction time are measured via
the python function time.perf_counter(). Stor-
age overhead is measured by serializing the data structure
used to store in memory the vector representation of the
test suite (numpy.ndarray) via the python function

10https://scikit-learn.org

pickle.dump() and then measuring its size on disk via
the python function os.path.getsize().

V. ANALYSIS
A. EFFECTIVENESS (Q1)
The box plots of Figure 3 show the distribution of precision
and recall values obtained by FLAST when applied over the
evaluation dataset. For these metrics, the higher the result
(reported in the vertical axis), the better. The left plot depicts
the precision and recall achieved by FLAST when consid-
ering k = 7, whereas the right one depicts the results for
k = 3. For each metric displayed (precision or recall), the left
(blue) boxes refer to the results for the scenario with threshold
σ = 0.5, while the right (orange) boxes refer to the scenario

TABLE 4. FLAST’s efficiency.

VOLUME 9, 2021 76127

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

FIGURE 3. Boxplots representing FLAST’s effectiveness (Table 3).

TABLE 5. Comparison with state of the art (effectiveness).

with threshold σ = 0.95. A detailed breakdown of precision
and recall values per threshold and per project is available
in Table 3. The number of flaky and non-flaky tests per
project is also available from the same table, Columns 2 and 3,
respectively.

B. EFFICIENCY (Q2)
Table 4 depicts the performance of FLAST in terms of train-
ing time (M3), prediction time (M4), and storage overhead
(M5). A detailed breakdown per project, including the total
number of test cases used in the evaluation (second column),
is available from the same table.

C. COMPARISON WITH STATE-OF-THE-ART (Q3)
The results of the comparison in effectiveness and efficiency
between FLAST and Pinto et al.’s ML classifiers are reported
in Tables 5 and 6. Table 5 summarizes the effectiveness of
the approaches with respect to precision (M1) and recall(M2).
Table 6 reports the efficiency results of the approaches with
respect to training time (M3), prediction time (M4), and stor-
age overhead (M5).

VI. DISCUSSION
A. EVALUATION OF RESULTS AND IMPLICATIONS
1) EFFECTIVENESS (Q1)
When considering the consolidated results for k = 7
and the less conservative scenario (σ = 0.5), an overall

TABLE 6. Comparison with state of the art (efficiency).

average precision of 0.69 was obtained, i.e., when FLAST
classified a test as flaky it got it right 69% of the times.
Median precision results are higher (0.88) since FLAST
does not have good precision only on three projects, namely
jackrabbit, wro4j, and togglz; such results are ana-
lyzed and discussed in detail later in this section, in a dedi-
cated paragraph, through amanual inspection of false positive
predictions. When we increase the threshold to σ = 0.95,
thus making FLAST behave in a more conservative way, the
precision on every project increases resulting in an overall
average precision of 0.83.

Regarding recall, instead, FLAST achieved an overall aver-
age of 0.48, i.e., FLAST correctly identified 48% of the flaky
tests, when using a threshold σ = 0.5. When increasing the
threshold to σ = 0.95, we observe a tradeoff between pre-
cision and recall: as expected, the former increases while the
latter decreases. Indeed, the overall average recall decreases
to 0.22. Note that these low mean (and, specially, median)
recall values, besides to the more conservative behavior of
FLAST using threshold σ = 0.95, are due also to the fact
that many projects contain only few flaky tests. Indeed, for
7 projects for which FLAST got 0.00 recall, FLAST did not
predict any test as flaky, i.e., obtained undefined precision
(equal to ‘‘-’’ in Table 3) and, thus, 0.00 recall (since the
number of true positive is 0); we also note that the same
7 projects are among those with the lowest number of flaky
tests in the dataset (all with less than 20 flaky tests). It is
unsurprising that the high level of conservativeness due to
the threshold σ = 0.95 together with the low number of
flaky tests on which FLAST is trained make predicting a test

76128 VOLUME 9, 2021

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

Listing 4. Example of flaky test (parameter change).

as flaky very unlikely. On the other hand, for the 3 projects
having the lowest number of flaky tests, namely alluxio,
ambari, and jimfs (respectively 4, 4 and 7 flaky tests),
with σ = 0.5 FLAST could achieve precision values of 1,
1 and 0.75, respectively.

Thus a related important question would be to know how
much data FLAST would need to start making good pre-
dictions. We explore this question in the online replication
package.

When using k = 3, the number of projects for which it
makes predictions in themore conservative scenario increases
from 6 to 9. When using the threshold σ = 0.5, the overall
average precision and recall are 0.67 and 0.55, respectively.
For the threshold σ = 0.95 the average precision is 0.73,
while the recall achieved is 0.35.
Manual Per-Project Inspection of False Positives:
In order to gain further insights into the results of our

empirical evaluation, we conducted a manual inspection on
the false positive predictions of FLAST. We considered the
three projects for which FLAST had lowest precision (consid-
ering k = 7 and σ = 0.5), namely jackrabbit, wro4j,
and togglz, where FLAST wrongly predicted as flaky two,
three, and seven distinct tests respectively.

We noted that most of the mispredictions have been influ-
enced by the existence of extremely similar or even identical
tests (due to duplicate code and/or small changes across dif-
ferent versions as explained in Section IV-B) labeled as flaky
in the dataset. In particular, we found three distinct scenarios
in which FLAST did not predict flakiness correctly because
the syntax of the test alone was not sufficient to identify its
flaky nature.

In the first scenario, we observe how the modification of
even a single parameter of a test could change the nature of
the test from being flaky to non-flaky. An example coming
from wro4j is that reported in Listings 4 and 5, where the
flakiness of the test in Listing 4 seems to be due to the update
period of 1 second, probably too frequent given that it has
been updated to 100 seconds in a later version of the test,
reported in Listing 5, that has not been recognized as flaky
anymore.

In the second scenario, we observe how bad devel-
oper habits could increase the similarity between flaky and
non-flaky tests. As an example we consider two tests coming
from togglz project and reported in Listings 6 and 7, where

Listing 5. Example of non-flaky test (parameter change).

the developer has probably produced the later test by copying
and pasting the other. Indeed, by observing the listings,
the content of the non-flaky test is essentially a subset of the
content of the flaky one, except for the first setup instruction.

In the third scenario, we observe how tests could be iden-
tical in syntax even if different in behavior, given that tests
preconditions are not taken into account by FLAST being
syntactically located in a different area of the source code.
An example of this setting can be found in two tests coming
from jackrabbit: the test methods are fully identical, but
they actually belong to different Java classes and, thus, have
different preconditions, i.e., one has global restrictions while
performing read operations while the other does not. The tests
can be found, as well as the other previously discussed tests,
in our replication package linked in Section IV-B.

2) EFFICIENCY (Q2)
As we can see in Table 4, overall, the average training time
observed was less than one second (∼0.71 s), and the average
prediction time roughly one millisecond (∼1.03 ms). The
average storage overhead accounts for roughly 16 MB with a
median of∼6MB (with an average project size of∼2,000 test
methods). When considering the project with the highest
number of test cases, jackrabbitwith 9,223 tests, FLAST
takes 2.57 s for training. For the sake of fairness it should
be noted that such costs do not consider the needed effort of
identifying the original set of flaky tests on which FLAST is
trained.

In the experiments, FLAST used a naive brute force algo-
rithm to find the k nearest neighbors. This approach looks
for the k nearest neighbors in a linear fashion and has a cost
of O(|T |) (considering k constant, as in our experiments) to
predict the nature of a test s 6∈ T . The Nearest Neighbor
problem, in general, can be also approached in other ways,
e.g., with the use of space partitioning data structures such as

VOLUME 9, 2021 76129

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

Listing 6. Example of flaky test (duplicate code).

kd-tree [51] and balltree [52] or in approximate ways
using techniques such as Locality Sensitive Hashing [42], that
could be of interest to further speed up the computation of the
nearest neighbor search. As observed in Table 4, the current
way used by FLAST to look for nearest neighbors can be
considered efficient, specially w.r.t. the scale of the software
projects considered in the experiments. However, at larger
scales where test suites are comprised ofmillions of tests [41],
[48], the use of more sophisticated approaches should be
considered to keep the approach efficient.

3) COMPARISON WITH STATE-OF-THE-ART (Q3)
Analyzing the effectiveness results reported in Table 5 we can
see that, among the ML classifiers, the highest precision is
obtained by Random Forest (0.99) while the highest recall
is obtained by Support Vector (0.92). With respect to the
combinations of k and σ of FLAST, the highest precision
(0.99) is obtained with k = 7 and σ = 0.95, while the highest
recall (0.93) is obtained with k = 3 and σ = 0.5. Overall,
FLAST (k = 7 and σ = 0.95) and Random Forest achieve
the highest precision, whereas FLAST (k = 3 and σ = 0.5)
produces the highest recall.

With respect to efficiency, FLAST outperforms the Nearest
Neighbor competitor in all of the considered metrics, with
a comparable training time (about 1 s on a dataset with
2,804 tests for both), an average prediction time 4.5 times
smaller (about 0.6 ms for FLAST vs more than 2.5 ms for
Nearest Neighbor), and a storage overhead almost 24 times
smaller (less than 20 MB for FLAST vs almost 475 MB for
Nearest Neighbor).

Regarding the efficiency of FLAST, the advantage in
prediction time could be seen as negligible at the scale of

Listing 7. Example of non-flaky test (duplicate code).

small/medium software projects as those considered in our
comparison, since it is in the order of 1 ms. However, at large
scale, where such predictions could be repeated millions of
times, having a faster predictor could play an important role.

Regarding storage, instead, the improvement of FLAST
due to the use of sparse random projections [44], [45] is
immediately noticeable, allowing the use of roughly 24 times
less storage on disk and inmemorywhen predicting new tests.

B. THREATS TO VALIDITY
Despite our best efforts, our results might still be under-
mined by threats to validity. We consider four types of
threats [53].

1) CONSTRUCT VALIDITY
If our empirical experimentation is appropriate to answer the
research questions. Concerning Q1 a potential threat could
be choosing a wrong metric that does not properly represent
FLAST’s prediction capability; for example classifiers are
typically evaluated by Accuracy, i.e., the ratio between the
number of correct predictions and the total number of predic-
tions. In our case though this measure would be misleading,
as due to the high proportion of non-flaky tests, it would
always provide values close to 1. To prevent this threat, for
effectiveness we selected precision (M1) after carefully con-
sidering the scope of FLAST. Another potential threat would
be to adopt a misleading validation procedure: to prevent
this risk we applied a rigorous validations strategy, namely
Stratified Shuffle Split Cross Validation. With Q2 we aim at
evaluating FLAST’s efficiency: such a study may suffer from
many threats, in particular the use of FLAST could be subject
to many costs that are hidden or difficult to assess, so that any
attempt to evaluate such costs in a laboratory study could be

76130 VOLUME 9, 2021

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

unrealistic. A proper assessment can only be done by putting
FLAST in actual production. In this paper we could not deal
with this threat, and rather opted to limit the evaluation to
directly measurable overheads metrics in terms of execution
time and storage requirements. Finally, with Q3 we aim at
comparing the effectiveness and efficiency of FLAST with
competing approaches. However, the risk of setting an exper-
iment to compare approaches that are actually not comparable
against each other is high because, as we show in Section II,
most other existing approaches assume different input infor-
mation and use different resources. To prevent this threat,
we preceded the experiment with a qualitative comparison (in
Section II) over a set of more prominent dimension and then
choose the most similar work.

2) INTERNAL VALIDITY
If the observed results are affected by factors different from
the treatments. A common internal validity threat lays in the
selection of the experimental subjects, which we mitigate
by gathering data from one robust dataset available in the
literature [21]. Nevertheless, due to the process followed to
establish it, for some tests two versions could have been
included, one of which flaky and the other one non-flaky (cfr.
Section IV-B). While this could have influenced the observed
results, we do not deem this as a major threat to validity, as we
verified that this duplication affects only a minute portion of
the dataset. In addition, to mitigate this threat, the identified
tests that resulted to be identical and marked as flaky and
non-flaky in the two versions were removed from the dataset.
More in general, a potential threat descends from trusting
such a dataset and using it as ground truth for evaluating
FLAST’s effectiveness. Indeed, if the labeling of test cases
as flaky or not-flaky were wrong, we might over-estimate
or under-estimate FLAST’s effectiveness. If such a threat
occurred, we consider that it is most likely that our results
might be biased against FLAST, in that, as the classification
is done dynamically, it is more likely that a flaky test is not
recognized as such (because by rerunning a test it continues
to fail) rather than the vice versa.

With reference to the study conducted to answer (Q3),
the sampling of non-flaky tests to build the Pinto-DS
dataset might have introduced a bias. However as we aimed
at a fair comparison against the ML classifiers in [21], that
was an obligatory choice, and this did not affect in any way
our results relative to (Q1 and Q2).
Other internal validity threats may be relative to the param-

eters set in the application of used algorithms and the accu-
racy of the measurements themselves: this is mitigated by a
study of parameters variations we performed (reported in the
replication package) and by the application of rigorous ad-
hoc validation strategies best suited to answer our research
questions.

3) EXTERNAL VALIDITY
If, and to what extent, the observed results can be generalized.
FLAST is evaluated over a set of 13 projects (Q1 andQ2) and

also over the Pinto-DS dataset (Q3). Although our study
is in line with similar studies in literature, and uses a very
accurate dataset in terms of number of reruns used to identify
flaky/non-flaky tests, we are aware that our experimentation
may not be sufficient for drawing generally valid conclusions
beyond the examined subjects. To address this threat, FLAST
should be studied on more projects with flaky tests detected
by reruns, which requires an extensive effort for establish-
ing the ground truth for the experiments. Further studies
should also consider different non-Java subjects, even though
FLAST does not leverage programming language semantics,
and so we do not expect results to drastically vary.

4) RELIABILITY
If, and to what extent, observations can be reproduced by
other researchers. To ensure reproducibility, we make avail-
able all data and settings related information in our replication
package.

VII. USING FLAST IN A CONTINUOUS INTEGRATION
ENVIRONMENT
Our results show that FLAST is a lightweight yet powerful
approach for flakiness prediction. Thanks to the simplicity
and high-level of abstraction that characterize its functioning,
FLAST can be easily and seamlessly adopted in a wide range
of industrial and research contexts. Nevertheless, due to its
fast and static nature, FLAST appears exceptionally well
suited to be integrated in CI. We discuss some prominent
scenarios in the remainder of this section.

A. COMBINING STATIC AND DYNAMIC APPROACHES
FLAST is not intended as an alternative to dynamic
approaches (e.g., [12], [13]). Our vision is that FLAST pro-
vides a remarkably fast, low-cost, and reliable approach to
be used in combination with dynamic approaches to alleviate
the cost of the latter, and improve their efficiency. Indeed,
FLAST can predict if a test is flaky, based on a preexist-
ing ground truth on flaky tests. However, even though we
showed that its precision is high, it could still provide false
positives. Dynamic approaches instead can detect test flaki-
ness by concretely rerunning failing test cases. By predicting
with negligible overhead, and already at commit time, which
tests are prone to be flaky, FLAST can guide dynamic tools,
e.g., to refine test case prioritization processes or to indi-
cate which tests should be rerun a higher number of times.
We expect that the usage of FLAST in combination with
dynamic approaches would help to more efficiently spend the
testing budget.

B. GATING FLAKY TESTS
FLAST could be also used to impede that flaky tests are added
to the repository. In fact, it could be integrated within the CI
platform in use and be run before new tests are committed:
if any among the new tests look ‘‘suspiciously’’ similar to
previously detected flaky tests, FLAST feedback is sent back

VOLUME 9, 2021 76131

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

to the test creator to be directly acted upon for possible
fixing of flakiness before the tests enter the continuous testing
cycles. However, for such a deployment scenario become
practical, it would be important that FLAST is also able to
explain why a test was predicted as flaky. This is in fact a
direction of our future work, which we expand below.

C. FEEDBACK TO TESTERS
The underlying hypothesis on which FLAST is based,
i.e., that flaky tests present similar traits, allows the con-
version of data generated by the approach into feedback for
testers. In fact, in addition to predicting a test as flaky, it is
also possible to provide testers with specific information
to support them in fixing flakiness. For example, if flaky
tests are classified into categories according to their causes
(as in [1], [28]), FLAST could also predict the flakiness
category of each suspicious test. Also, when a test is predicted
as flaky and returned to its creator, FLAST could retrieve
examples of similar tests flagged as flaky in the past and,
if historical commit data are available, this information can
be leveraged to suggest fixes based on how those similar
flaky tests were fixed. In the above perspective, we speculate
that in the long term using an approach like FLAST can act
as a learning-in-the-field tool and will progressively educate
developers to recognize typical code patterns and errors that
cause flakiness and hence to write more stable tests.

D. CUSTOMIZATION
As discussed in Section III, by tuning the threshold σ we can
vary the trade-off between precision and recall of FLAST’s
results. This flexibility can be used to best fit the context in
which FLAST is applied, depending on the importance of
false positives vs. false negatives.

In the scenario of combining static and dynamic flakiness
detectors, test cases predicted as flaky are then automatically
processed by the test execution engine, with the goal of
confirming FLAST’s prediction. Under such circumstances,
a more encompassing threshold (e.g., σ = 0.5) should be
adopted, which would give a higher recall and hence allow
testers to early identify more potentially flaky tests.

The gating scenario instead would envisage that FLAST’s
feedback would be acted upon by testers via manual interven-
tion. In this case, it is crucial to ensure the highest precision
of the approach, as the manual inspection of the output is
a costly process and, ultimately, it is important to gain the
trust of testers in the results of the approach by preventing
as much as possible false positives. In this scenario, a more
conservative threshold (e.g., σ = 0.95) should be utilized,
sacrificing recall for the sake of more precise predictions.

In addition, we speculate that FLAST could also be applied
in an adaptive way, i.e., with the ability to automatically
adjust the threshold σ . For example, the tool could be set
to a more conservative threshold when it is first deployed
in the environment, and then, as the precision rates grow
above some user-defined target, it could adaptively relax
the threshold in the aim of reducing the number of false

negatives. By monitoring its own performance, FLAST can
be empowered to reevaluate the need to adjust the threshold
to maintain its precision within an acceptable bound.

VIII. CONCLUSION
Following the motto know you neighbor we proposed a novel
approach to predict flaky tests by leveraging test code simi-
larity: test methods whose code is neighbor to that of known
flaky tests will also very likely expose flakiness. FLAST
has shown to be an effective predictor and to impose very
low—actually negligible—time and storage overhead. More
importantly, flaky tests can be detected in fully automated
way even before they are executed: they can be taken care
of before being committed into the test repository, avoiding
that testing effort is wasted in rerunning failing tests and code
velocity is slowed down waiting for flaky test resolution.

Researchers attention on test flakiness is recent. After a
qualitative comparison of existing approaches, we can con-
fidently say that FLAST opens a novel interesting avenue for
solving this challenge. Other researchers could propose even
better algorithms exploiting test code similarity to prevent a
high percentage of flaky tests.

FLAST could be embedded within the adopted IDE or the
CI platform, to guide dynamic tools or to automatically warn
developers against the risk that a new test case or test method
might be flaky. While in this paper we have developed and
evaluated FLAST, we leave it as a future work direction to
develop an integrated environment where it is embedded and
evaluated.

Although our study showed that the approach can already
be used on small size training sets, another challengewe leave
for future work is to devise variants of FLAST acting as more
generic predictors that could be used across projects when
a training set is not yet available. An interesting extension
of FLAST could be also to explore the idea of enhancing
our notion of similarity, currently based on cosine similarity,
to consider also broader information, such as, e.g., potential
test smells associated with flakiness, as well as other hints we
got from our inspection of false positives.

As a final remark, FLAST is not to be seen as an alternative
to existing dynamic solutions. Rather, we foresee the greatest
advantage in using static and dynamic solutions in mutual
synergy: FLAST would first detect many flaky tests by rec-
ognizing potentially flaky test code traits. For flaky tests that
pass FLAST’s filtering, these can still be detected by dynamic
approaches like DeFlaker or even Rerun, but with much less
resources. Also this combination of FLAST with dynamic
approaches is an important objective for future work.

APPENDIX. ON THE RANDOM PROJECTION IN CI
As briefly discussed in Section III, whenever new tests are
added to the test suite, as in CI environments, our approach
does not require to re-project the entire test suite since the old
tests remain unaltered in the random subspace.

Formally, let X ∈ Rn×|T | be the matrix of the test suite T ,
with the columns of X being the vectors representing the

76132 VOLUME 9, 2021

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

tests, and let R ∈ Rd×n be the random projection matrix. It
follows that Y = RX ∈ Rd×|T | is the matrix of the projected
tests, namely the columns of Y are the d-dimensional vectors
representing the tests after the random projection.

Consider the addition of a set S of new tests containing
a total of m new tokens. At this point, we need to ‘‘aug-
ment’’ the old vectors w.r.t. the m new tokens by adding to
each of their previous vector representations m new rows
containing 0, since the m tokens are new w.r.t. the previous
ones, while the previous remain the same thanks to the TF
weighting scheme. Moreover, we need to consider the vec-
tor representation of the new tests in S. Formally, let X̄ ∈
R(n+m)×(|T |+|S|) be the matrix of the new test suite T ∪ S
in the new (n + m)-dimensional space. The columns of X̄
are the augmented vectors, i.e., for all j ∈ {1, . . . , |T |} (the
columns relative to old tests) we have that X̄ij = Xij for
i ∈ {1, . . . , n} (the components relative to the old tokens
remain the same) and X̄ij = 0 for i ∈ {n + 1, . . . , n + m}
(the components relative to the new tokens are set to 0); for all
j ∈ {|T |+1, . . . , |T |+|S|}we have the columns relative to the
new tests in S. Let R̄ ∈ Rd×(n+m) be the augmented projection
matrix, i.e., for all j ∈ {1, . . . , n} (the columns relative to old
tokens) we have R̄ij = Rij for all i; for all j ∈ {n+1, . . . , n+m}
we have the columns relative to them new tokens in S, which
are completely new. It follows that Ȳ = R̄X̄ ∈ Rd×(|T |+|S|)

is the matrix of the tests that have been projected in the same
d-dimensional random subspace.

Note that, for all i and for all j ∈ {1, . . . , n}, it holds that

Ȳij =
n+m∑
l=1

R̄il X̄lj
(a)
=

n∑
l=1

R̄il X̄lj
(b)
=

n∑
l=1

RilXlj = Yij,

where, by definition of X̄ and R̄: in (a) we use that X̄lj = 0
for l > n, and in (b) we use that R̄il = Ril and X̄lj = Xlj
for l ≤ n. In other words, by calling y a column of Y and
ȳ the corresponding column of Ȳ , it follows that ȳ = y, i.e.,
applying the old projectionmatrix to the old vectors is equiva-
lent to applying the new projection matrix to their augmented
version. Therefore, whenever a set S of new tests is added
to T the only operation needed is to augment the projection
matrix R and only project S in the random subspace, since the
new projection matrix does not alter the projection of T .

REFERENCES
[1] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, ‘‘An empirical analysis of

flaky tests,’’ in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
New York, NY, USA, 2014, pp. 643–653.

[2] Google Testing Blog. (2008). Testing on the Toilet Avoiding Flaky Tests.
Accessed: Aug. 6, 2019. [Online]. Available: https://testing.googleblog.
com/2008/04/tott-avoiding-flakey-tests.html

[3] M. Fowler. (2011). Eradicating Non-Determinism in Tests. Accessed:
Aug. 2, 2019. [Online]. Available: https://martinfowler.com/articles/
nonDeterminism.html

[4] P. Sudarshan. (2012). No More Flaky Tests on the Go Team. Accessed:
Aug. 6, 2019. [Online]. Available: https://www.thoughtworks.
com/insights/blog/no-more-flaky-tests-go-team,

[5] MDN Web Docs Mozilla. (2019). Test Verification. Accessed:
Jul. 13, 2020. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Mozilla/QA/Test_Verification

[6] J. Micco. (2016). Flaky Tests at Google and How Mitigate Them.
Accessed: Jul. 22, 2019. [Online]. Available: https://testing.googleblog.
com/2016/05/flaky-tests-at-google-and-how-we%.html

[7] C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco, ‘‘Assessing
transition-based test selection algorithms at Google,’’ in Proc. 41st Int.
Conf. Softw. Eng., Softw. Eng. Pract., Piscataway, NJ, USA, Mar. 2019,
pp. 101–110.

[8] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta, ‘‘Root
causing flaky tests in a large-scale industrial setting,’’ in Proc. 28th ACM
SIGSOFT Int. Symp. Softw. Test. Anal., New York, NY, USA, Jul. 2019,
pp. 101–111.

[9] A. Labuschagne, L. Inozemtseva, and R. Holmes, ‘‘Measuring the cost of
regression testing in practice: A study of java projects using continuous
integration,’’ in Proc. 11th Joint Meeting Found. Softw. Eng., New York,
NY, USA, Aug. 2017, pp. 821–830.

[10] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, ‘‘Developer testing in the IDE: Patterns, beliefs, and behav-
ior,’’ IEEE Trans. Softw. Eng., vol. 45, no. 3, pp. 261–284, Mar. 2017.

[11] J. Micco. (2017). The State of Continuous Integration Testing Google.
Accessed: May 20, 2021. [Online]. Available: https://ai.google/
research/pubs/pub45880

[12] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
‘‘DeFlaker: Automatically detecting flaky tests,’’ in Proc. 40th Int. Conf.
Softw. Eng., New York, NY, USA, May 2018, pp. 433–444.

[13] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, ‘‘IDFlakies: A framework
for detecting and partially classifying flaky tests,’’ inProc. 12th IEEEConf.
Softw. Test., Validation Verification (ICST), Apr. 2019, pp. 312–322.

[14] M.Waterloo, S. Person, and S. Elbaum, ‘‘Test analysis: Searching for faults
in tests (N),’’ in Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Piscataway, NJ, USA, Nov. 2015, pp. 149–154.

[15] K. Herzig and N. Nagappan, ‘‘Empirically detecting false test alarms using
association rules,’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng.,
May 2015, pp. 39–48.

[16] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, ‘‘Towards a
Bayesian network model for predicting flaky automated tests,’’ in Proc.
IEEE Int. Conf. Softw. Qual., Rel. Secur. Companion (QRS-C), Jul. 2018,
pp. 100–107.

[17] M. Harman and P. O’Hearn, ‘‘From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,’’ in Proc.
IEEE 18th Int. Work. Conf. Source Code Anal. Manipulation (SCAM),
Sep. 2018, pp. 1–23.

[18] C. Ziftci and D. Cavalcanti, ‘‘De-flake your tests: Automatically locating
root causes of flaky tests in code at Google,’’ inProc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2020, pp. 736–745.

[19] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, ‘‘FAST
approaches to scalable similarity-based test case prioritization,’’ in Proc.
40th Int. Conf. Softw. Eng., New York, NY, USA, May 2018, pp. 222–232.

[20] E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino, ‘‘Scalable
approaches for test suite reduction,’’ in Proc. IEEE/ACM 41st Int. Conf.
Softw. Eng. (ICSE), May 2019, pp. 419–429.

[21] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, ‘‘What is the vocabulary of flaky tests?’’ in Proc. 17th Int.
Conf. Mining Softw. Repositories, Jun. 2020, pp. 492–502.

[22] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor nonpara-
metric regression,’’ Amer. Statist., vol. 46, no. 3, pp. 175–185, Aug. 1992.

[23] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
‘‘Modeling and ranking flaky tests at Apple,’’ in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Eng., Softw. Eng. Pract., New York, NY, USA, Jun. 2020,
pp. 110–119.

[24] A. Vahabzadeh, A. M. Fard, and A. Mesbah, ‘‘An empirical study of bugs
in test code,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),
Washington, DC, USA, Sep. 2015, pp. 101–110.

[25] M. T. Rahman and P. C. Rigby, ‘‘The impact of failing, flaky, and high
failure tests on the number of crash reports associated with firefox builds,’’
in Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., New York, NY, USA, Oct. 2018, pp. 857–862.

[26] S. Thorve, C. Sreshtha, and N. Meng, ‘‘An empirical study of flaky tests
in Android apps,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), Washington, DC, USA, Sep. 2018, pp. 534–538.

[27] K. Presler-Marshall, E. Horton, S. Heckman, and K. Stolee, ‘‘Wait, wait.
No, tell Me. Analyzing selenium configuration effects on test flakiness,’’ in
Proc. IEEE/ACM 14th Int. Workshop Autom. Softw. Test (AST), Piscataway,
NJ, USA, May 2019, pp. 7–13.

VOLUME 9, 2021 76133

R. Verdecchia et al.: Know You Neighbor: Fast Static Prediction of Test Flakiness

[28] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, ‘‘Understand-
ing flaky tests: The developer’s perspective,’’ in Proc. 27th ACM Joint
Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., Aug. 2019,
pp. 830–840.

[29] W. Lam, K. Muälu, H. Sajnani, and S. Thummalapenta, ‘‘A study on the
lifecycle of flaky tests,’’ in Proc. ACM/IEEE 42nd Int. Conf. Softw. Eng.,
New York, NY, USA, Jun. 2020, pp. 1471–1482.

[30] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, ‘‘Understand-
ing reproducibility and characteristics of flaky tests through test reruns in
java projects,’’ in Proc. IEEE 31st Int. Symp. Softw. Rel. Eng. (ISSRE),
Oct. 2020, pp. 403–413.

[31] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, ‘‘A large-scale
longitudinal study of flaky tests,’’ Proc. ACMProgram. Lang., vol. 4, no. 5,
pp. 1–29, Nov. 2020.

[32] A. Gyori, A. Shi, F. Hariri, and D. Marinov, ‘‘Reliable testing: Detecting
state-polluting tests to prevent test dependency,’’ in Proc. Int. Symp. Softw.
Test. Anal., New York, NY, USA, Jul. 2015, pp. 223–233.

[33] A. Gambi, J. Bell, and A. Zeller, ‘‘Practical test dependency detection,’’
in Proc. IEEE 11th Int. Conf. Softw. Test., Verification Validation (ICST),
Apr. 2018, pp. 1–11.

[34] O. Parry, G.M.Kapfhammer,M. Hilton, and P.Mcminn, ‘‘Flake it ‘Till you
make it: Using automated repair to induce and fix latent test flakiness,’’ in
Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng. Workshops, New York, NY,
USA, Jun. 2020, pp. 11–12.

[35] V. Terragni, P. Salza, and F. Ferrucci, ‘‘A container-based infrastructure
for fuzzy-driven root causing of flaky tests,’’ in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Eng., New Ideas Emerg. Results, New York, NY, USA,
Jun. 2020, pp. 69–72.

[36] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, ‘‘IFixFlakies: A frame-
work for automatically fixing order-dependent flaky tests,’’ in Proc. 27th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
New York, NY, USA, Aug. 2019, pp. 545–555.

[37] J. Malm, A. Causevic, B. Lisper, and S. Eldh, ‘‘Automated analysis of
flakiness-mitigating delays,’’ in Proc. IEEE/ACM 1st Int. Conf. Autom.
Softw. Test, New York, NY, USA, Oct. 2020, pp. 81–84.

[38] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, ‘‘Detecting assumptions
on deterministic implementations of non-deterministic specifications,’’
in Proc. IEEE Int. Conf. Softw. Test., Verification Validation (ICST),
Apr. 2016, pp. 80–90.

[39] D. Silva, L. Teixeira, and M. d’Amorim, ‘‘Shake it! Detecting flaky tests
caused by concurrency with shaker,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance Evol. (ICSME), Sep. 2020, pp. 301–311.

[40] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic,
‘‘Detecting flaky tests in probabilistic and machine learning applications,’’
in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Test. Anal., New York, NY,
USA, Jul. 2020, pp. 211–224.

[41] K. Herzig, ‘‘Let’s assume we had to pay for testing,’’ Keynote at AST,
2016. [Online]. Available: https://www.slideshare.net/kim.herzig/keynote-
ast-2016

[42] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining Massive Datasets.
New York, NY, USA: Cambridge Univ. Press, 2014.

[43] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, ‘‘When is ‘nearest
neighbor’ meaningful?’’ in Proc. Int. Conf. Database Theory. Berlin,
Germany: Springer, 1999, pp. 217–235.

[44] D. Achlioptas, ‘‘Database-friendly random projections: Johnson-
Lindenstrauss with binary coins,’’ J. Comput. Syst. Sci., vol. 66, no. 4,
pp. 671–687, Jun. 2003.

[45] P. Li, T. J. Hastie, and K. W. Church, ‘‘Very sparse random projections,’’ in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006,
pp. 287–296.

[46] W. B. Johnson and J. Lindenstrauss, ‘‘Extensions of lipschitz mappings
into a Hilbert space,’’ Contemp. Math., vol. 26, pp. 189–206, May 1984.

[47] A.Magen, ‘‘Dimensionality reductions in `2 that preserve volumes and dis-
tance to affine spaces,’’Discrete Comput. Geometry, vol. 38, pp. 139–153,
Jul. 2007.

[48] S. Elbaum, G. Rothermel, and J. Penix, ‘‘Techniques for improving regres-
sion testing in continuous integration development environments,’’ inProc.
22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng., New York, NY, USA,
2014, pp. 235–245.

[49] V. R. Basili, ‘‘Goal question metric paradigm,’’ in Encyclopedia of Soft-
ware Engineering, 1994, pp. 528–532.

[50] R. Kohavi, ‘‘A study of cross-validation and bootstrap for accuracy estima-
tion and model selection,’’ in Proc. 14th Int. Joint Conf. Artif. Intell., vol. 2.
San Francisco, CA, USA: Morgan Kaufmann, 1995, pp. 1137–1143.

[51] J. L. Bentley, ‘‘Multidimensional binary search trees used for associative
searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[52] S. M. Omohundro, Five Balltree Construction Algorithms. Berkeley, CA,
USA: International Computer Science Institute Berkeley, 1989.

[53] C.Wohlin, P. Runeson,M. Höst,M. C. Ohlsson, B. Regnell, andA.Wessln,
Experimentation in Software Engineering. Berlin, Germany: Springer,
2012.

ROBERTO VERDECCHIA is currently pursuing
the double Ph.D. degree in computer science with
the Vrije Universiteit Amsterdam, The Nether-
lands, and Gran Sasso Science Institute, L’Aquila,
Italy.

He is currently a Research Associate with the
Software and Sustainability Group (S2), Vrije Uni-
versiteit Amsterdam.His research interests include
adoption of empirical methods to improve soft-
ware development and system evolution, with par-

ticular emphasis in the fields of technical debt, software architecture,
software testing, and software energy efficiency.

EMILIO CRUCIANI received the M.Sc. degree
in engineering (computer science) from Sapienza
University Rome, Rome, Italy, in 2016, and the
Ph.D. degree in computer science from the Gran
Sasso Science Institute, L’Aquila, Italy, in 2019.

From 2019 to 2020, he was a Postdoctoral
Researcher with COATI Team, INRIA Sophia
AntipolisMéditerranée, France, and he is currently
a Postdoctoral Researcher with the Efficient Algo-
rithms Group, University of Salzburg, Austria. His

research interests include the analysis of stochastic processes on com-
plex networks and the design and implementation of scalable and efficient
algorithms for massive datasets.

BRENO MIRANDA received the master’s degree
in computer science from the Federal University of
Pernambuco, Brazil, in 2011, and the Ph.D. degree
in computer science from the University of Pisa,
Italy, in 2016. He is currently an Assistant Pro-
fessor with the Federal University of Pernambuco.
His research interest includes software engineer-
ing, with particular focus in software testing.

ANTONIA BERTOLINO is currently a Research
Director of the Italian National Research Coun-
cil (CNR), Institute for Information Science and
Technologies ‘‘Alessandro Faedo’’ (ISTI), Pisa,
Italy. Her research covers a broad range of topics
and techniques within software testing. She has
published more than 200 papers in international
journals, conferences, andworkshops. She has par-
ticipated to several collaborative projects, includ-
ing more recently the European projects ElasTest,

Learn Pad, and CHOReOS. She serves regularly in the Program Com-
mittee of top conferences in software engineering, such as ESEC-FSE,
ICSE, Software Testing, and ISSTA, ICST. She currently serves as a Senior
Associate Editor for the Journal of Systems and Software (Elsevier), and
as an Associate Editor of ACM Transactions on Software Engineering and
Methodology, Empirical Software Engineering (Springer), and Journal of
Software: Evolution and Process (Wiley).

76134 VOLUME 9, 2021

