

ISTI-TR-2020/001

ISTI Technical Reports

Know your neighbor: fast static prediction of test
flakiness

Antonia Bertolino, ISTI-CNR, Pisa, Italy
Emilio Cruciani, Gran Sasso Science Institute, L'Aquila, Italy

Breno Miranda, Federal University of Pernambuco, Recife, Brazil
Roberto Verdecchia, Gran Sasso Science Institute, L'Aquila, Italy

 ISTI-TR-2020/001

Know your neighbor: fast static prediction of test flakiness
Bertolino A., Cruciani E., Miranda B., Verdecchia R.
ISTI-TR-2020/001

Flaky tests plague regression testing in Continuous Integration environments by slowing down
change releases, wasting development effort, and also eroding testers trust in the test process. We
present FLAST, the first static approach to -akiness detection using test code similarity. Our
extensive evaluation on 24 projects taken from repositories used in three previous studies showed
that FLAST can identify -aky tests with up to 0.98 Median and 0.92 Mean precision. For six of those
projects it could already yield 0.98 average precision values with a training set containing less than
100 tests. Besides, where known -aky tests are classi ed according to their causes, the same
approach can also predict a -aky test category with alike precision values. The cost of the approach
is negligible: the average train time over a dataset of 1,700 test methods is less than one second,
while the average prediction time for a new test is less than one millisecond.

Keywords: Flaky test; Regression testing; Software testing.

Citation
Bertolino A., Cruciani E., Miranda B., Verdecchia R.. Know your neighbor: fast static prediction of test
flakiness. ISTI Technical Reports 2020/001. DOI: 10.32079/ISTI-TR-2020/001.

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Area della Ricerca CNR di Pisa
Via G. Moruzzi 1
56124 Pisa Italy
http://www.isti.cnr.it

Know Your Neighbor: Fast Static Prediction of Test Flakiness

ANTONIA BERTOLINO, ISTI - CNR

EMILIO CRUCIANI∗, Inria, I3S Lab, UCA, CNRS

BRENO MIRANDA†, Federal University of Pernambuco

ROBERTO VERDECCHIA‡, Vrije Universiteit Amsterdam

Flaky tests plague regression testing in Continuous Integration environments by slowing down change releases, wasting development
e�ort, and also eroding testers trust in the test process. We present FLAST, the �rst static approach to �akiness detection using test
code similarity. Our evaluation on 13 projects taken from repositories used in two previous studies showed that FLAST can identify
�aky tests with up to 1.00 Median and 0.85 Mean precision. For three of those projects it could already yield ∼0.98 average precision
values with a training set containing less than 100 tests. �e cost of the approach is negligible: the average train time over a dataset of
∼550 test methods is less than one second, while the average prediction time for a new test is less than one millisecond.

1 INTRODUCTION

Flaky tests can intermi�ently pass or fail even for the same code version [27]. A seminal study in 2014 by Luo et al. [27]
analyzed empirically the common causes and manifestations of test �akiness and brought the a�ention of the research
community onto this serious problem, which was already well-known among practitioners, e.g., [10, 12, 40].

Flakiness hinders regression testing in many ways, especially in a Continuous Integration (CI) environment where
ideally all tests must pass before a change can be integrated, or in other words any failing test must be �xed before a
release. Test cases that fail non-deterministically jeopardize any good practice of prioritizing those tests that recently
failed, because as explained in [29] this would end up in executing mainly �aky tests.

Indeed, in Google, almost 16% of individual tests contain some form of �akiness [30], and these �aky tests are the
cause of 84% of all observed transitions (i.e., changes from pass to fail or the vice versa for the test results across project
commits) [24]. A non negligible percentage of �aky tests is observed also in Microso�: while monitoring �ve projects
over a one-month period, 4.6% individual tests were identi�ed as �aky [21]. Open Source (OS) projects do not escape
�akiness either: a study of 61 projects using Travis CI assessed that 13% of all observed failures were a�ributable to
�akiness [20]. A similar percentage of 12% �aky tests on average was observed for test cases executed in the IDE over
3,500+ both industrial and OS projects [5].

In addition to wasting developers’ e�ort in debugging a System-under-Test (SUT) that is actually correct because an
observed failure is due to a �aky test and not to the latest introduced change, �akiness also in�ates testing time: several
CI platforms now routinely rerun failing test cases a number of times to ascertain that failures are not intermi�ent. �is
in turn produces other indirect costs in either case that a test is eventually marked as �aky or non-�aky: if �aky, a�er
receiving several false alarms, testers tend to lose trust in the process and be less reactive to failures [30]; if non-�aky,
the failure was real, but its debugging has been delayed.

∗Work mostly carried out while at Gran Sasso Science Institute, Italy
†Also with ISTI-CNR, Pisa, 56124, Italy
‡Work mostly carried out while at Gran Sasso Science Institute, Italy

1

As said, in practice �akiness is identi�ed by rerunning a failed test several times, e.g., even up to 10 times [31].
Approaches have been proposed to reduce the implied overhead, e.g., by coupling test rerunningwith code analysis [4, 22].
In this way even one execution might be su�cient. In the following we denote �akiness detection techniques that rely
on test execution (one or more times) as dynamic techniques.

In contrast, some approaches have recently been proposed to recognize �akiness based on characteristics of known
�aky tests, e.g., [16, 18, 43]. Such approaches do not require test rerunning, but either rely on manual identi�cation of
such characteristics by experts [18, 43], or learn them from a vast historical dataset [16]. In either case they require
large e�ort to be generalized.

Aswished byHarman andO’Hearn [14], research should �nd a quick yet e�ectivemethod for test �akiness assessment.
Indeed, we concur with Gyori and coauthors when they state - talking about state-polluting test cases (i.e., tests that
can originate �akiness) - that “ideally a polluting test should be caught right when the developer is about to add it to the

test suite because that is when the developer is in the best position to �x” it [13]. Accordingly, our aim is a method that
can timely predict �akiness even before a test is executed.

Toward such aim, we hypothesize that test �akiness can be early detected by just looking at test code. Some recent
studies [9, 32] have shown that test code similarity can provide an e�ective instrument for test suite prioritization and
reduction, however to the best of our knowledge no previous work has considered to leverage test code similarity for

identifying �aky tests. If the hypothesis were con�rmed by the data, such an approach would only need a train sample
of test cases labeled as �aky and non-�aky (which can be assumed in current industrial practice [31]) and neither expert
consultancy nor test rerunning nor any further characterizations of �aky tests beyond their test code.

�is paper contributes with an approach called FLAST that predicts if a test is �aky based on its similarity with
known �aky tests at the negligible cost of a fast training step: as we describe in Section 3, we �rst map the tests in the
training set onto some metric space, where we �x the notions of source-code similarity and distance among test cases;
then, we train on it a k-Nearest Neighbor (kNN) classi�er [2] to predict the �aky or non-�aky nature of any new test.

�e deployment route that we imagine for FLAST is to embed it in the used CI framework, e.g., Travis CI.1 As new
or modi�ed test cases are commi�ed, FLAST analysis can automatically (and at negligible cost) identify with high
precision (see below) the potentially �aky tests, even before they are executed. In this view, FLAST is not proposed in
alternative to existing dynamic techniques. �e solution we envisage is using static and dynamic analysis in synergy:
FLAST would �rst prevent many �aky tests from being included in the test repository, and for those ones that pass
FLAST �ltering (plausibly a much smaller percentage), they can continue anyhow to undergo dynamic analysis. In the
paper we discuss other implications in the applications of FLAST (Section 6).

Our analysis on 13 projects obtained from repositories used in previous studies [4, 22] supports our hypothesis.
FLAST yields mean values for precision varying from 0.78 (with 0.58 recall) up to 0.85 (with 0.22 recall). �e di�erent
precision values depend on a threshold we can tune to make the approach more or less conservative: lower precision
value of 0.78 corresponds to no threshold; higher threshold values increase precision reducing the percentage of false
positives down to 0.04, but at the cost of missing about 36% of potential �aky tests. Indeed, if FLAST predictions are
returned to developers for manual �x of �akiness, it would be essential to contain false positives, i.e., claiming a test as
�aky when it is not, to the lowest possible degree. Instead, if FLAST predictions are processed automatically higher
recall values (even though corresponding to lower precision) may be preferable.

Summarizing, we provide the following contributions:

1h�ps://travis-ci.org
2

• Idea: �rst method for similarity-based �akiness detection based on static analysis of test code.
• Implementation: a tool prototype of FLAST that embeds �ne-tuned heuristics to enhance precision and e�ciency.
• Evaluation: a study over 13 projects including in total more than 7K test methods, 300+ of which �aky. �e

whole dataset and all results are made available along with the tool for study replication.

Given its lightweight nature, generality, and high precision, we envisage that FLAST can be embedded within any CI
platform with great returns in reducing the incidence of test �akiness and maintaining code velocity.

In the next section we overview related work. �en we present the FLAST approach (Section 3) and the methodology
followed to evaluate it (Section 4). We provide study results (along with threats-to-validity) in Section 5. Finally, we
discuss application of FLAST in CI practice (Section 6) and draw conclusions (Section 7).

2 RELATEDWORK

Until the cited study by Luo et al. [27], the scienti�c literature almost ignored test �akiness. A few works mentioned
the problem as an aside issue, but to our knowledge no research paper centrally focused on �akiness. Instead, in the
last �ve years �aky tests are drawing increasing a�ention, also triggered by practitioners’ alerts about the relevance
and spread of the problem [10, 14, 30].

Aiming at a comprehensive review of e�orts undertaken so far to address �aky tests, we launched a query over three
wide digital libraries, namely ACM DL,2 IEEExplore,3 and Scopus.4 We searched for string “�aky test” OR “�aky tests”

OR �akiness in the abstract (ACM DL) or in the metadata (IEEExplore and Scopus).
As a result, a�er removing duplicates and excluding not relevant works, we collected a total of 17 primary studies

that are mainly or in large part dealing with �akiness. �is result is not to be meant as a systematic survey of the topic,
which is beyond the scope of the present section and would deserve a dedicated paper: for instance we did not search
for common “�aky” synonyms such as “intermi�ent” or “non-deterministic,” nor we performed full-cycle snowballing
iterations (but in part we did).

For ease of exposition, we can classify such 17 studies into three main groups: i) empirical studies on �aky tests [20,
27, 35, 36, 41, 42], ii) approaches to detect �aky tests [4, 16, 18, 22, 39, 43], and iii) approaches to prevent, mitigate, repair
or, in a single word, manage �aky tests [11, 13, 21, 28, 38]. We brie�y overview these categories.

Empirical studies. Luo et al. [27] provide the �rst extensive study of �akiness by inspecting more than one thousand
commits that likely �xed �aky tests over the central repository of the Apache So�ware Foundation. �eir results provide
a must-read to understand the phenomenon of �aky tests, and is highly cited especially with reference to their ten
categories of �akiness root causes ranked by incidence. Over the same repository, Vahabzadeh et al. [42] studied more
broadly all possible types of bugs in test code and observed that �aky tests, together with semantic bugs, constitute the
dominant cause of tests provoking false alarms. �orve et al. [41] conducted a study of �aky tests in Android apps.
�ey observed that some causes of Android tests �akiness are similar to those identi�ed in [27], but two new causes
are Program Logic and UI. Presler-Marshall et al. [35] report on a speci�c study on �akiness in web testing using the
Selenium tool. �ey provide several hints on the e�ect of di�erent test environment con�gurations. �e study by
Labuschagne et al. [20] of 61 projects from GitHub Archive focuses on the costs of maintaining a regression test suite;
they observe that ∼13% of test failures are due to �aky tests. Rahman and Rigby [36] studied the crash reports submi�ed

2h�ps://dl.acm.org
3h�ps://ieeexplore.ieee.org
4h�ps://www.scopus.com. Note that in Scopus the search was limited to the Computer Science subject area.

3

by Firefox users in Beta and production stages, asking among other things how many of them are associated with �aky
tests. �ey observed that developers are more conservative with known �aky tests when releasing production builds
than Beta builds.

Detecting �aky tests. In practice �aky tests are detected by rerunning either all failed test cases or the suspect ones
(e.g., the tests that transited from pass to fail) a number of times, e.g., 10 times [31]. Following [4], we call this generic
strategy as Rerun. In the literature we found few works proposing approaches that improve on Rerun, which is costly
and not very precise. Among these, the authors of [4, 22, 39] propose dynamic techniques, i.e., they still base the
identi�cation on test case execution (one or more times), but enhance precision with deeper analyses. In contrast, the
works in [16, 18, 43] leverage knowledge of �akiness to build a static predictor. In [43], a set of problematic test code
pa�erns (actually not exclusively for �akiness, but broadly for test code bugs) is manually elicited. �e work in [16] is
similar, but uses a machine learning approach to mine association rules among individual test steps in tens of millions
of false test alarms. Finally, in [18] a Bayesian network is constructed.

Managing �aky tests. Some authors have proposed speci�c techniques to tackle known root causes of test �akiness.
One prevalent problem is the existence of dependencies among tests. To prevent it, Gyori et al. [13] propose the POLDET
technique that timely detects if a new added test case “pollutes” the state of heap shared by more tests. Instead Gambi
et al. [11] develop the PRADET approach, which discovers test dependencies by �ow analysis and iterative testing of
possible dependencies. Lam et al. [21] detect the root causes of �aky tests by executing them a�er instrumentation and
comparing the logs of passing and failing runs. A di�erent thread of research can be noted in [28, 38]: as prospected
in [14], test �akiness is such a pervasive and complex problem that any test technique should include appropriate
means to manage it. �ese two works go in this direction, and propose measures to mitigate the impact of �aky tests
on test mutation [38], and on learning-based test selection [28].

�is work. Our aim is detecting �aky tests as in [4, 16, 18, 22, 39, 43]. However, FLAST di�ers from all of them, as to
identify a �aky test it does not need neither to execute the test case nor any expert knowledge or extensive domain data.
We make a more detailed comparison in Section 5, a�er having explained how FLAST works. In this paper we leverage
knowledge and results built from the empirical studies; we do not focus on managing the detected �aky tests, but our
approach could be used to provide developers with information about how similar �aky tests have been repaired in the
past.

3 APPROACH

Let T be a test suite of which we know the �aky nature, i.e., we know whether each test t ∈ T is �aky or non-�aky.
More formally, let ` : T → {0, 1} be the function such that `(t) = 1 if t is �aky and `(t) = 0 otherwise, for every t ∈ T .
Given an unknown test s < T , i.e., a test of which we do not know the nature, the idea on which our approach is based
is that if s is “similar” (for some notion of similarity) to a test t ∈ T such that `(t) = 1, then there is a good chance for s
to be �aky as well, because they could share the traits that make both their behaviors non-deterministic: for example,
they could be testing the same functionality of the SUT or be both dependent on other test cases or be accessing a same
shared resource. In the same way, if s is similar to a test t such that `(t) = 0, then s has a good chance to be non-�aky.

To actualize such idea we need to �nd a notion of similarity that can capture the �aky nature of a test: as anticipated
in the Introduction, we model the tests in T as points in some metric space, where we �x a notion of source-code
similarity and distance among test cases, and then train on T a k-Nearest Neighbor classi�er [2]. We provide a visual

4

Flaky	Test
Non-Flaky	Test
Predicted	Flaky	Test

Nearest	Tests	(k=7)
Predicted	Non-Flaky	Test

Fig. 1. Visual representation of FLAST prediction

representation of how FLAST works in Figure 1. �e full black symbols are the tests in T , represented as points in a
plane; the white symbols, instead, are the tests not inT of which we predict the nature. We look at the neighborhood of
each of these tests, i.e., at the tests that are similar according to our representation, and predict if each of them is �aky
or not according to the nature of the similar neighbors.

Vector space modeling. Similarly to what has been done in [9], we model the tests in T as points in an n-dimensional
vector space using the bag-of-words model [25]: each test case t is represented as the multiset (i.e., a set that allows
multiple instances of its elements) of the tokens composing its source code, split by whitespace characters. According to
this model, the dimensionality n of the space induced by T is equal to the number of distinct tokens in the source code
of T . Each test t ∈ T is then represented as a vector t ∈ Rn with component relative to token i weighted proportionally
to the multiplicity of i among the tokens of t .

Similarity and distance. Given two vectors s, t ∈ Rn , we measure their similarity using the cosine of the angle θ
between them, i.e., via the cosine similarity Sc (s, t) = cosθ , whereby: cosθ = 〈s,t 〉

‖s ‖ · ‖t ‖ , 〈s, t〉 =
∑n
i=1 siti is the dot

product between s and t , and ‖s ‖ =
√∑n

i=1 s
2
i is the Euclidean norm of s . Instead, we measure their distance via the

cosine distance Dc (s, t) = 1 − Sc (s, t).

Dimensionality reduction. To mitigate the e�ects of the curse of dimensionality in the neighbor search [7] and obtain
gains in terms of e�ciency and storage overhead we apply a dimensionality reduction technique called sparse random

projection [1, 26]. Roughly speaking, points are projected onto a random d-dimensional subspace of Rn , with d � n,
such that the pairwise distance of the projected points is preserved up to a multiplicative factor ε [17]. Herein, we set
ε = 0.33, but it can be customized to have a di�erent e�ectiveness/e�ciency tradeo� in the distance measurement. �e
dimensionality d of the random subspace onto which points are projected is independent from the initial dimensionality
n, i.e, from the content of the tests, but only depends on the number of tests in T and its much smaller that them, being
d ∈ Ω

(
log |T |
ε2

)
.

Flakiness prediction. A�er modeling the tests inT as vectors and reducing their dimensionality, we predict the nature
of an unknown test case s < T . In particular, as previously mentioned, we use a k-Nearest Neighbors classi�er and
train it on the vector representation of the tests in T . �e value of k sets the tradeo� between variance and bias in the
classi�cation: a low value of k makes the classi�cation more subject to noise (increased variance), while a high value of

5

k smooths the decision boundaries (increased bias). As a general rule of thumb one would set k =
√
|T |, but in this

paper we set k = 7 (without optimizing it through cross validation) given the unbalance in the datasets used in the
experiments (some projects has less than 7 �aky tests in the training set). �e �akiness prediction performed by FLAST
is sketched in Algorithm 1.

Algorithm 1 FLAST Prediction
Input: Test suite T ; Function `; Test s; #Neighbors k ; �reshold σ
Output: Flakiness prediction for s
1: Ns ← argmin

R⊆T : |R |=k

∑
t ∈R

Dc (s, t) . k nearest neighbors

2: ϕs ←
∑

t ∈Ns : `(s)=1

1
Dc (s, t)

. �akiness measure

3: ψs ←
∑

t ∈Ns : `(s)=0

1
Dc (s, t)

. non-�akiness measure

4: if ϕs
ϕs+ψs

> σ : return True . predict the test is �aky
5: else: return False . predict the test is non-�aky

First, the unknown test case s in mapped to a vector s in the same vector space used for the tests in T .5 �en, FLAST
searches for the set Ns of k tests that are closer to t according to the cosine distance of their vector representations
(Line 1); we look for the neighbors via a naive linear search, but the same operation could be done using other techniques.
�e �akiness and non-�akiness measures of s , i.e., ϕs andψs (Lines 2-3), are computed as a function of the neighborhood
of s , weighting the nature of each neighbor by the inverse of its cosine distance to s . Test s is predicted to be �aky if
ϕs

ϕs+ψs
> σ , for some threshold σ ∈ [0, 1], and to be non-�aky otherwise (Lines 4-5); using ϕs andψs we emphasize the

similarity between s and its �aky/non-�aky neighbors, rather than their sole number.

Precision tuning. �e threshold parameter σ in Algorithm 1 has been introduced to make the approach more �exible,
and in particular to be able to trade-o� the precision of FLAST against its recall. Precisely, with reference to Algorithm 1
(Line 4), σ = 0.5 corresponds to using no threshold, i.e., we predict a test s as �aky if ϕs > ψs . Using instead values of σ
higher than 0.5 corresponds to requiring higher con�dence in predicting a test as �aky, i.e., to higher precision values.
�is increase in precision is obtained though at the cost of a lower recall.

4 EVALUATION

We aim at evaluating the e�ectiveness and e�ciency of FLAST as an approach for predicting test �akiness. In this
section we describe the research questions, the methodology we followed to answer them, and the experimental se�ing.

4.1 Research questions

�e �rst obvious question is whether FLAST is actually able to detect �aky tests, so we ask:

RQ1: How e�ective is FLAST in predicting test �akiness?
5Potential new tokens of s w.r.t. those of T do not a�ect the distance computation a�er the random projection. �e new tokens (say they arem) would
change the random projection matrix and the vectors in T should be re-projected from the “augmented” (n +m)-dimensional space; however, the new
matrix would map the vectors inT onto the same space they are currently projected on, since the components in the augmented space relative to the new
tokens of s would be 0.

6

As prediction relies on similarity, we also inquire how large a training sample of known �aky and non-�aky tests would
FLAST need, i.e.:

RQ2: How does FLAST e�ectiveness vary with the size of the training sample?

For practical adoption we need also to evaluate the costs of FLAST, but evaluating actual costs of pu�ing it in production
is a very complex task. As a �rst step we ask:

RQ3: How e�cient is FLAST in terms of training time, prediction time, and storage overhead?

Finally, it is also important to evaluate FLAST in comparison with other existing approaches, so we also investigate:

RQ4: How does FLAST compare with other state-of-the-art techniques?

4.2 Evaluation methodology

To answer RQ1. We measure Precision P and Recall R, de�ned as:

P =
TP

TP + FP
, R =

TP

TP + FN
,

whereTP , FP , and FN respectively denote true positive, false positive, and false negative predictions. We will also derive
Confusion Matrices, which allow us to look in detail at the absolute numbers and percentages of FPs (which for a
�akiness predictor we would like to keep limited). We infer such metrics through Strati�ed 10-fold Cross Validation, a
standard procedure for validating ML methods [19]. �e dataset is split into 10 folds, each used once as the test set while
the remaining 9 folds are used as the train set. Strati�cation, instead, ensures that each fold is a good representative of
the original dataset by preserving the proportion of �aky tests and reducing both bias and variance of the classi�er [19].

To answer RQ2. We use the same metrics de�ned for RQ1, but considering di�erent sizes of the training set, ranging
from 10% to 90% (with a step size of 5%) of the size of the dataset. Di�erently from RQ1, here we use Strati�ed Shu�e
Split with 10 splits, an alternative to k-fold Cross Validation that allows a �ner control on the train/test split. In fact,
this validation strategy allows us to specify the train set size.

To answer RQ3. Wemeasure the training time (time to vectorize the tests in the train set and to build the data structure
containing them), the prediction time (time to vectorize a new test, query the data structure for the k nearest neighbors,
and predict its nature) and storage overhead (of the “trained model,” i.e., of the data structure to be stored on disk a�er
the training phase).

To answer RQ4. As described in Section 2, our search of literature identi�ed seven approaches [4, 16, 18, 22, 31, 39, 43]
as competing approaches. Performing an empirical comparison of FLAST against those entails a cumbersome and time
consuming process, which would not lead to meaningful results, due to the drastic di�erent nature of the approaches,
especially if we consider: i) their scopes (FLAST is applied to every test case, whereas some of the approaches are
applied to only a test subset, e.g., those that failed, and some can only identify speci�c types of �akiness), and ii) the
required inputs and utilized resources (e.g., FLAST exclusively relies on test source code, while other approaches also
require additional information, such as manual input provided by experts [18, 43]). Hence, to answer RQ4, we leverage
a qualitative methodology, carried out by eliciting a set of prominent characteristics of �aky test detection approaches.
In addition, we also compare our approach against a Random Classi�er.

7

4.3 Experimental se�ing

Evaluation dataset. In order to answer RQ1, RQ2, and RQ3, we leverage an experimental dataset encompassing over
300 real-life �aky tests belonging to 13 distinct so�ware projects. �is dataset is obtained by combining �aky tests
datasets that are publicly available [4, 22], and by selecting those projects that contain enough data for training FLAST:
precisely we include in our dataset all the projects that contain at least 7 �aky tests.6

Given that all included projects are Java-based, in our evaluation we consider a “�aky test” to be a “Java method.”
Nevertheless, we remark that FLAST only leverages the syntactical structure of the test and would work out of the box
for any programming language and considering any ad hoc structure as �aky test, e.g., function calls, test classes, or
other arbitrary substructures.

Note that we purposely decided not to manipulate the input data, e.g., we did not exclude comments, as they are
exclusively the original ones wri�en by developers and not added by researchers a posteriori, re�ecting the real-world
nature of our experimental subjects. We also conducted an inspection of the test code, to check whether any labelling
leakage could occur that might impact the study, for example if testers had marked the tests with any keyword or
comment that speci�cally indicated �akiness. However, no relevant labeling-leakage to report was observed in the
developers’ comments. Additionally, due to the high dimensionality of the space in which text cases are embedded, i.e.,
the global number of tokens per project, the impact of single labels is very limited, being close to null.

�e usage of two di�erent existing and already used datasets allows us to e�ciently gather a large amount of data
for experimentation, while ensuring data heterogeneity and high-quality (as all considered datasets are published in
prominent, high-quality venues, and hence underwent a scrupulous peer-review scrutiny). In rigorous terms, no ground
truth would exist for evaluating FLAST or similar approaches, because we can never know with certainty that a test is
non-�aky. While acknowledging this issue, we deem our selection of the existing datasets a sound experimental design
choice, as both datasets adopted the rerunning approach to identify �aky tests (and in [4] also an additional manual
inspection is carried out). To date such approach is, to the best of our knowledge, the de facto most precise approach to
generate a ground truth of �aky tests. Nevertheless, in order to mitigate potential fallacies which could, regardless of
their origin and quality, a�ect the accuracy of the used dataset, in Section 5 we report our results by adopting di�erent
levels of granularity (namely project-level, dataset-level, and aggregated-level). �is allows to separately inspect results
across di�erent sources of data, leading to �ner-gained result evaluation w.r.t. adopting a single dataset, or exclusively
aggregating results.

Replication package. �e entirety of the so�ware projects included in our dataset is hosted on GitHub.7 In the
original dataset each �aky method is mapped to a unique commit hash,8 a classpath, and a method name. We use this
information by performing the following steps: i) checking out the version of the so�ware projects where �aky tests
are present, ii) identifying the �aky methods via their given classpath and method name, iii) parsing the �aky methods
and storing each one in a separate �le for subsequent analysis, and iv) parsing and storing the remaining methods of
the classes present in the test suites (which by exclusion are assumed as non-�aky). An overview of the data selected
from each original dataset is provided in Table 1.

6Due to space constraints, the list of all projects considered, as well as the comprehensive list of �aky classes, �aky methods, commit hashes, and the
entirety of the source code utilized as data in our experiments, is made available in our replication package.
7h�ps://github.com/FlakyFAST/FLAST
8As FLAST does not require historical data, if a �aky method is associated to more than one commit hash in the original dataset, only the most recent
hash is considered.

8

https://github.com/FlakyFAST/FLAST

Table 1. Overview of the evaluation datasets

Source #Projects #Flaky Methods (SLOC) #Total Methods (SLOC)

iDFlakies [22] 9 258 (4,824) 3,705 (52,023)
DeFlaker [4] 4 57 (891) 3,429 (36,079)

All 13 315 (5,715) 7,134 (88,102)

�reshold σ . As introduced, FLAST can be tuned to work in less or more conservative way by se�ing a lower or
higher value for the threshold σ ∈ [0, 1]. We run all experiments under two scenarios: σ = 0.5 and σ = 0.95. As said,
the former scenario corresponds to using no threshold, i.e., we predict a test s is �aky if ϕs > ψs ; the la�er puts a high
threshold so that a test s is predicted as �aky only when we are highly con�dent. We expect that the second scenario
will predict less �aky tests, but with higher precision than the �rst one (and hence less false positives). Contrariwise,
for the σ = 0.5 scenario we expect higher recall.

Hardware. All experiments were run on a 2015 MacBook Pro with a 2.7 GHz Intel Core i5 processor, 8 GB 1867 Mhz
DDR3 memory, running macOS Mojave 10.14.6.

�alitative comparison. To answer RQ4, we elicited a set of features that we consider relevant in choosing an approach
for �aky test prediction: these features were derived by consensus among the authors, and are quickly described below:

• Analysis type: Possible values are Static (no test execution needed) or Dynamic (test must be executed at least
once).

• SUT coverage: Possible values are YES (approach uses SUT coverage reports) or NO otherwise.
• Flakiness type: Possible values are Generic (approach targets any type of �aky test) or Speci�c (only some

speci�c types of �akiness can be detected).
• Scope: Possible values are All (approach is applied to all tests) or Subset (only a part of tests is analyzed).
• Action type: Possible values are Proactive (approach actively searches for �aky tests) or Reactive (approach is

invoked only in reaction to transitions).
• Expert knowledge: Possible values are YES (approach needs expert consultancy) or NO otherwise.
• Train set: Possible values are YES (approach needs to be trained on a set of known �aky tests) or NO otherwise.
• Precision: Provide where available (or n.a. otherwise) the precision results obtained by the approach authors.
• Overhead: Provide where available (or n.a. otherwise) the overhead estimations claimed by the approach

authors.

With regard to precision and overhead, we warn that the reported values may not be comparable among each
other, as they were obtained under di�erent experimental conditions. �ese features constitute the columns of Table 3
discussed in Section 5.4.

5 RESULTS

We report below the results obtained to answer the four RQs and then discuss potential threats to validity.

5.1 [RQ1] How e�ective is FLAST in predicting test flakiness?

�e box plots of Figure 2 show the distribution of precision and recall values obtained by FLAST when applied over the
evaluation datasets. For these metrics, the higher the result (reported in the vertical axis), the be�er. �e performance

9

results are presented on the union of the two datasets (“All”), and also by dataset. For each metric displayed (Precision
or Recall), the le� (blue) box refers to the results for the scenario with threshold σ = 0.5, while the right (orange)
box refers to the scenario with threshold σ = 0.95. A detailed breakdown of precision and recall values per threshold
and per project is available in Table 2. �e number of �aky methods and total number of methods per project is also
available from the same table, Columns 2 and 3, respectively.

All iDFlakies dataset DeFlaker dataset

Precision Recall Precision Recall Precision Recall

0.00

0.25

0.50

0.75

1.00

σ 0.5 0.95

Fig. 2. FLAST e�ectiveness over the evaluation datasets

Table 2. Experimental measurements of FLAST e�ectiveness and e�iciency

Dataset #Flaky #Methods Precision Recall Precision Recall Train Predict Storage
σ = 0.5 σ = 0.95 (s) (ms) (KB)

activiti [22] 20 53 0.88 0.95 1.00 0.80 0.06 1.55 181.58
apache-hadoop [22] 68 1,121 0.94 0.52 1.00 0.17 0.59 0.72 3,306.22
apache-incubator-dubbo [22] 21 507 0.57 0.35 - 0.00 0.25 0.66 1,450.07
elastic-job-lite [22] 10 785 - 0.00 - 0.00 0.33 0.61 2,095.35
handlebars [4] 7 530 1.00 1.00 - 0.00 0.27 0.67 1,405.26
h�p-request [22] 28 168 1.00 0.87 1.00 0.73 0.11 0.84 756.45
java-websocket [22] 52 488 0.81 0.96 0.98 0.67 0.23 0.62 1,598.06
logback [4] 11 1,052 0.57 0.90 1.00 0.40 0.51 0.67 2,298.47
okh�p [4] 32 1,231 0.83 0.78 0.00 0.00 0.67 0.76 3,570.17
retro�t [22] 9 424 0.11 0.11 - 0.00 0.17 0.53 1,875.80
tachyon [4] 7 616 1.00 0.29 - 0.00 0.34 0.71 2,052.89
vertx-rabbitmq-client [22] 7 44 - 0.00 - 0.00 0.06 1.80 145.58
wild�y [22] 43 115 0.83 0.78 1.00 0.12 0.08 0.95 409.41

Mean [22] 28.67 411.67 0.73 0.50 1.00 0.28 0.21 0.92 1,313.17
Median [22] 21.00 424.00 0.83 0.52 1.00 0.12 0.17 0.72 1,450.07

Mean [4] 14.25 857.25 0.85 0.74 0.50 0.10 0.45 0.70 2,331.70
Median [4] 9.00 834.00 0.92 0.84 0.50 0.00 0.43 0.69 2,175.68

Mean (All) 24.23 548.77 0.78 0.58 0.85 0.22 0.28 0.85 1,626.56
Median (All) 20.00 507.00 0.83 0.78 1.00 0.00 0.25 0.71 1,598.06

�e value σ is the threshold used by FLAST (see Algorithm 1, Line 4). �e values reported in the table are mean values of the 10-Fold Cross Validation.
Precision values equal to “-” mean that the metric is unde�ned, i.e., FLAST did not predict any test as �aky, and also imply 0.00 Recall values.

When considering the consolidated results (“All”) for the less conservative scenario (σ = 0.5), an overall average
precision of ∼0.78 was obtained, i.e., when FLAST classi�ed a test as �aky it got it right ∼78% of the times. When

10

we increase the threshold to σ = 0.95, thus making FLAST behave in a more conservative way, the overall average
precision increases to ∼0.85. Similar results were observed when considering the iDFlakies dataset individually. For the
DeFlaker dataset, however, the precision actually decreased when FLAST became more conservative; this unexpected
result could be due to the very small number of �aky tests in this dataset.

Regarding recall, instead, FLAST achieved an overall average of ∼0.58, i.e., FLAST correctly identi�ed ∼58% of the
�aky tests, when using a threshold σ = 0.5. While similar results were obtained when considering only the iDFlakies
dataset (∼0.5 recall), a signi�cantly higher recall is obtained in DeFlaker dataset, reaching ∼0.74. When increasing the
threshold to σ = 0.95, we observe a tradeo� between precision and recall: as expected, the former increases while the
la�er decreases. Indeed, the overall average recall decreases to ∼0.22 and, in detail, to ∼0.28 for iDFlakies dataset and
to ∼0.10 for DeFlaker dataset. Note that these low mean (and, specially, median) recall values, besides to the more
conservative behavior of FLAST using threshold σ = 0.95, are due also to the fact that many projects contain only few
�aky tests. Indeed, in 6 out of the 7 projects in which FLAST got 0.00 recall, FLAST did not predict any test as �aky, i.e.,
obtained unde�ned precision (equal to “-” in Table 2) and, thus, 0.00 recall (since the number of true positive is 0); we
also note that 5 out of the same 7 projects are those with the lowest number of �aky tests in the dataset (always less
than or equal to 10 �aky tests). It is unsurprising that the high level of conservativeness due to the threshold σ = 0.95
together with the low number of �aky tests on which FLAST is trained make predicting a test as �aky very unlikely.

 Flaky Non-Flaky

 True

 Flaky

 Non-Flaky

 P
re

di
ct

ed
 0.82 0.18

0.02 0.98

0.0

0.2

0.4

0.6

0.8

1.0 Flaky Non-Flaky

 True

 Flaky

 Non-Flaky

 P
re

di
ct

ed
 0.74 0.26

0.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0 Flaky Non-Flaky

 True

 Flaky

 Non-Flaky
 P

re
di

ct
ed

 0.79 0.21

0.01 0.99

0.0

0.2

0.4

0.6

0.8

1.0

 Flaky Non-Flaky

 True

 Flaky

 Non-Flaky

 P
re

di
ct

ed
 0.99 0.01

0.04 0.96

0.0

0.2

0.4

0.6

0.8

1.0 Flaky Non-Flaky

 True

 Flaky

 Non-Flaky

 P
re

di
ct

ed
 0.77 0.23

0.02 0.98

0.0

0.2

0.4

0.6

0.8

1.0 Flaky Non-Flaky

 True

 Flaky

 Non-Flaky

 P
re

di
ct

ed
 0.96 0.04

0.03 0.97

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Confusion matrices from experimental results of FLAST, grouped by datasets and overall, with normalized values in each cell.
Le� pair: iDFlakies; central pair: DeFlaker; right pair: overall. Top line (blue): σ = 0.5; bo�om line (orange): σ = 0.95.

�e confusion matrices displayed in Figure 3 provide a detailed analysis of the performance of FLAST for each class
(�aky or non-�aky) individually. �ey show us the ways in which FLAST is “confused” when it makes predictions. �is
is an important aspect to be taken into account, specially for imbalanced problems like ours. A �aky test correctly
classi�ed as �aky by FLAST is counted as a true positive (top le�), whereas if it is classi�ed as non-�aky it is counted
as a false negative (bo�om le�). Analogously, if a non-�aky test is correctly classi�ed as non-�aky it is counted as a

11

true negative (bo�om right), whereas it counts as a false positive (top right) if it is incorrectly classi�ed as �aky. False
positives (FPs) and false negatives (FNs) are sometimes referred to as Type I and Type II Errors [34]. Commi�ing a
Type I Error is critical if tests predicted as �aky are sent back to developers for manual analysis and repair, as this could
waste developer’s time looking for �akiness in a test that is actually non-�aky [16]. Ideally, in such a case we would
like to have maximum precision even if this comes at the expense of a diminished recall. Conversely, we could envisage
a di�erent scenario in which FLAST results are sent to a tool, e.g., for test prioritization or for performing a dynamic
analysis. In this case we might prefer to trade-o� between Precision and Recall, containing also Type II Errors.

From Figure 3 we can see clearly that by increasing the threshold from σ = 0.5 to σ = 0.95, the percentage of TPs9

considering all data (lower pair) improves from 0.79 to 0.96, implying that the percentage of FPs goes from 0.21 down to
0.04; similar improvements can be observed for each speci�c dataset. Looking at the absolute numbers we can notice
that FLAST is more conservative in classifying a test as �aky. An improved precision comes at the cost of missing many
more �aky tests (reduced recall); such missed �aky test can still be detected using a traditional rerunning strategy.

5.2 [RQ2] How does FLAST e�ectiveness vary with the size of the train sample?

Figure 4 shows the precision and recall values achieved by FLAST for di�erent training sample sizes. �e x-axis displays
the proportion of samples used for training, while the y-axis reports the score achieved by each metric. �e lines for
the threshold σ = 0.5 are in blue and those for the threshold σ = 0.95 are in orange. Precision is represented by the
solid lines, while recall is illustrated by the dashed lines.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Training sample size

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on
an

d
R

ec
al

l

(σ = 0.50) Precision

(σ = 0.50) Recall

(σ = 0.95) Precision

(σ = 0.95) Recall

Fig. 4. FLAST e�ectiveness for di�erent training set sizes

One common trend observed for both thresholds is that, for training samples greater than 0.2, precision seems to be
almost stable across the di�erent training sample sizes, while recall tends to improve as we increase the amount of
samples used for training. With the exception of the training sample equal to 0.15, FLAST with σ = 0.95 is more precise
than its less conservative version for all the sizes of training sample considered. On the other hand, its recall is much
9It may be worth noticing that this percentage is calculated by cumulating TPs and FPs across all projects and weighting them by the size of the
corresponding test suites. It would correspond to a weighted “cumulative” Precision value, which di�ers from the Precision values of Table 2, obtained as
the Mean and Median of Precision values of the projects. With such weighted average FLAST’s performance is not over-represented on projects with
many tests and under-represented on projects with fewer tests.

12

lower than that of FLAST with σ = 0.5. �at is an expected behavior due to the unavoidable tradeo� between precision
and recall: improving one metric correlates with poorer performance of the other [8].

While Figure 4 is important to give us some hints that the precision of FLAST is not strongly a�ected by training
sample size (at least not as much as recall), to get an intuition about the number of already-labeled test cases required
to make FLAST work with high precision rates (above 90%), we need to look closely at the data. We observe that for
4 subjects10 FLAST (σ = 0.5) is able to train the model with less than 100 test cases (average = 50) and achieves the
maximum precision of 1.0 while predicting the nature of 2,422 tests. Maximum precision while training the model with
less than 100 test cases was also observed when adopting σ = 0.95, but for 3 subjects11 instead of 4. Looking from a
di�erent perspective, for 3 subjects12 FLAST (σ = 0.95) achieved precision rates above 90% with 10 or less test cases
labeled as �aky in the training set.

5.3 [RQ3] How e�icient is FLAST in terms of training time, prediction time, and storage overhead?

�e experiments were run using a naive brute force algorithm to �nd the k nearest neighbors. �is approach looks for
the k nearest neighbors in a linear fashion and has a cost of O(|T |) (considering k constant, as in our experiments) to
predict the nature of a test s < T . As can be observed in Table 2, this strategy can be considered e�cient for the projects
considered in the experiments, resulting in an average train time and prediction time respectively under one second
and one millisecond, and an average storage overhead of roughly 1.6 MB (with an average project size of ∼550 test
methods).

�e Nearest Neighbor problem, in general, can be also approached in other ways, e.g., with the use of space
partitioning data structures such as kd-tree [6] and balltree [33] or in an approximate way using techniques such as
Locality Sensitive Hashing [25], that could be of interest to further speed up the computation of the nearest neighbor
search. Space-partitioning data structures, though, are not suitable for e�ciently �nding the nearest neighbors in very
high dimensional spaces, as the one induced by a bag-of-word representation of test source code. To use such data
structures we should have the dimensionality d � |T |, which is unlikely also with test suites consisting of millions of
methods unless drastically reducing the dimensionality of the space at the cost of weakening the distance approximation
guarantees of the Johnson��Lindenstrauss Lemma [17]. Approximate nearest neighbor search, instead, would allow
for a sublinear search time, but ge�ing approximate results which are not ideal in our se�ing where e�ectiveness is
more important than e�ciency, and e�ciency is not really a issue.

5.4 [RQ4] How does FLAST compare with other state-of-the-art techniques?

In Table 3 we show our classi�cation of the seven identi�ed competing approaches (listed in 1st column) along the
dimensions introduced in Section 4.3; the last row classi�es FLAST. Four approaches are dynamic and three are static
as is ours (2nd column). Only one approach, viz. DeFlaker, relies on coverage reports (3rd column): indeed, collecting
coverage may be quite costly in CI practice [15] and because of this DeFlaker itself proposes a lightweight technique.
Two of the approaches, viz. NonDex and Pa�ern Search, can only detect some speci�c types of �aky tests (4th column),
because, as reported in the table notes (d) and (e), they rely on pre-determined causes of �akiness. Concerning the
approach based on learning Association Rules, this actually targets false test alarms which are a superset of �akiness.
Not all approaches are applied to every test case, as we do (5th column); Rerun, DeFlaker, iDFlakies, and Association

10�e 4 subjects are: elastic-job-lite [22], h�p-request [22], logback [4], and tachyon [4].
11�e 3 subjects are: activiti [22], h�p-request [22], and wild�y [22].
12�e 3 subjects are: activiti [22], h�p-request [22], and logback [4].

13

Table 3. �alitative comparison among existing flakiness detection techniques

Approach Analysis SUT Flakiness Scope Action Expert Train set Precision Overhead
type Coverage type type knowledge (time)

Rerun [30] Dynamic No Generic Subset Reactive No No n.a. 600+% [3]
DeFlaker [4] Dynamic Yes(a) Generic Subset Proactive No No 0.94(b) 4.6%
iDFlakies [22] Dynamic No Generic Subset Proactive No No n.a. Pre-set
NonDex [39] Dynamic No Speci�c(c) All Proactive Yes Yes n.a. n.a.
Association Rules [16] Static No Generic(f) Subset Reactive No Yes 0.85÷0.90 n.a.
Pa�ern Search [43] Static No Speci�c(d) All Proactive Yes Yes 1(e) ∼90 sec
Bayesian Network [18] Static No Generic All Proactive Yes Yes n.a. n.a.

FLAST Static No Generic All Proactive No Yes 0.78÷0.85(g) < 1 sec(h)

Notes: (a) di�erential coverage; (b) precision computed over new failures; (c) �akiness due to ADINS (Assumes a Deterministic Implementation of a
Non-deterministic Speci�cation) code; (d) timing dependency (one among several test code faults targeted); (e) precision over a random sample manually
analyzed; (f) look for false test alarms, which are a superset of �aky tests; (g) Mean values with σ = 0.5 and σ = 0.95; (h) time for training over a set of
∼550 tests.

Rules analyze test cases based on their outcome, thus they can lose valuable time before detecting �akiness and also
could possibly miss �aky tests if they do not fail or pass as expected in the observation window. Almost all approaches,
but Rerun and Association Rules, take action in proactive way for detecting �aky tests (6th column). A critical feature is
whether an approach is fully automated, or otherwise it requires manual e�ort for customization/preparation. �e
la�er is the case for three approaches, viz. NonDex, Pa�ern Search, and Bayesian Network (7th column), and clearly
may heavily a�ect their practical adoption. In contrast FLAST, as Rerun, DeFlaker, iDFlakies, and Association Rules,
does not require any human consultancy. More than half of the approaches requires a training phase, as does FLAST
(8th column).

Based on the above classi�cation, the approach most similar to FLAST is the one leveraging Bayesian networks,
which shares with ours six features (static, no coverage, generic, whole scope, proactive, and training set), but it di�ers
for an important aspect that is expert knowledge (needed to build the Bayesian network).

Concerning precision and overhead (9th and 10th columns), we recall that in Table 3 we report the results obtained
by the authors in their experiments, which could not be comparable one with another. Actually, several of the referred
studies did not provide values of precision or overhead (the corresponding cells are labeled as n.a.). In some works
varying precision values are observed and we report their range as min÷max. Concerning overhead time, please note
that the column shows di�erent units (% of test suite execution time vs seconds) across rows: this re�ects faithfully the
results reported by authors of referred works. Going in detail, Rerun is not actually a strategy, as various rerunning
con�gurations could be adopted. According to studies in [3, 4], this basic approach is very costly and predicts varying
numbers of �aky tests, depending on the conditions under which a test is rerun. For DeFlaker, the authors do not give
precision but report TPs and FPs from which we computed an average precision of 0.94 (note that their study covered
new failures); they report a time overhead of 4.6% (considering the coverage computation). For iDFlakies and NonDex
the authors conducted extensive studies, but using subjects for which ground truth of �aky tests was not available, so
precision cannot be computed. In iDFlakies the time overhead can be �xed a priori by the user. �e approach leveraging
Pa�ern Search makes an evaluation study by randomly sampling tests classi�ed as �aky and ascertaining that they are
all correctly classi�ed (which is why we reported precision 1). Finally the Association Rules approach claims a precision
of 0.85 and 0.90 over two di�erent projects.

14

Table 4. Standardized Accuracy of FLAST (σ = 0.5 and σ = 0.95) vs Random Guess (q = 0.16 and q = 0.5)

Source (σ , q) = (0.5, 0.16) (σ , q) = (0.5, 0.5) (σ , q) = (0.95, 0.16) (σ , q) = (0.95, 0.5)
iDFlakies [22] 0.84 0.93 0.80 0.91
DeFlaker [4] 0.95 0.98 0.90 0.97

All 0.89 0.95 0.85 0.93

Comparison with random classi�er. A simple competitor that could be considered as an alternative to FLAST, since it
could be used in the exact same se�ing, is a random classi�er, that we denote as Random Guess. LetT be a test suite and
let F ⊆ T be the set of �aky tests in T . Random Guess is a simple approach that, given a test t , predicts t as �aky with
some probability q, independently for each prediction. �e expected values of Precision and Recall of Random Guess
can be mathematically computed. Indeed, the expected Precision and Recall would be

E[P] =
q · |F |

q · |F | + q · (|T | − |F |)
=
|F |

|T |
, E[R] =

q · |F |

q · |F | + (1 − q) · |F | = q.

�e previous formulations mean that the Precision of Random Guess would be around to the fraction of �aky tests in
T , independently of the choice of the parameter q used for the classi�er, while the Recall of Random Guess would be
around the probability q. �erefore the best choice for q, i.e., in order to maximize both Precision and Recall, would be
to set q = 1, thus having a dummy classi�er that predicts each test as �aky. �e Standardized Accuracy (SA) [23, 37]
is a measure that compares the accuracy of a classi�cation technique with the accuracy of a random classi�er. It is
de�ned as

SA = 1 − MAR
MARP0

,

whereMAR andMARP0 are respectively the Mean Absolute Residuals of the classi�er under investigation (FLAST, in
our case) and of a random classi�er. Note that SA ∈ (−∞, 1]. �e closer the metrics is to 1, the be�er the accuracy of
the classi�er; a value close to 0 indicates results similar to random classi�cation; negative results, instead, mean that
random classi�cation performs be�er. In the case of binary classi�cation tasks, the Mean Absolute Residuals simply
reduces to the fraction of wrongly classi�ed inputs, i.e.,

MAR = FP + FN
|T |

.

Instead of computing the Mean Absolute Residual of the random classi�er MARP0 through experiments, we will use its
expected value, i.e.,

E
[
MARP0

]
=

q · (|T | − |F |) + (1 − q) · |F |
|T |

.

Table 4 illustrates the SA obtained by FLAST in both its version with threshold σ = 0.5 and σ = 0.95. We considered
two random classi�er as baseline competitors: the �rst predicts a test as �aky with probability q = 0.5, i.e., it is unbiased;
the second, instead, has a probability q = 0.16 of predicting a test as �aky, i.e., it has a bias, considering the information
that 16% of tests are �aky, as in Google [30]. In all four considered cases we can observe that the SA of FLAST is always
higher that 0.80, meaning that FLAST outperforms the random classi�er we considered as baseline for the SA.

5.5 Threats to validity

Despite our best e�orts, our results might still be mined by threats to validity. We consider four types of threats [44].
15

Construct validity. If our empirical experimentation is appropriate to answer the RQs. From di�erent perspectives,
RQ1 and RQ2 aim at evaluating FLAST e�ectiveness in predicting �akiness. In doing this, a potential threat could
be choosing wrong metrics that do not properly represent FLAST prediction capability; for example classi�ers are
typically evaluated by Accuracy, i.e., the ratio between the number of correct predictions and the total number of
predictions. In our case though this measure would be misleading, as due to the high proportion of non-�aky tests, it
would always provide values close to 1. To prevent this threat, we selected the metrics to use a�er carefully considering
the scope of FLAST, and for the same reason we make available the confusion matrices that provide the full view
of prediction results. Another potential threat would be to adopt a misleading validation procedure: to prevent this
risk we applied well-known rigorous validations strategies (such as Strati�ed 10-Fold Cross Validation, and Strati�ed
Shu�e Split with 10 splits). In RQ3 we aim at evaluating FLAST cost: such a study may su�er from many threats, in
particular the use of FLAST could be subject to many costs that are hidden or di�cult to assess, so that any a�empt to
evaluate such costs in a laboratory study could be unrealistic. A proper assessment can only be done by pu�ing FLAST
in actual production. In this paper we could not deal with this threat, and rather opted to limit the evaluation to directly
measurable overheads metrics in terms of execution time and storage requirements. In RQ4, we aim at comparing the
performance of FLAST against that of competing approaches. However, the risk of se�ing an experiment to compare
approaches that are actually not comparable against each other is high because, as we explained in Section 4.2, the
other existing approaches assume di�erent input information and use di�erent resources. To prevent this threat, we
only performed a qualitative comparison over a set of more prominent aspects of the di�erent techniques.

Internal validity. If the observed results are a�ected by factors di�erent from the treatments. A common internal
validity threat lays in the selection of experimental subjects, which we mitigate by gathering data from two robust
datasets available in the literature [4, 22]. In order to provide a transparent report of the results gathered, we document
the results at distinct levels of granularity, namely: project-level, dataset-level, and aggregated-level. �is allows for the
independent inspection and comparison of results across the di�erent experimental subjects used. �e results of the
gathered measurements of FLAST e�ciency and e�ectiveness result to be consistent across the two independent data
sources considered, we can assume that potential threats originating from the adoption of a single source of ground
truth were reasonably mitigated. Similarly to the above mentioned point, a potential threat descends from trusting
such datasets and using them as the ground truth for evaluating FLAST e�ectiveness. Indeed, if the labeling as �aky
or not-�aky were wrong, we might over-estimate or under-estimate FLAST e�ectiveness. If such a threat occurs, we
consider that it is most likely that our results might be biased against FLAST, in that as the approaches used in [4, 22]
are dynamic, it is more likely that a �aky test is not recognized as such (because by rerunning a test it continues to fail)
rather than the vice versa.

Other threats may be relative to the parameters set in the application of used algorithms and the accuracy of the
measurements themselves: this is mitigated by the application of rigorous ad-hoc validation strategies best suited to
answer our research questions.

External validity. If, and to what extent, the observed results can be generalized. Our experiments are in line with
similar ones present in literature. Additionally, we use for experimentation projects belonging to the two only datasets
which, to the best of our knowledge, are currently available. As FLAST does not leverage programming language
semantics, we do not expect results to drastically vary by considering non-Java subjects. Notwithstanding, from current
observations we cannot draw general conclusions, and more experimentation is needed.

16

Reliability. If, and to what extent, observations can be reproduced by other researchers. To ensure reproducibility, as
said we make available all data and se�ings related information.

6 USING FLAST IN A CONTINUOUS INTEGRATION ENVIRONMENT

Our results show that FLAST is a simple yet powerful approach for �akiness prediction. �anks to the simplicity and
high-level of abstraction that characterize FLAST functioning, it can be easily and seamlessly adopted in a wide range
of industrial and research contexts. Nevertheless, due to its fast and static nature, FLAST results to be exceptionally
well suited to be integrated in CI, and in the reminder of this section, we discuss some prominent implications.

Application scenarios. As detailed in Section 3, FLAST can be customized by se�ing an ad-hoc threshold. �is
threshold embodies the tradeo� between precision and recall of our approach, and can be set to best �t the context in
which FLAST is applied. Among others, two main application scenarios can be envisioned.

�e �rst application scenario envisages FLAST feedback to be sent back to the test creator, or anyhow to developers,
to be directly acted upon via their manual intervention. In this case, it is crucial to ensure the high precision of the
approach, as the manual inspection of the output is a costly process and, ultimately, it is also important to ensure
the trust of developers in the results of the approach. Under these circumstances, a more conservative threshold (e.g.,
σ = 0.95) can be utilized, sacri�cing recall for the sake of a higher precision of the test �akiness prediction.

In a second application scenario, the output of FLAST is processed automatically, e.g., to re�ne test case prioritization
processes or to determine on an ad-hoc basis the number of reruns required to verify if the �aky prediction is true.
Given the lower cost of processing false positives under these circumstances, a more encompassing threshold (e.g.,
σ = 0.5) can be adopted, so that more �aky tests can be early detected.

In addition to these two main application scenarios, FLAST can also be applied in an adaptive way, i.e., with the ability
to automatically adjust the threshold based on its past precision. For example, it can start with a more conservative
threshold when it is �rst deployed in the environment, and then, if the precision rates are above some user-de�ned
target, it can relax the threshold a bit in the a�empt of reducing the number of false negatives. From time to time
FLAST can reevaluate the need to adjust the threshold to maintain its performance within the accepted precision level.

Approaches combination. Even though we showed that its precision is high, FLAST is not intended as an alternative
to dynamic approaches (e.g., [4, 22]). FLAST predicts if a test is �aky, based on a preexisting ground truth on �aky
tests. Dynamic approaches are instead able to detect test �akiness by concretely rerunning failing test cases. Our vision
is that FLAST provides a remarkably fast, low-cost, and reliable approach to be used in combination with dynamic
approaches to alleviate the cost of the la�er. By predicting with negligible overhead and already at commit time, if a
new test is prone to be �aky, FLAST can drastically decrease the percentage of �aky tests that go to the testing stages
and hence reduce the many negative impacts of this problem on the development process.

Feedback to developers. �e underlying hypothesis on which FLAST is based, i.e., that �aky tests present similar
traits, allows the straightforward conversion of data generated by the approach into feedback for developers. In
fact, in addition to the precision with which a test is predicted as �aky, it is also possible to provide developers with
useful information to support them in �xing �aky tests. For instance, if a test is predicted as �aky, it is possible to
instantaneously retrieve examples of similar tests �agged as �aky in the past and, if historical commit data is available,
this information can be leveraged to suggest �xes based on how those similar �aky tests were �xed. In the above
perspective, we speculate that in the long term using an approach like FLAST can act as a learning-in-the-�eld tool and

17

will progressively educate developers to recognize typical code pa�erns and errors that cause �akiness and hence to
write more stable tests.

7 CONCLUSIONS

Following the mo�o know your neighbor we proposed a novel approach to predict �aky tests by leveraging test code
similarity: test methods whose code is neighbor to that of known �aky tests will also very likely expose �akiness.
FLAST has shown to be an e�ective predictor and to impose very low –actually negligible– time and storage overhead.
More importantly, �aky tests can be detected in fully automated way even before they are executed: they can be taken
care of before being commi�ed into the test repository, avoiding that testing e�ort is wasted in rerunning failing tests
and code velocity is slowed down waiting for �aky test resolution.

Researchers a�ention on test �akiness is recent. A�er a qualitative comparison of existing approaches, we can
con�dently say that FLAST opens a novel interesting avenue for solving this challenge. Other researchers could propose
even be�er algorithms exploiting test code similarity to prevent a high percentage of �aky tests.

FLAST could be embedded within the adopted IDE or the CI platform, to automatically warn developers against the
risk that a new test case or test method might be �aky. While in this paper we have developed and evaluated FLAST,
we leave it as a future work direction to develop an integrated environment where it is embedded and evaluated.

Although our study showed that the approach can already be used on small train sizes, another challenge we leave
for future work is to devise variants of FLAST acting as more generic predictors that could be used across projects
when a train set is not yet available.

As a �nal remark, FLAST is not to be seen as an alternative to existing dynamic solutions. Rather, we foresee the
greatest advantage in using static and dynamic solutions in mutual synergy: FLAST would �rst prevent many �aky
tests by recognizing potentially �aky test code traits. For �aky tests that pass FLAST �ltering, these can be detected by
dynamic approaches like DeFlaker or even Rerun, but with much less resources. Also this combination of FLAST with
dynamic approaches is an important objective for future work.

ACKNOWLEDGMENTS

�is research has been motivated and partly supported by a Facebook Research 2019 Testing and Veri�cation award.

REFERENCES
[1] Dimitris Achlioptas. 2003. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of computer and System Sciences

66, 4 (2003), 671–687.
[2] Naomi S. Altman. 1992. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. �e American Statistician 46, 3 (1992), 175–185.
[3] Jonathan Bell and Gail Kaiser. 2014. Unit Test Virtualization with VMVM. In Proceedings of the 36th International Conference on So�ware Engineering

(ICSE 2014). ACM, New York, NY, USA, 550–561. DOI:h�p://dx.doi.org/10.1145/2568225.2568248
[4] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and Darko Marinov. 2018. DeFlaker: automatically detecting �aky

tests. In Proceedings of the 40th International Conference on So�ware Engineering. ACM, 433–444.
[5] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven Amann, and Andy Zaidman. 2017. Developer testing in the IDE:

Pa�erns, beliefs, and behavior. IEEE Transactions on So�ware Engineering 45, 3 (2017), 261–284.
[6] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9 (1975), 509–517.
[7] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Sha�. 1999. When is “nearest neighbor” meaningful?. In International conference on

database theory. Springer, 217–235.
[8] Michael Buckland and Fredric Gey. 1994. �e relationship between recall and precision. Journal of the American society for information science 45, 1

(1994), 12–19.
[9] Emilio Cruciani, Breno Miranda, Roberto Verdecchia, and Antonia Bertolino. 2019. Scalable approaches for test suite reduction. In 41st International

Conference on So�ware Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. 419–429. h�ps://dl.acm.org/citation.cfm?id=3339559
18

http://dx.doi.org/10.1145/2568225.2568248
https://dl.acm.org/citation.cfm?id=3339559

[10] Martin Fowler. 2011. Eradicating non-determinism in tests. h�ps://martinfowler.com/articles/nonDeterminism.html. (2011). Accessed: 2019-08-02.
[11] Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical test dependency detection. In 2018 IEEE 11th International Conference on So�ware

Testing, Veri�cation and Validation (ICST). IEEE, 1–11.
[12] Google Testing Blog. 2008. Testing on the Toilet Avoiding Flaky Tests. h�ps://testing.googleblog.com/2008/04/to�-avoiding-�akey-tests.html.

(2008). Accessed: 2019-08-06.
[13] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing: Detecting State-polluting Tests to Prevent Test Dependency.

In Proceedings of the 2015 International Symposium on So�ware Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 223–233. DOI:

h�p://dx.doi.org/10.1145/2771783.2771793
[14] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportunities and open problems for static and dynamic program analysis. In

2018 IEEE 18th International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 1–23.
[15] Kim Herzig. 2016. Let’s assume we had to pay for testing. Keynote at AST 2016. (2016). h�ps://www.kim-herzig.de/2016/06/28/keynote-ast-2016/
[16] KimHerzig and Nachiappan Nagappan. 2015. Empirically Detecting False Test Alarms Using Association Rules. In Proceedings of the 37th International

Conference on So�ware Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 39–48. h�p://dl.acm.org/citation.cfm?id=2819009.2819018
[17] William B Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz mappings into a Hilbert space. Contemporary mathematics 26, 189-206

(1984), 1.
[18] Tariq M King, Dionny Santiago, Justin Phillips, and Peter J Clarke. 2018. Towards a Bayesian Network Model for Predicting Flaky Automated Tests.

In 2018 IEEE International Conference on So�ware �ality, Reliability and Security Companion (QRS-C). IEEE, 100–107.
[19] Ron Kohavi. 1995. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the 14th International

Joint Conference on Arti�cial Intelligence - Volume 2 (IJCAI’95). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1137–1143. h�p:
//dl.acm.org/citation.cfm?id=1643031.1643047

[20] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the Cost of Regression Testing in Practice: A Study of Java Projects
Using Continuous Integration. In Proceedings of the 2017 11th Joint Meeting on Foundations of So�ware Engineering (ESEC/FSE 2017). ACM, New York,
NY, USA, 821–830. DOI:h�p://dx.doi.org/10.1145/3106237.3106288

[21] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh �ummalapenta. 2019. Root Causing Flaky Tests in a Large-scale
Industrial Se�ing. In Proceedings of the 28th ACM SIGSOFT International Symposium on So�ware Testing and Analysis (ISSTA 2019). ACM, New York,
NY, USA, 101–111. DOI:h�p://dx.doi.org/10.1145/3293882.3330570

[22] Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies: A Framework for Detecting and Partially Classifying Flaky Tests. In
2019 12th IEEE Conference on So�ware Testing, Validation and Veri�cation (ICST). IEEE, 312–322.

[23] William B. Langdon, Javier Dolado, Federica Sarro, and Mark Harman. 2016. Exact Mean Absolute Error of Baseline Predictor, MARP0. Information
and So�ware Technology 73 (2016), 16 – 18. DOI:h�p://dx.doi.org/h�ps://doi.org/10.1016/j.infsof.2016.01.003

[24] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John Micco. 2019. Assessing Transition-based Test Selection Algorithms at
Google. In Proceedings of the 41st International Conference on So�ware Engineering: So�ware Engineering in Practice (ICSE-SEIP ’10). IEEE Press,
Piscataway, NJ, USA, 101–110. DOI:h�p://dx.doi.org/10.1109/ICSE-SEIP.2019.00019

[25] Jure Leskovec, Anand Rajaraman, and Je�rey D. Ullman. 2014. Mining of Massive Datasets. Cambridge University Press, New York, NY, USA.
[26] Ping Li, Trevor J Hastie, and Kenneth W Church. 2006. Very sparse random projections. In Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 287–296.
[27] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An Empirical Analysis of Flaky Tests. In Proceedings of the 22Nd

ACM SIGSOFT International Symposium on Foundations of So�ware Engineering (FSE 2014). ACM, New York, NY, USA, 643–653. DOI:h�p:
//dx.doi.org/10.1145/2635868.2635920

[28] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019. Predictive Test Selection. In Proceedings of the 41st International
Conference on So�ware Engineering: So�ware Engineering in Practice (ICSE-SEIP ’10). IEEE Press, Piscataway, NJ, USA, 91–100. DOI:h�p://dx.doi.org/
10.1109/ICSE-SEIP.2019.00018

[29] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski, and John Micco. 2017. Taming Google-scale Continuous
Testing. In Proceedings of the 39th International Conference on So�ware Engineering: So�ware Engineering in Practice Track (SEIP’17). IEEE Press,
Piscataway, NJ, USA, 233–242. DOI:h�p://dx.doi.org/10.1109/ICSE-SEIP.2017.16

[30] John Micco. 2016. Flaky tests at Google and how we mitigate them. h�ps://testing.googleblog.com/2016/05/�aky-tests-at-google-and-how-we.html.
(2016). Accessed: 2019-07-22.

[31] John Micco. 2017. �e State of Continuous Integration Testing @Google. (2017). h�ps://ai.google/research/pubs/pub45880 Accessed: 2019-07-22.
[32] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino. 2018. FAST approaches to scalable similarity-based test case

prioritization. In 40th International Conference on So�ware Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. 222–232. DOI:
h�p://dx.doi.org/10.1145/3180155.3180210

[33] Stephen M Omohundro. 1989. Five balltree construction algorithms. International Computer Science Institute Berkeley.
[34] David Martin Powers. 2011. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. (2011).
[35] Kai Presler-Marshall, Eric Horton, Sarah Heckman, and Kathryn T. Stolee. 2019. Wait Wait. No, Tell Me: Analyzing Selenium Con�guration E�ects

on Test Flakiness. In Proceedings of the 14th International Workshop on Automation of So�ware Test (AST ’19). IEEE Press, Piscataway, NJ, USA, 7–13.

19

https://martinfowler.com/articles/nonDeterminism.html
https://testing.googleblog.com/2008/04/tott-avoiding-flakey-tests.html
http://dx.doi.org/10.1145/2771783.2771793
https://www.kim-herzig.de/2016/06/28/keynote-ast-2016/
http://dl.acm.org/citation.cfm?id=2819009.2819018
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dx.doi.org/10.1145/3106237.3106288
http://dx.doi.org/10.1145/3293882.3330570
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2016.01.003
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00019
http://dx.doi.org/10.1145/2635868.2635920
http://dx.doi.org/10.1145/2635868.2635920
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00018
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00018
http://dx.doi.org/10.1109/ICSE-SEIP.2017.16
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://ai.google/research/pubs/pub45880
http://dx.doi.org/10.1145/3180155.3180210

DOI:h�p://dx.doi.org/10.1109/AST.2019.000-1
[36] Md Tajmilur Rahman and Peter C. Rigby. 2018. �e Impact of Failing, Flaky, and High Failure Tests on the Number of Crash Reports Associated with

Firefox Builds. In Proceedings of the 2018 26th ACM Joint Meeting on European So�ware Engineering Conference and Symposium on the Foundations of
So�ware Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 857–862. DOI:h�p://dx.doi.org/10.1145/3236024.3275529

[37] Martin Shepperd and Steve MacDonell. 2012. Evaluating prediction systems in so�ware project estimation. Information and So�ware Technology 54,
8 (2012), 820 – 827. DOI:h�p://dx.doi.org/h�ps://doi.org/10.1016/j.infsof.2011.12.008 Special Issue: Voice of the Editorial Board.

[38] August Shi, Jonathan Bell, and Darko Marinov. 2019. Mitigating the E�ects of Flaky Tests on Mutation Testing. In Proceedings of the 28th ACM
SIGSOFT International Symposium on So�ware Testing and Analysis (ISSTA 2019). ACM, New York, NY, USA, 112–122. DOI:h�p://dx.doi.org/10.1145/
3293882.3330568

[39] August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting assumptions on deterministic implementations of non-deterministic
speci�cations. In 2016 IEEE International Conference on So�ware Testing, Veri�cation and Validation (ICST). IEEE, 80–90.

[40] Pavan Sudarshan. 2012. No more �aky tests on the Go team. h�ps://www.thoughtworks.com/insights/blog/no-more-�aky-tests-go-team. (2012).
Accessed: 2019-08-06.

[41] Swapna �orve, Chandani Sreshtha, and Na Meng. 2018. An Empirical Study of Flaky Tests in Android Apps. In 2018 IEEE International Conference
on So�ware Maintenance and Evolution (ICSME). IEEE, 534–538.

[42] Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. 2015. An Empirical Study of Bugs in Test Code. In Proceedings of the 2015 IEEE International
Conference on So�ware Maintenance and Evolution (ICSME) (ICSME ’15). IEEE Computer Society, Washington, DC, USA, 101–110. DOI:h�p:
//dx.doi.org/10.1109/ICSM.2015.7332456

[43] Matias Waterloo, Suze�e Person, and Sebastian Elbaum. 2015. Test Analysis: Searching for Faults in Tests. In Proceedings of the 30th IEEE/ACM
International Conference on Automated So�ware Engineering (ASE ’15). IEEE Press, Piscataway, NJ, USA, 149–154. DOI:h�p://dx.doi.org/10.1109/
ASE.2015.37

[44] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjrn Regnell, and Anders Wessln. 2012. Experimentation in So�ware Engineering.
Springer Publishing Company, Incorporated.

20

http://dx.doi.org/10.1109/AST.2019.000-1
http://dx.doi.org/10.1145/3236024.3275529
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2011.12.008
http://dx.doi.org/10.1145/3293882.3330568
http://dx.doi.org/10.1145/3293882.3330568
https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team
http://dx.doi.org/10.1109/ICSM.2015.7332456
http://dx.doi.org/10.1109/ICSM.2015.7332456
http://dx.doi.org/10.1109/ASE.2015.37
http://dx.doi.org/10.1109/ASE.2015.37

