
M
F
a

b

c

A

D
6

K
M
M
S
F
N
T
S

1

b
T
a
b

m
A
t
i
s
M

j

h
R

Information and Software Technology 188 (2025) 107870

A
0

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

icroservices testing: A systematic literature review
rancisco Ponce a,∗, Roberto Verdecchia b, Breno Miranda c , Jacopo Soldani a
University of Pisa, Pisa, Italy
University of Florence, Florence, Italy
Federal University of Pernambuco, Recife, Brazil

 R T I C L E I N F O

ataset link: https://doi.org/10.5281/zenodo.1
941552

eywords:
icroservices
icroservice architecture
oftware testing
unctional testing
on-functional testing
esting strategies
ystematic literature review

 A B S T R A C T

Context: Microservices offer scalability and resilience for modern cloud-native applications but present
significant challenges in software testing due to their distributed and heterogeneous nature.
Objective: This study aims to consolidate and classify the current body of knowledge on microservice testing
through a systematic literature review, providing actionable insights for both researchers and practitioners.
Methods: Following established guidelines for systematic literature reviews in software engineering, we
identified 74 primary studies relevant to microservices testing. These studies were systematically categorized
using the SWEBOK (Software Engineering Body of Knowledge) taxonomy for software testing. Specifically, we
classified the identified techniques according to their testing objectives, levels, strategies, and types. We also
evaluated the study types to gauge the maturity and readiness of the current state-of-the-art in microservice
testing.
Results: System testing emerged as the most frequently investigated testing level, followed by integration,
unit, and acceptance testing. Conformance, regression, and API testing were the most common functional
testing objectives, while performance efficiency and reliability were instead predominant in the case of non-
functional testing. Specification-based testing strategies were the most adopted, followed by usage-based
and fault-based ones. Additionally, most studies employed laboratory experiments and had low-to-medium
technology readiness levels, indicating early-stage maturity. The systems under test varied in size and domain,
with TrainTicket being the most widely used reference benchmark for large systems.
Conclusion: While significant progress has been made in microservice testing, the field remains fragmented,
with notable gaps in areas such as, e.g., flexibility and security testing. The dominance of early-stage proposals
highlights the need for more empirical validation and industry-grade benchmarks to facilitate broader adoption.
This review offers a structured roadmap for future research and practical adoption in microservices testing.
. Introduction

Microservices (MSs) enable realizing cloud-native applications [1],
ringing various advantages such as fault resilience and scalability [2].
his motivates why many IT companies (e.g., Amazon, Meta, Netflix,
nd Spotify) already deliver their core business through microservice-
ased architectures (MSAs) [3].
The advantages of MSAs come at the price of some pains, one of the
ost prominent being the inherent complexity of testing MSAs [4,5].
n MSA is composed of various heterogeneous services that interact
o deliver the application’s business. The number of services form-
ng an MSA, together with their interactions, gives rise to complex
oftware architectures [6]. This in turn makes it challenging to test
SAs, especially at the level of system and integration tests. Concrete

∗ Corresponding author.
E-mail addresses: francisco.ponce@di.unipi.it (F. Ponce), roberto.verdecchia@unifi.it (R. Verdecchia), bafm@cin.ufpe.br (B. Miranda),

acopo.soldani@unipi.it (J. Soldani).

examples of difficult testing tasks are, e.g., measuring the performances
of interacting services or assessing the overall user experience from the
frontend of an MSA [5].

Existing solutions for testing MSAs are, however, scattered across
different pieces of literature. They also often focus only on specific
testing levels (i.e., unit, integration, or system testing), as well as
on specific testing objectives, e.g., conformance, regression, or perfor-
mance testing. This fragmentation of the body of knowledge on MS
testing poses challenges for practitioners seeking to implement a robust
testing strategy for their MSAs, as well as for researchers wishing to
contribute and advance the state-of-the-art in MS testing.

To this end, this article aims at systematically reviewing the existing
solutions for testing MSAs. By relying on established protocols for
ttps://doi.org/10.1016/j.infsof.2025.107870
eceived 7 May 2025; Received in revised form 17 July 2025; Accepted 7 August
vailable online 23 August 2025
950-5849/© 2025 Elsevier B.V. All rights are reserved, including those for text and
2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
https://orcid.org/0000-0001-9608-9393
https://orcid.org/0000-0002-2435-3543
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
mailto:francisco.ponce@di.unipi.it
mailto:roberto.verdecchia@unifi.it
mailto:bafm@cin.ufpe.br
mailto:jacopo.soldani@unipi.it
https://doi.org/10.1016/j.infsof.2025.107870
https://doi.org/10.1016/j.infsof.2025.107870

F. Ponce et al. Information and Software Technology 188 (2025) 107870
conducting systematic literature reviews (SLRs) in software engineer-
ing [7,8], we systematically identified 74 primary studies contributing
to the realm of MS testing, which we then classified by relying on the
SWEBOK (Software Engineering Body of Knowledge [9]) taxonomy for
software testing. More precisely, we classified the existing MS testing
techniques based on the testing objective, level, strategy, and type,
while also assessing the study types to assess the readiness of the
state-of-the-art in MS testing. This article reports on the results of our
systematic review by also discussing the main findings on the 4W1H
(i.e., what, when, where, why, and how) of testing MSAs.

We believe that the SLR presented in this article can provide benefits
to both practitioners and researchers working with MSAs. We indeed
not only help them in finding the testing techniques most suited to the
needs of their MSAs, but we also discuss some open challenges and
possible research directions on MS testing.

The rest of this article is organized as follows. Sections 2 and 3
provide the necessary background and discuss related work, respec-
tively. Section 4 illustrates the SLR process we followed, aiming at
encouraging its repeatability. Sections 5 and 6 report on the iden-
tified techniques for functional and non-functional testing of MSAs,
respectively. Section 7 discussing the 4W1H of testing MSAs. Finally,
Sections 8 and 9 discuss threats to validity and draw some concluding
remarks, respectively.

2. Background

2.1. Microservices

Microservices were first introduced in 2014 by Lewis and Fowler in
their influential blog post [10], where they outlined an architectural
style for developing applications as collections of small, independent
services. Each microservice is designed around a specific business
capability, operates in its own process, and communicates with other
services within the application via lightweight protocols (such as HTTP
APIs). These services are typically organized around business func-
tions and can be developed, deployed, and scaled independently, in
contrast to monolithic systems where the entire application is tightly
integrated [11]. This architectural approach can be viewed as an evo-
lution of Service-Oriented Architecture (SOA), which emphasizes ser-
vice independence, self-management, and lightweight interaction [12].
Microservices are inherently loosely coupled, enabling independent
deployment through automated, often containerized, platforms [13].
This decentralization supports key characteristics such as continuous
delivery and the use of lightweight protocols for inter-service com-
munication. This independence in deployment supports scalability and
flexibility, making microservices a natural fit for service-oriented archi-
tectures [14].

2.2. Software testing

Software testing is a crucial activity within the software develop-
ment lifecycle, aimed at verifying that a system functions correctly
under various conditions. In this work, we categorize the primary
studies using the SWEBOK taxonomy for software testing. Next, we
provide an overview of the key test levels, techniques, and objectives,
as outlined in the SWEBOK [9].

2.2.1. Test levels
The SWEBOK defines four test levels, each targeting different scopes

and objectives [9]. Unit Testing focuses on verifying the correctness
of individual components or subprograms in isolation. It is often con-
ducted by developers to ensure that each unit performs as intended.
Integration Testing examines the interaction between integrated units
or components. It aims to uncover interface errors and assess in-
teroperability between modules or systems. System Testing validates
the complete and integrated system against specified requirements. It
2
addresses both functional and non-functional aspects, such as perfor-
mance, reliability, and security. Acceptance Testing determines whether
the software meets user needs and requirements. This testing level
is typically carried out by end users or clients, focusing on usability
and operational validation to ensure the software is fully ready for
deployment.

2.2.2. Test techniques
A broad spectrum of test techniques supports the selection and

design of effective test cases [9]. Specification-based techniques (black-
box testing) derive test cases from requirements and functional spec-
ifications (e.g., equivalence partitioning, boundary value analysis).
Structure-based techniques (white-box testing) leverage knowledge of
the software’s internal structure (e.g., statement and branch cover-
age). Experience-based techniques rely on testers’ intuition and prior
experience (e.g., error guessing, exploratory testing). Fault-based and
mutation techniques simulate or inject faults to assess the sensitivity and
fault-detection power of test suites. Usage-based techniques model real-
world usage to evaluate reliability and performance under operational
conditions.

2.2.3. Objectives of testing
Testing can serve multiple objectives depending on context and

development phase. Conformance Testing verifies that a software system
adheres to predefined specifications, standards, design rules, or coding
guidelines. It ensures that the implementation correctly follows formal
definitions such as communication protocols, file formats, or industry
standards. Regression testing focuses on confirming that recent changes
to the codebase have not unintentionally affected existing functionality.
It involves re-executing previously passed test cases to detect any
newly introduced defects. Interface and Application Program Interface
(API) Testing aims to validate the communication between different
software components or systems, ensuring correct data exchange and
interaction behavior. For APIs, this involves testing endpoint responses,
parameter handling, error conditions, and compliance with interface
specifications. This type of testing is crucial in modular and service-
oriented architectures, where robust and predictable interfaces support
system integration, scalability, and external interoperability.

For a more comprehensive overview of additional objectives of
testing, we refer the reader to the SWEBOK [9].

2.3. ISO/IEC 25010 software quality standard

Software quality models are frameworks that define, measure, and
assess the quality of software products. These models identify key at-
tributes of software quality and establish criteria for evaluating whether
a software system meets specific standards. To classify primary studies
focused on non-functional testing in terms of testing objectives, we
rely on the ISO/IEC 25010 standard [15]. This standard structures soft-
ware quality into nine high-level attributes: functional suitability, per-
formance efficiency, compatibility, interaction capability, reliability,
security, maintainability, flexibility, and safety.

Performance efficiency, reliability, and flexibility are the quality
attributes discussed in the primary studies selected for this work. Per-
formance Efficiency relates to the system’s resource usage and respon-
siveness under specified conditions. Key aspects include time behavior,
resource utilization, and capacity. Reliability measures the system’s
ability to perform consistently over time. This includes fault toler-
ance, availability, and recoverability. Flexibility reflects the adaptability
of the system to different environments or requirements, including
adaptability, scalability, installability, and replaceability.

A comprehensive introduction to the other existing quality at-
tributes can be found in the ISO/IEC 25010 standard [15].

F. Ponce et al. Information and Software Technology 188 (2025) 107870
3. Related work

Our SLR aims at complementing the few existing secondary studies
on MS testing [16–20]. These prior works cover different angles of
MS testing, but with different scope, depth, and/or recency of the
considered primary studies, and this mainly motivates our SLR.

Among the most recent works is the systematic mapping study
(SMS) by Hui et al. [18], which analyzed literature published up to
early 2024. Their SMS provides a broad overview by mapping primary
studies to the testing methodologies they employ. While valuable, it
focuses primarily on high-level classification of testing approaches and
does not delve into detailed testing attributes such as testing levels,
objectives, or strategies. Moreover, Hui et al. [18] do not assess the
technological maturity of proposed techniques, nor do they analyze
systems under test (SUTs). Our SLR complements the SMS by Hui
et al. [18] by going into the details on the 4W1H of MS testing,
which comprise testing levels, objectives, and strategies, as well as the
technological maturity of proposed techniques and SUTs.

Similar arguments apply to the SMS by Waseem et al. [20], who
classify 33 primary studies published between 2015 and 2019. Waseem
et al. [20] also provide a high-level classification of testing approaches,
focusing on less recent studies, and still without delving into detailed
testing attributes, e.g., testing levels, objectives, strategies, or SUT.
Our SLR complements the SMS by Waseem et al. [20] by providing a
more up-to-date coverage of the state-of-the-art on MS testing, and by
going more in-depth with testing attributes. We indeed analyze testing
levels, objectives, and strategies, as well as the technological maturity
of proposed techniques and SUTs.

Ghani et al. [17] performed an earlier SLR limited to studies pub-
lished between 2010 and 2018, covering only 15 primary studies.
Although their focus on testing objectives (specifically, quality at-
tributes) is valuable, the restricted temporal scope and dataset size
significantly limit its relevance today, especially given the exponential
growth of research in this field since 2018. We complement the SLR by
Ghani et al. [17] by providing a more up-to-date analysis of the state-
of-the-art on MS testing, as well as by going beyond testing objectives,
e.g., by also covering testing levels, strategies, and SUTs.

Finally, Fischer et al. [16] and Simosa and Siqueira [19] focus
only on one of the testing attributes out of those covered by our
SLR. Particularly, Fischer et al. [16] provide an SMS on SUTs, iden-
tifying 134 systems that can be used for MS testing and monitoring.
Simosa and Siqueira [19] instead surveyed contract testing in mi-
croservices between 2015 and 2022, emphasizing techniques and tools
related to contract-based validation. The specific focus of both Fischer
et al. [16] and Simosa and Siqueira [19], however, makes their studies
complementary rather than redundant with ours.

In summary, compared to the existing secondary studies on MS
testing [16–20], our SLR offers a more detailed, comprehensive and/or
up-to-date perspective by analyzing 74 primary studies published up
to the end of 2024. We uniquely classify testing approaches using the
SWEBOK taxonomy, assess their technological maturity, and identify
reference SUTs. Additionally, our SLR identifies up-to-date research
challenges. These contributions collectively complement the results
available in existing studies and establish the distinct value of our work
in comparison to prior studies.

4. Research design

Using the Goal-Question-Metric approach [21], the research objec-
tive of our investigation can be formulated as follows:

Analyze testing approaches
For the purpose of knowledge collection and categorization
With respect to academic literature
From the viewpoint of researchers
In the context of microservice-based systems.
3
In order to collect the data for our literature review, we follow the
systematic process outlined by Kitchenham [7]. In order to systemati-
cally identify a set of primary studies, we follow the approach presented
by Wohlin [8], which entails a bidirectional snowballing search based
on a starting set obtained via an automated search query executed on
Google Scholar. The use of Google Scholar allowed us to avoid bias in
favor of any specific publisher [8]. Further threats related to the use of
Google Scholar are discussed in Section 8.2.

A high level overview of our research process is depicted in Fig. 1
and is further detailed in the following sections.

4.1. Phase 1a: Automated literature search

As initial step for our primary studies selection, we collect an initial
set of potentially relevant studies via the execution of an automated
query on the Google Scholar literature indexer. The title-focused auto-
mated search was designed based on our research objective, and with
the aim to gather related literature that explicitly focuses specifically on
the topic considered while being as encompassing as possible. Based on
this rationale, the query utilized results in the exact following search
string that is utilized to identify the initial set of potentially primary
studies:

ALLINTITLE: ("microservice*" AND "test*")
Executing the automated search results in the identification of 186

potentially primary studies, which are then manually filtered via a
pre-defined set of selection criteria in a later phase (see Phase 4
Section 4.4).

The query was executed on the 16th of December 2024, and to
be as inclusive as possible left unbounded the publication date range.
The results were sorted alphabetically to mitigate possible biases intro-
duced by potentially confounding search ranking algorithms. To be as
inclusive as possible and mitigate potential threats to internal validity,
no cutoff point was utilized, i.e., the entirety of the query results was
considered for manual selection (see also following phases).

4.2. Phase 1b: Supplementary automated query

In order to mitigate potential threats to internal validity related
to the use of a single literature indexer, we execute an additional
automated query by leveraging the Scopus digital library.1 A query
identical to the one utilized in Phase 1 is adopted to automatically
search potentially primary studies on our second source of data, namely
the Scopus digital library.

As for the primary query, the supplementary one was executed on
the 16th of December 2024, and to be as inclusive as possible left
unbounded the publication date range. The query execution resulted
in the identification of 278 potentially primary studies.

4.3. Phase 2: Duplicate removal

Merging the results of the automated literature search queries ex-
ecuted in Phase 1a and Phase 1b, we remove the duplicates of the
two queries by relying on the potentially primary studies metadata,
namely publication title and publication venue. This process results in
the removal of 92 primary studies. More specifically, the potentially
primary studies identified via the Scopus platform result to be a subset
of the items identified via the Google Scholar literature indexer. As a
final output of this research step, we identified 186 potentially primary
studies.

1 https://www.scopus.com/. Accessed 3rd April 2025.

https://www.scopus.com/

F. Ponce et al. Information and Software Technology 188 (2025) 107870
Fig. 1. Systematic literature review process illustrated through a PRISMA flow diagram [22].
4.4. Phase 3: Manual selection

Following the consolidation of the potentially primary studies set
identified automatically, we conduct a manual selection process of the
primary studies based on a pre-defined list of inclusion and exclusion
criteria. A potentially primary study is selected in our SLR if it satisfies
all of our inclusion criteria (I) and none of the exclusion ones (E). The
selection criteria we use are as follows:

• I1: The paper focuses on microservices.
• I2: The paper focuses on software testing.
• I3: The paper proposes a solution for testing microservices.
• E1: Non-English publications.
• E2: Publications for which the full text is not available to us.
• E3: Duplicates of already included publications.
• E4: Secondary or tertiary studies.
• E5: Publications in the form of editorials, tutorials, books, ex-
tended abstracts, etc.

• E6: Non-scientific publications or grey literature.
The first two inclusion criteria (I1, I2) are designed to identify pri-

mary studies that focus on the investigated topic, namely microservice,
and hence present relevant data for our literature review. The third
inclusion criteria instead (I3) is utilized to select exclusively studies
that present an approach to test microservices. This latter inclusion
criteria allows our investigation to gain a comprehensive overview of
the existing solutions to test microservices, by excluding adjacent topics
related to microservice testing, e.g., experience reports. The exclusion
criteria instead are utilized to ensure that we are able to extract data
from the papers (E1, E2), we do not include redundant information (E3,
E4), and consist of scientific literature (E5, E6). As further clarifications
on some selection criteria, E2 considered manuscript that are indexed
but not available online. Regarding E3 instead, in case the extension of
an already included paper is identified, we included only the extended
study (instead of the original one) as, by nature, extensions contain
both the original content and some additional ones.
4
The initial set of 186 studies is inspected by the four authors, with
each author analyzing for inclusion a distinct subset of potentially
primary studies. To ensure agreement among reviewers in the selec-
tion process, the inter-rater agreement is calculated via Fleiss’ kappa
on a subset of 25 studies. This process results in a Fleiss’ kappa of
0.78, demonstrating a substantial agreement among reviewers. As an
additional measure to prevent potential threats to internal validity,
weekly meetings are held to jointly discuss doubts, corner cases, and
impediments to further strengthen the alignment among reviewers.

The manual selection process terminates with the selection of 56
primary studies to be used for the follow-up snowballing process and
full-text assessment (see Fig. 1).

4.5. Phase 4: Snowballing

To complement our preliminary set of primary studies identified
via the automated literature search, in line with common systematic
literature review practices Wohlin [8], we adopted a forward and
backward snowballing process. During this phase, both the paper cited
by the already included primary studies and the ones citing them
are inspected for inclusion in our literature review. The snowballing
process proceeds iteratively in multiple rounds, i.e., the primary studies
included via snowballing undergo a follow-up snowballing process to
include new literature. As a stopping criterion, we adopt theoretical
saturation, i.e., our snowballing process terminates when in a new
round of snowballing no new papers are selected for inclusion.

The four authors conduct the snowballing simultaneously on a dis-
tinct subset of the primary studies. While the rater alignment is already
established via inter-rater agreement calculation of the previous phase,
as a mitigation strategy to potential internal threats to validity, weekly
meetings are held to discuss doubts and further align the selection
process among reviewers.

The snowballing process terminates with the inclusion of 21 new
primary studies, leading to a total number of primary studies consid-
ered in this systematic literature review equal to 74.

F. Ponce et al. Information and Software Technology 188 (2025) 107870
Table 1
Classification of the available functional testing techniques based on testing objective and testing strategy.
 Specification-based Structure-based Usage-based Experience-based Fault-based
 Regression [25–34] [33,35,36] [36,37] [38]
 Conformance [39–52] [53–55] [55,56] [57] [58]
 API [59–61] [62]
]
4.6. Phase 5: Data extraction and synthesis

To extract the data from the identified primary studies, we adopt
a mix of deductive coding (DC) combined with open coding (OC)
followed up when necessary by an axial coding process (AC) [23]. In
the following, we report the data attributes collected from each primary
study, associated with the coding strategy adopted to extract it.

To understand the publication trends of the microservice testing
literature we consider as demographic data the Publication year (DC),
and publication venue, namely Journal, Conference or Workshop (DC).

At a more semantic level, we extract from the primary studies (i)
the study type by following the characterization of Stol and Fitzgerald
[24] (DC), the testing level as defined in software testing of the SWE-
BOK [9] (DC), if the testing approach regards one or more functional or
non-functional requirements (DC), in case the non-functional require-
ment(s) considered for testing, as documented in the ISO/IEC 25010 [15
(DC), and the testing type, that could either assume white-box, gray-
box, or black-box values (DC).

To gain a deeper understanding of the microservice testing ap-
proaches reported in the primary studies we also extract from the
primary studies the testing objective as defined in the SWEBOK [9] and
complemented via additional codes when necessary (DC, OC, and AC),
the testing strategy as categorized in the SWEBOK [9] (DC), and the
method used to validate the testing approaches, that could either be
in-vitro, in-vivo, in-silico, or in-virtuo (DC). As an additional attribute,
we also consider if an implementation or tool of the testing approach
is made available or not (DC).

Finally, we complement our data extraction process by considering
also the nature of the software under test (SUT) used to evaluate
the approaches. To this end, we extract from the primary studies the
number of SUT considered (DC), the SUT size in terms of the number
of microservices (DC), and the domain of the SUT, e.g., transportation
or e-commerce (OP and AC).

The data extraction process leads to the scrutiny of the 74 primary
studies considered in this research according to the 15 aforementioned
attributes, leading to a total dataset of 1.1k distinct values. The values
are then analyzed via simple summary visualizations (e.g., barplots and
heatmaps) and statistical analyses (e.g., percentages) to present the
collected data in a comprehensive, clear, and objective fashion.2

5. Functional testing

Functional testing ensures that MSAs meet their behavioral re-
quirements, e.g., verifying their functional correctness and/or compli-
ance with specifications. The functional testing techniques proposed in
the selected studies are classified in Table 1, providing a structured
overview of their focus areas. The following sections present these
techniques, organized according to the specific functional objectives
they target.

2 A replication package for our study is available at https://doi.org/10.
5281/zenodo.16941552.
5
5.1. Regression testing

Regression testing result to be a frequent objective covered by
MS testing literature [25–38]. Among testing strategies adopted in
MS regression testing research, the majority focuses on specification-
based ones [25–34]. As example, the work of Elsner et al. [28] present
microRTS, an adaptation of dynamic regression test selection tuned
to be applicable in an end-to-end MS testing scenario. microRTS is
evaluated by considering a case study considering 12 different versions
of an application. By filtering in a semi-automated fashion test traces,
the approach resulted able to reduce testing effort up to 50%. Kargar
and Hanifizade [31] instead consider at large the topic of automat-
ing regression testing in MSAs. Specifically, the Kargar et al. study
how MS regression testing process could be integrated in continuous
delivery environments by considering a specific set of technologies,
such as GitLab, Jenkins, Docker, and Kubernetes. As other work using
specification-based testing techniques, Chen et al. [26] present the
test prioritization approach CIPC. CIPC used as underlying theoretical
basis for test prioritization the concept of belief propagation, that
is, a repetitive process for estimated interpretation based on graph
structure. In CIPC, belief propagation determines test case prioritization
by analyzing code coverage changes between different versions of the
MS system. Another specification-based techniques leverages the graph-
like nature of MSAs [25]. Specifically, in the work of Chen et al.
[25], a PageRank algorithm is used to prioritize test cases based on
single-objective and multi-objective strategies. The rank of the test
cases to be executed is calculated based on API gateway logs (similar
to the test selection approach of Chen et al. [35]). Experimentation
on four MS-based systems showcase the proposed approach to be
twofold more effective than random prioritization. In another work
utilizing the graph-like structure of MS interdependencies, Ma et al.
[32] propose an approach enabling to reconstruct MS dependencies
and identify test associated to code changes. The MS dependencies
reconstruction process leverages service invocation chains, which are
constructed by utilizing the Java Reflection mechanism, enabling to
obtain information pertaining microservice endpoints and service calls.
At a higher level of abstraction, De Angelis et al. [27] address the
challenge of discovering relations between test programs in MSAs. The
approach of De Angelis et al. is based on symbolic execution of test
programs, which is used to collect information about the invocations
of local and remote APIs performed when running MS programs. The
information collected is then processed via a rule-based automated rea-
soning engine, enabling to infer dependencies and similarities among
different test suites. Schneider et al. [33] presents a systematic test
concept for developing MSAs which covers different test types, from
end-to-end to unit tests. The test concept considers the entire test
pyramid as part of the microservice engineering process. In the pro-
posed approach, the acceptance criteria is specified as Gherkin features
according to BDD practices, which are used for the development of
end-to-end tests. Considering a different perspective, Gazzola et al.
[29] present ExVivoMicroTest, and approach enabling to generate
test cases for future versions of microservices. ExVivoMicroTest is
based on lightweight execution monitoring and tracing to reconstruct
how services are used in production. By processing the obtained ex-
ecution traces, tests are then generated and selected based on their
relevance. Finally, two papers utilizing on regression testing by using
a specification-based technique focus also on performance efficiency

https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552

F. Ponce et al. Information and Software Technology 188 (2025) 107870
of MSAs [30,34]. Specifically, Janes and Russo [30] present PPTAM+,
a tool designed to continuously monitor the degradation of a system
during its refactoring to a MSA. The tool, designed to be integrated in
a DevOps pipeline, identifies MS experiencing performance degradation
issues by comparing a reference operational profile against the run-
time performance collected via regression performance tests. The work
of Smith et al. [34] instead present a more meta-scientific contribution,
by presenting a test benchmark to evaluate the effectiveness and effi-
ciency of regression testing approaches. The benchmark includes full
functional regression testing coverage for two open-source MSAs, and
is designed to support researchers by providing the necessary tools to
evaluate regression testing approaches in a systematic and repeatable
manner.

Only two papers which consider regression testing are based on an
usage-based testing strategy [36,37]. Cooper et al. [37] a usage-based
test selection approach by focusing budget aware selection, i.e., test
selection based on predefined budget constraint, such as limited time,
resources, or computational costs. The budget aware selection is based
on the collection of real-world usage traces, which are then utilized
to identify and execute a subset of tests. De Angelis et al. instead
use a similar strategy by combining however concrete and symbolic
execution to support regression testing processes De Angelis et al. [36].
The resulting traces are then processed in a similar fashion of the work
by De Angelis et al. [27] by leveraging rule-based automated reasoning.
A set of similarity criteria can then be used to identify the subset of test
cases to be run in a regression testing scenario.

Finally, two researches are the only ones which use different testing
strategies from all the others, namely structure-based [35] and fault-
based testing strategies [38]. Chen et al. [35] propose MRTS-BP,
a test selection approach designed to be as lightweight as possible
on development processes. Considering high integrability, MRTS-BP
utilized as input exclusively API gateway logs, which are used to
mine MS dependencies and change impacts based on a propagation
calculation. As the work of Chen et al. [26], the approach is based
on the concept of belief propagation, that is, a repetitive process for
estimated interpretation based on graph structure. At the intersection
of MS regression testing and software reliability instead, He et al. [38]
present ResilienceGuardian, a fault-based framework designed
to detect erroneous software changes that reduce fault resilience. The
framework is based on a classification algorithm that is trained on a set
of synthetically injected faults. The resulting model is then utilized to
classify code changes that are more probable to introduce faults in an
MSA.

5.2. Conformance testing

MSA conformance testing is mainly supported through specification-
based strategies [39–52]. In this context, some studies have focused
on event-driven microservice testing, which validates the behavior and
interactions of microservices communicating via asynchronous events.
For instance, Ma et al. [47] presented a unit testing strategy, con-
sidering message brokers and the saga design pattern. The proposed
approach enables the creation of unit tests that comprehensively iden-
tify errors in publishing, channel subscriptions, message formatting,
and error handling.

Specification-based strategies also facilitate fault diagnosis, the pro-
cess of identifying, classifying, and localizing failures in MSAs. No-
tably, Zhang et al. [52] introduced SynthoDiag, a fault diagnosis frame-
work for microservices that automates fault diagnosis using multi-
source logs and a knowledge graph. Long et al. [44] presented Intel-
liFT, a fitness-guided resilience testing technique designed to uncover
defects in fault-handling logic. Likewise, Heorhiadi et al. [42] intro-
duced Gremlin, a failure injection framework that tests fault-handling
capabilities by manipulating inter-service messages.

Furthermore, automatic testing has also been explored through
specification-based strategies. For example, Li et al. [43] explored API
6
automation testing for microservices, incorporating machine learn-
ing techniques to generate high-fidelity test data based on historical
usage patterns, improving regression testing and overall application
quality. Similarly, Ding et al. [40] proposed an automatic test data
generation method for microservice applications, leveraging extended
service interface descriptions and an improved pairwise algorithm to
enhance testing efficiency. Rahman and Gao [48] introduce RAATA,
a reusable automated testing architecture for MS within the context
of Behavior-Driven Development (BDD). The proposed approach out-
lines how BDD artifacts should be organized to facilitate the reuse
of acceptance tests across multiple repositories, thereby reducing the
maintenance burden on developers and testers. Instead of spreading
BDD features/scenarios across multiple microservices repositories, a
new repository called Automated Acceptance Tests (AAT) repository
is introduced. An AAT repository typically has top level directories
including features, which contains subdirectories for each microservice,
and step-implementation. Duan et al. [41] instead propose a decision
tree algorithm to classify and filter test cases, enhancing automation
and efficiency.

Finally, Ayas et al. [39] provide another example of specification-
based MSA conformance testing, with a different objective than those
described above. They analyzed 16 GitHub repositories to understand
how these projects cover different testing levels. The contribution
by Ayas et al. [39] drafts a testing architecture, outlining activities
and artifacts, and demonstrates how these align with established best
practices.

MSA conformance can also be tested via other strategies than those
specification-based. For example, Wu et al. [55] combine usage-based
and structure-based testing strategies to test the conformance of mi-
croservices. More precisely, Wu et al. [55] introduce CCTS (Compos-
ite Contract Testing Service), a tool that integrates consumer-driven
contract testing with state models to validate event exchanges and
detect potential defects like isolated states, cyclic dependencies, and
unqualified event sequences. CCTS analyzes event logs to verify com-
pliance with expected state transitions, enhancing the reliability of
event-driven microservices.

The above-mentioned strategies are also used standalone to test
MSA conformance. Particularly, Ma et al. [56] and Abdelfattah et al.
[53] focus on coverage aspects in MSA conformance testing, respec-
tively adopting usage-based and structure-based testing strategies. More
precisely, Ma et al. [56] propose a tool for analyzing and visualizing
service dependencies in MSAs, which also improves test coverage by
identifying untested service calls and automatically generating test
cases. Abdelfattah et al. [53] instead propose test coverage metrics for
MSA conformance testing, leveraging both static and dynamic analysis
to map tests to microservice endpoints.

Vassiliou-Gioles [54] provide another example of structure-based
MSA conformance testing, however with a different objective. They
propose instance identification as a method to enhance integration
testing by addressing managed service ambiguities, e.g., unknown con-
tributors or temporary blindness. Their ultimate goal is to enable
tracking of service versions and execution instances, ensuring that
test results accurately reflect the tested components. By enriching
service communication with structured metadata, the approach pro-
posed by Vassiliou-Gioles [54] aims at improving observability, namely
allowing testers to verify that the expected service instances contribute
to test execution.

Different testing strategies are instead enacted by Almutawa et al.
[57] and Yao et al. [58], who use experience-based and fault-based
testing, respectively. Particularly, Almutawa et al. [57] propose Kashef,
an LLM-assisted tool, which employs communicative agents to itera-
tively generate and execute system tests, leveraging LLMs for reasoning
and code generation. Yao et al. [58] presents a method for fault-
based testing in MSAs, aiming to infer fault probabilities even under
sparse tracing conditions. These probabilities are then used to estimate
missing fault propagation details, enabling effective fault localization
without requiring manual annotation or dense traces.

F. Ponce et al. Information and Software Technology 188 (2025) 107870
Table 2
Classification of the available non-functional testing techniques based on targeted quality attribute and testing strategy.
 Specification-based Structure-based Usage-based Experience-based Fault-based
 Flexibility [65] [66]
 Performance efficiency [30,34,67–79] [80,81] [37,82,83] [66]
 Reliability [84–86] [82,87,88] [38,89–95]
5.3. Interface and application program interface testing

API testing in MSA is conducted primarily using specification-based
testing strategies, where test cases are derived from the software speci-
fications or requirements [59–61]. For example, Rattanukul et al. [59]
introduces Microusity, a tool designed to perform RESTful API testing
for a specific microservice pattern known as backends for frontends
(BFF). Microusity relies on the OpenAPI specification of the APIs to
generate test inputs and identify errors based on HTTP response status
codes. Ashikhmin et al. [60] propose a method to streamline the gener-
ation of mocks for REST services using RESTful API Modeling Language
(RAML) specifications. Similarly, Lin et al. [61] proposes a mock testing
platform that supports the simulation of microservice interfaces during
both development and testing. The proposed approach enables the
concurrent operation of real and simulated services, aiming to improve
the efficiency, flexibility, and performance of microservice application
development and testing.

Yu et al. [63] and Wu et al. [64] conduct API testing in MSA
using fault-based strategies. More specifically, Yu et al. [63] introduces
MicroRank, a method that analyzes both normal and abnormal traces to
identify the root causes of latency issues in microservice environments.
MicroRank extracts service latency from tracing data and performs
anomaly detection. By combining PageRank with spectrum analysis, it
ranks service instances responsible for latency issues, assigning them
high scores. Wu et al. [64] presents MicroRCA, a system to locate
root causes of performance issues in microservices. The root causes are
inferred in real time by correlating application performance symptoms
with corresponding system resource utilization, without any applica-
tion instrumentation. The root cause localization of MicroRCA is based
on an attributed graph that models anomaly propagation across services
and machines.

API testing in MSA can also be approached from a structure-based
perspective. Specifically, Abdelfattah et al. [62] address the challenge
of assessing the thoroughness of MSA testing. To assist testers, the
authors introduce test coverage metrics that evaluate the extent of end-
to-end (E2E) test suite coverage for microservice endpoints. They also
present an automated method for calculating the proposed metrics,
providing feedback on the completeness of E2E test suites.

6. Non-functional testing

Non-functional testing ensures that MSAs meet critical quality at-
tributes such as flexibility, performance, or reliability. The non-fun-
ctional testing techniques proposed in the selected studies are classified
in Table 2, providing a structured overview of their focus areas. The
following sections present these techniques, organized according to the
specific quality attributes they target.

6.1. Flexibility

While testing MSAs, flexibility is a factor that has been consid-
ered when assessing deployment alternatives or designing test strate-
gies. Avritzer et al. [66] introduces an experience-based testing strategy,
which proposes a quantitative approach for evaluating the scalability
of MSAs under different workload scenarios. Their approach leverages
operational profile data and automated testing to systematically assess
deployment configurations. By incorporating input domain partitioning
7
and domain-based load testing, Avritzer et al. [66] enable the evalua-
tion of MSAs in terms of their suitability to handle specific operational
workload conditions, providing a structured assessment of scalability.

Flexibility testing of MSAs can also happen through usage-based
testing strategies, like the one proposed by Schulz et al. [65]. The usage-
based testing strategy by Schulz et al. [65] emphasizes flexibility by
tailoring load test workloads to target specific microservices and their
dependencies rather than the entire system. The proposed algorithms –
log-based and model-based – allow development teams to test individ-
ual services in isolation, considerably reducing resource consumption.
While this tailored approach slightly reduces representativeness when
compared to full system-level workload models, it enhances testing flex-
ibility by limiting the number of microservices that must be deployed
for testing.

6.2. Performance efficiency

Performance efficiency of MSAs is mostly tested via specification-
based testing strategies, which are adopted by 15 primary studies. Out
of these 15 studies, two papers focus on topics related to code quality,
namely the correlation between architectural smells and performance
deficiencies [74] and the impact of anti-patterns on performance [76].
More specifically, the study on architectural smells by Liu et al. [74]
enables testing how architectural smells can cause performance degra-
dation in MSAs. The study on anti-patterns by Matar and Jahić [76]
builds on the results of Liu et al. [74] by presenting an approach to
identify anti-patterns that affect performance in MSAs. The approach
first uses static analysis to detect anti-patterns potentially affecting per-
formance, and subsequently evaluates such assumption via a follow-up
dynamic analysis.

Giamattei et al. [72] instead propose CAR-PT (Causal-Reasoning-
driven Performance Testing), a model-based testing technique designed
for the performance testing of MSA. CAR-PT leverages causal reason-
ing to guide the generation of workload configurations, enabling the
identification of performance issues more effectively and efficiently.
By automatically discovering and utilizing causal relationships between
performance metrics (e.g., response time, CPU usage, and memory
consumption), CAR-PT allows testers to simulate realistic workloads
that target critical performance conditions.

Two other studies considering specification-based testing strategies
focus on assessing the performance of software-intensive systems while
migrating from a monolithic to an MSA [30,78]. Janes and Russo [30]
propose a specification-based testing tool that enables to monitor the
potential degradation of microservice performance based on the initial
system specifications collected empirically via reference operational
profiles. Maulana and Raharja [78] instead conduct a case study to
assess the performance impact – and potential degradation – of tran-
sitioning a banking system from a monolithic to an MSA. In this case,
potentially due to the practical nature of the study, the authors combine
both load testing and stress testing strategies to assess the performance
of the MSAs.

Microservice evolution is also considered by De Camargo et al.
[96], who propose a framework to automate performance testing of
microservice architectures. The framework, designed to be integrated
in a continuous development environment, enables to automatically
execute tests and collect related results by including a specification in
each microservice. Based on such specification, test are automatically
executed after each change of a microservice, allowing to monitor the
performance of each microservice as they evolve in time.

F. Ponce et al.

-

Information and Software Technology 188 (2025) 107870
At a higher level of abstraction, five studies considering specification
based testing strategies to propose approaches to evaluate the perfor-
mance of MSAs [34,67,69,77,79]. The work of Matar and Jahic [77]
presents a lightweight approach to assess the performance of early
architectural ideas, e.g., to evaluate the impact that different archi-
tectural solutions may have on performance, or identify performance
anti-patterns in the early design stages. This is achieved via an initial
specification of the system, provided with a high-level architectural
model created manually. The model is then used to statically evaluate
its theoretical performance, generate the microservice code, and elabo-
rate a test plan. As final step, performance testing results are collected
dynamically, leading to a final performance report used for decision
making. Similarly, Camilli et al. [67] present a declarative approach
based on a custom domain specific language through which both
standard performance testing approaches (e.g., load tests) and more ad-
vanced ones (e.g., stability boundary detection, and configuration tests)
can be specified starting from templates. The approach is designed
by considering its integration in continuous software development
processes, allowing to monitor the fulfillment of specific performance
intents throughout the evolution of MSAs.

By considering a more formal modeling of MSA performance, Smith
et al. [34] propose a specification-based approach to reconstruct the
performance behavior of MSAs by leveraging discrete time Markov
chains. The presented approach is based on three subsequent phases,
namely (i) sampling performance data in production to generate a
coarse formal description of the users’ behavior, (ii) conduct multi-
ple load testing sessions to refine the model, and (iii) use the final
specification created to evaluate different deployment options.

The two studies by Smith et al. [34] and Peuster et al. [79] in-
stead focus on combining specification-based testing with monitoring
capabilities. Specifically, Smith et al. [34] present a benchmark that
can be used to study the efficacy and effectiveness of novel testing
approaches, e.g., to study functional regression testing or load testing.
The work of Peuster et al. [79] takes a more proactive stance, by
presenting an approach to solution for virtualized, profile and jointly
test microservice-based network functions and services. While con-
sidering microservice testing, the approach by Peuster et al. [79] is
strongly tight to networking. Specifically, the authors present a solution
based on the Testing and Test Control Notation, a testing language
used in conformance testing of communicating systems, which enables
to create a generic test framework for virtualized network functions
implemented as microservices.

The last cluster of papers using specification-based testing ap-
proaches designed to study microservice performance focus on debug-
ging and resolving performance issues [70,71,73,75]. More specifically,
in the work of Lin et al. [73], an instrumentation-free approach is
presented to identify performance issues, and potentially also perform
root-cause analysis, in MSAs. The approach, named Microscope, re-
constructs the causal graph of a MSA based on network connection
information, and infer the causes of performance issue by tracing
back anomalies detected in front-end service. Two related approaches
make use of data-driven techniques to conduct performance debugging
processes based on specification-based testing techniques. In the work
of Gan et al. [71] a big data strategy is presented to detect quality of ser-
vice violations based on spatial and temporal patterns. Specifically, the
approach uses a distributed tracing system to records per-microservice
latencies and number of requests queued per microservices, enabling to,
which are then used to train a deep learning model to predict quality
of service violations. In a similar follow up study, Gan et al. [70] focus
instead on root cause analysis rather than debugging. In this case, an
unsupervised model is trained on data collected from tracing systems
of cloud providers, and subsequently leveraging latency the calculation
of propagation and inter-service dependencies calculation to identify
performance issues root causes. Finally, Lu [75] propose a dynamic
approach to identify performance bottlenecks via stress testing, and
8
subsequently resolve the identified issues by optimizing the deployment
of MSAs.

From a different perspective, performance testing of MSAs can hap-
pen via other different testing strategies, such as structure-based, usage-
based, and experience-based testing. A structure-based testing strategy
adopted by Pei et al. [81], proposes a performance analysis approach
for MSAs that leverages a multi-objective, search-based profiling tech-
nique. On the other hand, Camilli et al. [80] introduce an actor-driven
decomposition methodology to enhance the modularization of MSAs
while ensuring performance and scalability improvements.

Camilli et al. [82], Cooper et al. [37] and Jindal et al. [83] instead
rely on usage-based strategies to test the performance efficiency of
MSAs. Camilli et al. [82] introduce a methodology and support plat-
form to automatically test MSA operations, which aims to be integrated
into the DevOps cycle to support continuous testing. Cooper et al. [37]
instead propose a framework that utilizes real-world usage traces to
identify a minimal but essential set of performance tests. On the other
hand, Jindal et al. [83] propose a modeling approach for testing and
estimating the service capacity of individual microservices.

Last, but not least, Avritzer et al. [66] proposes an experience-
based strategy for the performance assessment of MSAs deployment
alternatives. Their approach uses automated performance testing re-
sults to quantitatively assess each deployment based on a proposed
domain-based metric.

6.3. Reliability

As often happens in software systems, reliability testing of MSAs is
currently mainly supported by means of fault-based testing strategies.
Most of the existing works focus on system testing of MSAs [38,89,
91–95,97]. Alvaro et al. [89] reasons backwards from working MSAs
to determine whether failures in their execution could have prevented
their outcomes [98]. Chen et al. [91] rely on non-intrusive request-level
fault injection to prioritize high-impact failure test cases. Yang et al.
[95] profile MSAs’ resilience by correlating system failures with the
degradation of user-experienced observed while injecting failures in the
system. He et al. [38] proactively detects erroneous software changes
reducing fault tolerance using fault injection and KPI analysis. Other
frameworks leverage communication patterns for non-intrusive fault
injections [94] or infer fault-tolerance bottlenecks to test redundancy
without prior system knowledge [93].

Different, yet fault-based, reliability testing strategies are adopted
by Meiklejohn et al. [92] and Assad et al. [90], who focus on in-
tegration testing. Meiklejohn et al. [92] enable the early testing of
the resilience of service-to-service communications in an MSA under
development. This is done by injecting failures in remote service calls,
relying on the services’ code to be instrumented to enable altering
the response of such calls. Meiklejohn et al. [92] extends the above
described solution by enabling the injection of Byzantine failures in
service-to-database interactions.

Reliability testing of MSAs can also happen through specification-
based testing strategies, like those proposed by Giamattei et al. [84,85].
The specification-based testing strategies by Giamattei et al. [84,85]
rely on stateless pairwise combinatorial techniques for generating test
cases for system testing of MSAs. Giamattei et al. [85] also provides
the necessary tooling for executing and monitoring test results, as well
as for identifying causal relations among the failures observed while
testing a target MSA.

Last, but not least, Camilli et al. [82] and Pietrantuono et al. [87,88]
propose usage-based strategies for reliability testing of MSAs, still at
system level. More precisely, Camilli et al. [82] propose a methodology
and support platform to enact ex-vivo testing sessions, i.e., in-house
estimation of the reliability of a target MSA based on usage data
monitored in prior, in-production runs. Pietrantuono et al. [87,88]
instead support in-vivo testing by proposing two adaptive sampling
schemes to identify test cases for an MSA based on its usage profile.

F. Ponce et al. Information and Software Technology 188 (2025) 107870
Fig. 2. Publication frequency per year.

7. Discussion

This section presents the key findings of our systematic review
using 4W1H (i.e., what, when, where, why, and how) to comprehensively
examine the landscape of testing MSAs. Please note that the terms in the
categories can occur multiple times across different studies, as reported
in Tables 1 and 2.

7.1. When and where: Publication trends

In order to understand the microservice testing research landscape,
we first focus on the publication intensity of the topic throughout
the years. An overview of the distribution of our primary studies
throughout years, grouped by venue type, is documented in Fig. 2.

As we can observe from the figure, the topic of testing microservices
first appeared in the literature in 2015. For a few years (2015–2017),
few researchers considered publishing it. However, 2018 marked the
start of a wave of popularity of the theme, with seven papers published.
The topic never ceased to gain traction within the research community,
with up to 14 papers published in a single year in 2024.

By considering the venues where studies on testing microservices
are published, we can observe a recurrent trend. Specifically, towards
their inception, research topics are first explored in workshops and
conference venues, and only after getting consolidated start appearing
in journal venues [99–101]. This trend can be observed also for mi-
croservice testing, with the topic appearing first in conferences (2015)
and only after five years in journals. We conjecture that this trend
reflects the rapid popularization that microservice literature experi-
enced in 2015 [102], which after some years expanded also to the
well-established software testing domain [103].

In terms of academic publishers, the majority of primary studies
results to be released by IEEE (35 out of 74 primary studies), followed
by ACM (16 studies), Springer (11 studies), and Elselvier (7 studies).
The five remaining studies are published in Wiley (3 studies) and MDPI
(2 studies).

Highlights

• Research on microservice testing has gained increas-
ing momentum since 2015, peaking in 2024 with 14
publications—indicating growing interest and maturity
in the field.

7.2. Why: Testing levels and objectives

To further explore the landscape of microservice testing research,
we now examine the distribution of primary studies across different
test levels and objectives.

Fig. 3 displays the distribution of primary studies across the differ-
ent test levels as defined in the SWEBOK [9]: unit, integration, system,
9
Fig. 3. Distribution of primary studies across the different Test Levels.

Fig. 4. Coverage of functional testing objectives.

and acceptance testing. The distribution reveals a strong emphasis
on system testing, which accounts for the largest group (47 studies).
Given the complex interactions and non-functional requirements of
microservices-based systems, system testing appears to be an ideal
approach for evaluating overall behavior and performance. Integration
testing follows with 21 studies, reflecting the importance of verifying
communication between services. Unit testing is less emphasized than
integration testing, with 15 studies. And acceptance testing is the
least investigated (5 studies), suggesting limited attention to end-user
validation.

We also categorized the primary studies based on testing objectives,
distinguishing between functional and non-functional testing. A total of
44 studies focused on functional testing, while 36 studies concentrated
on non-functional testing.

For the testing objectives, we refer to those listed in the SWE-
BOK [9]: conformance, compliance, installation, alpha and beta, regres-
sion, prioritization, non-functional, security, privacy, interface and ap-
plication program interface (API), configuration, usability, and human–
computer interaction.

Fig. 4 displays the distribution of primary studies across the dif-
ferent objectives. The studies were classified into three key testing
objectives: Conformance, Regression, and API. Conformance testing is
the most studied, with 23 primary studies, emphasizing the importance
of ensuring that software systems adhere to specified standards, rules,
and requirements. Regression testing follows with 14 studies, reflect-
ing its critical role in verifying that modifications do not introduce
unintended effects. API testing, with 8 studies, highlights the research
efforts to ensure reliable interactions between system components. To
offer a different perspective, Fig. 5 presents a combined view of the test
levels and functional objectives addressed in the primary studies that
focus on functional testing.

The studies focusing on non-functional testing were further cate-
gorized according to the nine quality characteristics outlined in the
product quality model defined by ISO/IEC 25010 [15]: functional
suitability, performance efficiency, compatibility, interaction capabil-
ity, reliability, security, maintainability, flexibility, and safety. Fig. 6
displays the distribution of primary studies across the different quality
characteristics.

Performance Efficiency is the most investigated characteristic, with
21 primary studies. These studies primarily focused on aspects such as
response time, throughput, and resource utilization. Reliability follows
with 14 studies investigating fault tolerance, availability, and recov-
erability in microservice architectures. In contrast, Flexibility is the
least studied, with only 2 studies, highlighting the need for further
investigation into flexibility in microservice testing to better support
evolving software environments. Fig. 7 presents a combined view of

F. Ponce et al. Information and Software Technology 188 (2025) 107870
Fig. 5. Combined coverage of test level and functional testing objectives.

Fig. 6. Coverage of quality attributes.

Fig. 7. Combined coverage of test level and quality attributes.

the test levels and quality attributes addressed in the primary studies
focusing on non-functional testing.

Highlights

• System testing is the most commonly studied level
(47 studies), highlighting its importance in evaluating
complex behaviors and non-functional requirements of
MSAs.

• While performance efficiency and reliability dominate
non-functional testing, quality attributes such as flexi-
bility, maintainability, and security remain significantly
underexplored, indicating potential gaps and research
directions.

7.3. How: Study types and testing strategies

As illustrated in Fig. 8, specification-based emerges as the most
widely used strategy. This indicates that the majority of the proposals
focus on selecting a subset of test cases from the input domain to detect
specific categories of faults. When this insight is combined with the
data presented in Fig. 9, we observe that specification-based strategies
10
Fig. 8. Coverage of testing strategies.

Fig. 9. Combined coverage of testing strategies and functional objectives.

are predominantly applied in conformance and regression testing. Con-
formance testing aims to ensure that the SUT adheres to predefined
standards, rules, specifications, and requirements. Given its structured
approach, specification-based strategies are used to systematically test
the MSA against formally defined fault categories. Similarly, regression
testing, which involves the selective retesting of a SUT to verify that
modifications have not introduced unintended side effects, also heav-
ily relies on specification-based strategies. This reinforces the role of
specification-based strategies in maintaining the MSA compliance and
integrity.

When analyzing the relation between testing strategies and quality
attributes (Fig. 10), we observe that specification-based is once again
the most widely used strategy. In this context, it is primarily applied to
Performance Efficiency, with a lesser emphasis on Reliability. In contrast,
proposals using fault-based strategies are exclusively focused on Relia-
bility, targeting the detection of faults that could, perhaps, compromise
the MSA availability. On the other hand, usage-based strategies are ap-
plied in a more distributed manner, addressing Performance Efficiency,
Reliability, and Flexibility. This suggests that the usage-based strategy
offers a broader perspective by considering different aspects of the MSA
quality.

Regarding study types, as shown in Fig. 11, there is a clear pref-
erence for controlled environments. The most common study type is
Laboratory Experiment (50, 63%), followed by Formal Theory (12,
15%) and Computer Simulation (7, 8%). In contrast, Field, Judgment,
and Sample Studies are rarely conducted, highlighting the limited
empirical validation of testing approaches. This reliance on laboratory
experiments suggests that most findings are derived from structured, ar-
tificial settings. While these settings are valuable for isolating variables
and ensuring repeatability, they may fail to capture the complexities of
real-world operational environments. Similarly, most primary studies
use black-box testing, and only three incorporate gray-box or white-box
approaches.

From the perspective of Technology Readiness Levels (TRL), most
proposals remain in the low to mid TRL range (TRL 3–4), meaning they
are still in the experimental or proof-of-concept stages. To bridge the

F. Ponce et al. Information and Software Technology 188 (2025) 107870
Fig. 10. Combined coverage of testing strategies and quality attributes.

Fig. 11. Coverage of study types.

gap between research and industry adoption, future studies should fo-
cus on achieving higher TRL, integrating field studies and experiments
to showcase the effectiveness of these approaches in complex MSAs.

Highlights

• Specification-based is the most used strategy, primarily
applied in conformance and regression testing to ensure
MSA compliance and integrity.

• Most proposals rely on laboratory experiments, limit-
ing real-world validation; Increasing the current TRL is
crucial for industry adoption.

7.4. What: SUTs

Another interesting dimension in analyzing the state-of-the-art of
microservice testing lies in the what, namely in the size and nature of
the Systems Under Test (SUTs) employed in the selected studies. Given
the inherently distributed and modular architecture of MSAs, the size
of SUTs can influence testing strategies, tooling efficacy, and overall
evaluation outcomes. To enable a first structured comparison of the
SUTs covered in the selected studies, we first classified them based on
the number of constituent microservices: small MSAs comprise up to 9
microservices, medium MSAs include 10 to 20 microservices, and large
MSAs consist of at least 21 microservices.

Notably, all SUTs sizes result to be significantly covered in the
selected studies, with small SUTs used in 21 studies, medium SUTs used
in 14 studies, and large SUTs used in 22 studies. As for small SUTs,
this mainly depends on the fact that small demo MSAs are used to
11
Fig. 12. Combined coverage of SUTs’ application domains and sizes (with
general purpose demo MSAs excluded from the count).

experiment with the microservice testing techniques proposed in 21 of
the selected studies, e.g., [37,40,83,88,92]. This widespread reliance on
small MSAs underscores the need for lightweight MSAs to be used as a
common and manageable basis for the rapid evaluation of microservice
testing approaches. However, no existing small MSA seems to emerge
as widely accepted or used in the selected studies. This calls for small
MSAs to be identified/proposed to serve as a standard benchmark for
the rapid evaluation of newly proposed microservice testing solutions.

Different arguments instead apply to medium and large SUTs, which
are typically used to provide a more thorough assessment of the mi-
croservice testing solutions proposed by 22 of the selected studies. As
shown in Fig. 12, almost all the selected studies using medium or large
SUTs relied on MSAs coming from the e-commerce or transportation
application domains, respectively. This is mainly motivated by the
fact that SockShop.3 and TrainTicket4 emerge as the de-facto reference
medium and large SUTs. Sock Shop and TrainTicket are indeed the
most used medium and large SUTs, with Sock Shop used to assess
what is proposed by 6 selected studies [64,65,67,73,84,93], while
TrainTicket is used in 16 selected studies [25,26,29,34,36,44,53,62,74,
80–82,84–86,91,93,95]. This is in line with what is observed by Fischer
et al. [104], however, with the additional bit that Sock Shop is now
marked as deprecated and no longer maintained. This raises the issue
of answering the need for a medium-sized MSA to be used as a reference
SUT for newly proposed microservice testing solutions.

Highlights

• Need for standardized small and medium MSAs to be used
as manageable SUTs.

• TrainTicket is the de-facto standard when needing a
large MSA to be used as SUT to assess proposals
thoroughly.

3 https://github.com/microservices-demo/microservices-demo
4 https://github.com/FudanSELab/train-ticket

https://github.com/microservices-demo/microservices-demo
https://github.com/FudanSELab/train-ticket

F. Ponce et al. Information and Software Technology 188 (2025) 107870
8. Threats to validity

In this section, we discuss the threats to the validity of our study.
Following the categorization proposed by Wohlin et al. [105], and
the guidelines proposed by Ampatzoglou et al. [106], we address four
categories of threats that may affect the validity of our findings.

8.1. External validity

The potential threats to the external validity of a study affect the
applicability of the study’s results in a broader and more general
context [105]. One potential threat to the validity of our results arises
from the selection of primary studies used to achieve our research
objective. To mitigate this, we employed a comprehensive digital liter-
ature indexer (namely Google Scholar), which aggregates publications
from various major digital libraries, such as Scopus and Web of Science.
To further reduce bias and ensure coverage, we applied a recursive,
bidirectional snowballing process, continuing the search until theoret-
ical saturation was reached. Another threat to external validity arises
from the nature of the primary studies themselves, which are limited
to peer-reviewed academic literature. The scope of our review was
deliberately defined prior to execution and explicitly excludes white
and grey literature. As such, we emphasize that our objective is to
provide an overview of the state of the art in microservices testing.
In future work, we plan to complement our results with an analysis of
the state of practice based on white and grey literature available on the
topic.

8.2. Internal validity

The internal validity of a study concerns the validity of the method
employed to analyze the study data [105]. An internal threat to validity
inherent in our chosen research method, namely an SLR, concerns the
soundness of the research steps and the rigor of their execution. To
mitigate such threats, we adhered to established and widely recognized
guidelines for conducting SLRs and snowballing procedures [8,106,
107]. To address potential biases related to subjective interpretation of
the selected literature, we implemented several mitigation strategies.
First, we defined a clear set of selection criteria and data extraction
attributes prior to conducting the review. This structured research
framework was consistently applied throughout the study, with any un-
certainties or ambiguities resolved through thorough discussion among
all researchers. Second, we executed a supplementary automated query
to search for potentially primary studies on a second source of data,
namely the Scopus digital library. Third, regular weekly meetings were
held throughout the review process to ensure ongoing alignment in
literature selection and data extraction decisions.

As outlined by Gusenbauer and Haddaway [108] and Piasecki et al.
[109] the use of Google Scholar constitutes a potential threat to re-
producibility of the study. However, as described by Wholin in his
seminar work ‘‘Guidelines for snowballing in systematic literature stud-
ies and a replication in software engineering’’ [8] the search engine
can constitute a source of data to initiate a snowballing process, as
done in this research. Therefore, on one hand we mitigate potential
threats entailed by utilizing Google scholar by conducting a thorough
bidirectional snowballing process adopting theoretical saturation as
stop criterion. On the other hand, we promote the independent repli-
cation and scrutiny of our work through a set of a priori detailed
research steps and a rigorous replication package including the to-
tality of the intermediate and final research outputs and traces. To
further mitigate potential threats related to utilizing Google Scholar,
we adopted also a supplementary automated query executed on an
additional data source, namely the widely-adopted digital library Sco-
pus, which provided results coherent with those obtained from Google
Scholar (Section 4.2).
12
8.3. Construct and conclusions validity

Construct and conclusion validity relate to the generalizability of
the constructs under investigation and the extent to which the study’s
conclusions are reasonably supported by the available data, respec-
tively [105]. In our SLR, these aspects may be influenced by ob-
server bias and interpretive subjectivity. To mitigate such threats,
we quantitatively evaluated inter-rater agreement using Fleiss’ Kappa,
which indicated a substantial level of agreement among raters (see
Section 4.4). In addition, conclusions were independently derived by
multiple researchers and subsequently reconciled through collaborative
discussion, during which interpretations were cross-checked against the
selected studies and related literature. As an additional mitigation strat-
egy, all intermediate and final artifacts produced during this research,
including the paper selection processes, extracted data, and source code
utilized, are made publicly available for the sake of scrutiny and repli-
cability. Finally, our research procedures are thoroughly documented
and grounded in established, widely adopted methodological guide-
lines [8,106,107], ensuring transparency and helping to identify any
remaining, unrecognized threats to construct and conclusion validity.

9. Conclusion

While MSAs offer substantial benefits in terms of scalability, fault
isolation, and continuous deployment, their distributed and heteroge-
neous nature introduces significant testing complexities. To address
the fragmented and diverse landscape of microservice testing research,
this SLR consolidated and classified 74 primary studies, offering an
overview of current practices and research trends.

Based on the information collected from the primary studies de-
scribed in Sections 5 and 6, and the key findings discussed in Section 7,
we hereafter describe the practical implications of our results (Sec-
tion 9.1) and possible future directions for advancing microservice
testing research (Section 9.2).

9.1. Practical implications

The classification provided in this SLR can serve as a first sup-
port for practitioners facing the fragmented landscape of microser-
vice testing. Practitioners can consult our classification to identify
testing approaches best aligned with their needs and architectural
configurations.

For example, organizations working on new MSAs can benefit from
specification-based functional testing early in the development lifecy-
cle. These approaches ensure API conformance, enforce contract-based
interactions, and detect integration issues before deployment [59–61].

For organizations decomposing a monolithic into an MSA, instead,
system-level regression testing becomes critical to ensure that decom-
posed services preserve functional behavior. Approaches such as mi-
croRTS [28], CIPC [26], and symbolic test mapping [36] support re-
gression tracking, while tools like PPTAM+ [30] and performance trac-
ing can help to monitor performance degradation across versions [30,
78].

As MSA scale, development teams may prioritize non-functional
testing strategies. Our SLR highlights relevant techniques for perfor-
mance and reliability evaluation, which are mainly achieved through
specification-based and fault-based testing strategies, respectively. De-
velopment teams could combine performance efficiency techniques,
like the one proposed by Matar and Jahic [77], with fault-based re-
liability testing (e.g., He et al. [38]). On the other hand, runtime-
informed test strategies, such as budget-aware test selection [37],
ex-vivo testing based on production data [82], and change-based test
prioritization [25], can help to optimize test coverage under time and
resource constraints.

For teams with mature DevOps pipelines, understanding which test-
ing strategies support rapid iteration without compromising safety is es-
sential. The literature gathered during our SLR shows a strong emphasis

F. Ponce et al. Information and Software Technology 188 (2025) 107870
on automated, repeatable, and low-intrusion testing, typically achieved
through specification-based and fault-based strategies. This suggests
that automated, repeatable tests are central for production-ready MSAs.

9.2. Future research directions

Our SLR findings also provide useful insights for researchers, who
in turn can leverage our results to explore potential new research
directions, such as those described below:

• Underexplored Quality Attributes: Although performance and re-
liability have received substantial attention from the collected
primary studies, quality attributes such as maintainability, flex-
ibility, and security remain notably underexplored. Future re-
search should explore how to evaluate these attributes in dynamic
and evolving MSAs.

• Security-oriented Testing Strategies: Among the underexplored qual-
ity attributes, it is astonishing that none of the selected primary
studies directly address security testing on MSAs. This represents
a substantial research gap. Future research could explore how to
test MSAs for security vulnerabilities, such as improper service ex-
posure, insufficient authentication or authorization, and insecure
service-to-service communication [110].

• Empirical Validation: The predominance of studies at TRL 3–4
highlights a research gap for the applicability of the proposed
approaches. Future research should prioritize evaluating testing
approaches in industrial contexts to expose real-world constraints
and challenges. Collaborations with industry partners, coupled
with the development of standardized testbeds and datasets, will
enhance reproducibility and support community-driven bench-
marking.

• Standardized Small and Medium MSAs: There is a lack of stan-
dardized, representative small and medium-scale MSAs for mi-
croservice testing. Future research could focus on developing
a suite of medium-complexity MSAs, including diverse domain
logic and varied inter-service dependencies. This would provide
a bridge between the current overly simplistic toy examples and
the default standard large MSA (i.e., TrainTicket).

• Unexplored Testing Dimensions: Some functional testing dimensions
remain unexplored for microservices. For example, compliance
testing, which verifies adherence to external regulations like data
protection laws or industry-specific standards, is critical, espe-
cially in domains such as finance and healthcare. Additionally,
usability and human–computer interaction testing were not ad-
dressed by the primary studies. This is a notable oversight given
their growing relevance as microservices increasingly underpin
frontend experiences. Future research could explore testing tech-
niques that assess user learnability, efficiency, and resilience to
errors.

CRediT authorship contribution statement

Francisco Ponce: Writing – review & editing, Writing – original
draft, Methodology, Formal analysis, Data curation, Conceptualization.
Roberto Verdecchia: Writing – review & editing, Writing – original
draft, Methodology, Formal analysis, Data curation. Breno Miranda:
Writing – review & editing, Writing – original draft, Methodology,
Formal analysis, Data curation, Conceptualization. Jacopo Soldani:
Writing – review & editing, Writing – original draft, Methodology,
Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
13
Acknowledgments

This work was partly supported by the project FREEDA (CUP:
I53D23003550006), funded by the frameworks PRIN (MUR, Italy) and
Next Generation EU.

Data availability

A replication package for our study is available at https://doi.org/
10.5281/zenodo.16941552.

References

[1] Nane Kratzke, Peter-Christian Quint, Understanding cloud-native applications
after 10 years of cloud computing - A systematic mapping study, J. Syst. Softw.
126 (2017) 1–16, http://dx.doi.org/10.1016/j.jss.2017.01.001.

[2] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, Mike Amundsen, Microservice
architecture: Aligning principles, practices, and culture, first ed., O’Reilly Media,
Inc., 2016.

[3] Amr S. Abdelfattah, Tomas Cerny, Roadmap to reasoning in microservice
systems: A rapid review, Appl. Sci. 13 (3) (2023) http://dx.doi.org/10.3390/
app13031838.

[4] Mikko Pirhonen, Kari Systä, David Hästbacka, The pains and gains of mi-
croservices revisited, in: Product-Focused Software Process Improvement: 25th
International Conference, PROFES 2024, Tartu, Estonia, December 2–4, 2024,
Proceedings, Springer-Verlag, Berlin, Heidelberg, 2024, pp. 238–254, http://dx.
doi.org/10.1007/978-3-031-78386-9_16.

[5] Jacopo Soldani, Damian Andrew Tamburri, Willem-Jan Van Den Heuvel, The
pains and gains of microservices: A systematic grey literature review, J. Syst.
Softw. 146 (2018) 215–232, http://dx.doi.org/10.1016/j.jss.2018.09.082.

[6] Tomas Cerny, Amr S. Abdelfattah, Vincent Bushong, Abdullah Al Maruf, Davide
Taibi, Microservice architecture reconstruction and visualization techniques: A
review, in: 2022 IEEE International Conference on Service-Oriented System
Engineering, SOSE, 2022, pp. 39–48, http://dx.doi.org/10.1109/SOSE55356.
2022.00011.

[7] Barbara Kitchenham, Procedures for performing systematic reviews, Keele, UK,
Keele Univ. 33 (2004) (2004) 1–26.

[8] Claes Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: International Conference on Evaluation
and Assessment in Software Engineering, ACM Press, 2014, pp. 1–10.

[9] Hironori Washizaki, Guide to the Software Engineering Body of Knowledge
(SWEBOK Guide), Version 4.0, IEEE Computer Society, Waseda University,
Japan, 2024, http://www.swebok.org.

[10] James Lewis, Martin Fowler, Microservices: a definition of this new
architectural term, MartinFowler.Com 25 (14–26) (2014) 12.

[11] Sam Newman, Building Microservices: Designing Fine-Grained Systems, O’Reilly
Media, Inc., 2021.

[12] Olaf Zimmermann, Microservices tenets: Agile approach to service development
and deployment, Comput. Science-Research Dev. 32 (3) (2017) 301–310.

[13] Claus Pahl, Antonio Brogi, Jacopo Soldani, Pooyan Jamshidi, Cloud container
technologies: a state-of-the-art review, IEEE Trans. Cloud Comput. 7 (3) (2017)
677–692.

[14] Thomas C. Fountain, Web service oriented architecture:" smart operations" and
it strategy., in: ICWS, 2003, pp. 481–486.

[15] International Organization For Standardization, ISO/IEC 25010 - Systems and
software engineering - Systems and software Quality Requirements and Evalu-
ation (SQuaRE) - System and software quality models, in: System and Software
Quality Models, vol. 2, 2023.

[16] Stefan Fischer, Pirmin Urbanke, Rudolf Ramler, Monika Steidl, Michael
Felderer, An overview of microservice-based systems used for evaluation in
testing and monitoring: a systematic mapping study, in: Proceedings of the
5th ACM/IEEE International Conference on Automation of Software Test (AST
2024), 2024, pp. 182–192.

[17] Israr Ghani, Wan MN Wan-Kadir, Ahmad Mustafa, Muhammad Imran Babir,
Microservice testing approaches: A systematic literature review, Int. J. Integr.
Eng. 11 (8) (2019) 65–80.

[18] Mingxuan Hui, Lu Wang, Hao Li, Ren Yang, Yuxin Song, Huiying Zhuang,
Di Cui, Qingshan Li, Unveiling the microservices testing methods, challenges,
solutions, and solutions gaps: A systematic mapping study, J. Syst. Softw. (2024)
112232.

[19] Manuel Simosa, Frank Siqueira, Contract testing in microservices-based systems:
A survey, in: 2023 IEEE 14th International Conference on Software Engineering
and Service Science, ICSESS, IEEE, 2023, pp. 312–317.

[20] Muhammad Waseem, Peng Liang, Gastón Márquez, Amleto Di Salle, Testing
microservices architecture-based applications: A systematic mapping study, in:
2020 27th Asia-Pacific Software Engineering Conference, APSEC, IEEE, 2020,
pp. 119–128.

https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
https://doi.org/10.5281/zenodo.16941552
http://dx.doi.org/10.1016/j.jss.2017.01.001
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb2
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb2
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb2
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb2
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb2
http://dx.doi.org/10.3390/app13031838
http://dx.doi.org/10.3390/app13031838
http://dx.doi.org/10.3390/app13031838
http://dx.doi.org/10.1007/978-3-031-78386-9_16
http://dx.doi.org/10.1007/978-3-031-78386-9_16
http://dx.doi.org/10.1007/978-3-031-78386-9_16
http://dx.doi.org/10.1016/j.jss.2018.09.082
http://dx.doi.org/10.1109/SOSE55356.2022.00011
http://dx.doi.org/10.1109/SOSE55356.2022.00011
http://dx.doi.org/10.1109/SOSE55356.2022.00011
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb7
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb7
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb7
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb8
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb8
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb8
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb8
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb8
http://www.swebok.org
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb10
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb10
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb10
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb11
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb11
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb11
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb12
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb12
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb12
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb13
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb13
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb13
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb13
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb13
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb14
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb14
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb14
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb15
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb15
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb15
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb15
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb15
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb15
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb15
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb16
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb17
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb17
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb17
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb17
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb17
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb18
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb18
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb18
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb18
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb18
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb18
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb18
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb19
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb19
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb19
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb19
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb19
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb20
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb20
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb20
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb20
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb20
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb20
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb20

F. Ponce et al. Information and Software Technology 188 (2025) 107870
[21] Victor R. Basili, Gianluigi Caldiera, Dieter Rombach, The goal question metric
approach, in: Encyclopedia of Software Engineering, Wiley, 1994, pp. 528–532.

[22] Neal R. Haddaway, Matthew J. Page, Chris C. Pritchard, Luke A. McGuin-
ness, PRISMA2020: An R package and shiny app for producing PRISMA
20202010compliant flow diagrams, with interactivity for optimised digital
transparency and open synthesis, Campbell Syst. Rev. 18 (2) (2022) http:
//dx.doi.org/10.1002/cl2.1230.

[23] Johnny Saldaña, The coding manual for qualitative researchers, third ed., SAGE
Publications, Los Angeles, 2021.

[24] Klaas-Jan Stol, Brian Fitzgerald, The ABC of software engineering research, ACM
Trans. Softw. Eng. Methodol. (TOSEM) 27 (3) (2018) 1–51.

[25] Lizhe Chen, Ji Wu, Haiyan Yang, Kui Zhang, Does PageRank apply to service
ranking in microservice regression testing? Softw. Qual. J. 30 (3) (2022)
757–779.

[26] Lizhe Chen, Xiang Yu, Ji Wu, Haiyan Yang, CIPC: A change impact propagation
computing based technique for microservice regression testing prioritization,
Mob. Inf. Syst. 2021 (1) (2021) 2912240.

[27] Emanuele De Angelis, Guglielmo De Angelis, Alessandro Pellegrini, Maurizio
Proietti, Inferring relations among test programs in microservices applications,
in: 2021 IEEE International Conference on Service-Oriented System Engineering,
SOSE, IEEE, 2021, pp. 114–123.

[28] Daniel Elsner, Daniel Bertagnolli, Alexander Pretschner, Rudi Klaus, Challenges
in regression test selection for end-to-end testing of microservice-based software
systems, in: Proceedings of the 3rd ACM/IEEE International Conference on
Automation of Software Test, 2022, pp. 1–5.

[29] Luca Gazzola, Maayan Goldstein, Leonardo Mariani, Marco Mobilio, Itai Segall,
Alessandro Tundo, Luca Ussi, ExVivoMicroTest: ExVivo testing of microservices,
J. Softw.: Evol. Process. 35 (4) (2023) e2452.

[30] Andrea Janes, Barbara Russo, Automatic performance monitoring and regres-
sion testing during the transition from monolith to microservices, in: 2019
IEEE International Symposium on Software Reliability Engineering Workshops,
ISSREW, IEEE, 2019, pp. 163–168.

[31] Mohammad Javad Kargar, Alireza Hanifizade, Automation of regression test
in microservice architecture, in: 2018 4th International Conference on Web
Research, ICWR, IEEE, 2018, pp. 133–137.

[32] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, I-Hsiu Liu, Ci-Wei Lan, Graph-
based and scenario-driven microservice analysis, retrieval, and testing, Future
Gener. Comput. Syst. 100 (2019) 724–735.

[33] Michael Schneider, Stephanie Zieschinski, Hristo Klechorov, Lukas Brosch,
Patrick Schorsten, Sebastian Abeck, Christof Urbaczek, A test concept for the
development of microservice-based applications, in: ICSEA 2021, 2021, p. 98.

[34] Sheldon Smith, Ethan Robinson, Timmy Frederiksen, Trae Stevens, Tomas
Cerny, Miroslav Bures, Davide Taibi, Benchmarks for end-to-end microservices
testing, in: 2023 IEEE International Conference on Service-Oriented System
Engineering, SOSE, IEEE, 2023, pp. 60–66.

[35] Li-zhe Chen, Ji Wu, Hai-yan Yang, Kui Zhang, A microservice regression testing
selection approach based on belief propagation, J. Cloud Comput. 12 (1) (2023)
20.

[36] Emanuele De Angelis, Guglielmo De Angelis, Alessandro Pellegrini, Maurizio
Proietti, What makes test programs similar in microservices applications? J.
Syst. Softw. 201 (2023) 111674, http://dx.doi.org/10.1016/j.jss.2023.111674,
URL https://www.sciencedirect.com/science/article/pii/S0164121223000699.

[37] Quinn Cooper, Diwakar Krishnamurthy, Yasaman Amannejad, Budget aware
performance test selection for microservices, in: 2024 IEEE 17th International
Conference on Cloud Computing, CLOUD, 2024, pp. 376–385, http://dx.doi.
org/10.1109/CLOUD62652.2024.00049.

[38] Guanglei He, Xiaohui Nie, Ruming Tang, Kun Wang, Zhaoyang Yu, Xidao Wen,
Kanglin Yin, Dan Pei, Guardian of the resiliency: Detecting erroneous software
changes before they make your microservice system less fault-resilient, in: 2024
IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS), 2024,
pp. 1–10, http://dx.doi.org/10.1109/IWQoS61813.2024.10682951.

[39] Hamdy Michael Ayas, Hartmut Fischer, Philipp Leitner, Francisco Gomes
De Oliveira Neto, An empirical analysis of microservices systems using
consumer-driven contract testing, in: 2022 48th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA, IEEE, 2022, pp. 92–99,
http://dx.doi.org/10.1109/SEAA56994.2022.00022.

[40] Huixia Ding, Lei Cheng, Qinyuan Li, An automatic test data generation method
for microservice application, in: 2020 International Conference on Computer
Engineering and Application, ICCEA, 2020, pp. 188–191, http://dx.doi.org/10.
1109/ICCEA50009.2020.00048.

[41] Tingting Duan, Da Li, Jiaxing Xuan, Fanjie Du, Jing Li, Jing Du, Shang Wu,
Design and implementation of intelligent automated testing of microservice
application, in: 2021 IEEE 5th Information Technology, Networking, Electronic
and Automation Control Conference, ITNEC, 5, 2021, pp. 1306–1309, http:
//dx.doi.org/10.1109/ITNEC52019.2021.9587260.

[42] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K. Reiter, Vyas
Sekar, Gremlin: Systematic resilience testing of microservices, in: 2016 IEEE
36th International Conference on Distributed Computing Systems, ICDCS, 2016,
pp. 57–66, http://dx.doi.org/10.1109/ICDCS.2016.11.
14
[43] Na Li, Jun Wang, Chen Chen, Hongfei Hu, Application of API automation
testing based on microservice mode in industry software, in: Proceedings of
the International Conference on Algorithms, Software Engineering, and Network
Security, ASENS ’24, Association for Computing Machinery, New York, NY, USA,
2024, pp. 460–464, http://dx.doi.org/10.1145/3677182.3677264.

[44] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Chengxu Cui, Wei Chen, Jun
Wei, Fitness-guided resilience testing of microservice-based applications, in:
2020 IEEE International Conference on Web Services, ICWS, 2020, pp. 151–158,
http://dx.doi.org/10.1109/ICWS49710.2020.00027.

[45] Gang Luo, Xi Zheng, Huai Liu, Rongbin Xu, Dinesh Nagumothu, Ranjith
Janapareddi, Er Zhuang, Xiao Liu, Verification of microservices using meta-
morphic testing, in: Algorithms and Architectures for Parallel Processing: 19th
International Conference, ICA3PP 2019, Melbourne, VIC, Australia, December
9–11, 2019, Proceedings, Part I 19, Springer, 2020, pp. 138–152.

[46] Shang-Pin Ma, I-Hsiu Liu, Chun-Yu Chen, Yu-Te Wang, Version-based and risk-
enabled testing, monitoring, and visualization of microservice systems, J. Softw.:
Evol. Process. 34 (10) (2022) e2429, http://dx.doi.org/10.1002/smr.2429, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2429.

[47] Shang-Pin Ma, Yu-Yung Yang, Shin-Jie Lee, Hang-Wei Yeh, UTEMS: A unit
testing scheme for event-driven microservices, in: 2023 10th International
Conference on Dependable Systems and their Applications, DSA, 2023, pp.
591–592, http://dx.doi.org/10.1109/DSA59317.2023.00085.

[48] Mazedur Rahman, Jerry Gao, A reusable automated acceptance testing ar-
chitecture for microservices in behavior-driven development, in: 2015 IEEE
Symposium on Service-Oriented System Engineering, IEEE, 2015, pp. 321–325.

[49] Christoph Reile, Mohak Chadha, Valentin Hauner, Anshul Jindal, Benjamin
Hofmann, Michael Gerndt, Bunk8s: Enabling easy integration testing of mi-
croservices in kubernetes, in: 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER, 2022, pp. 459–463, http://dx.
doi.org/10.1109/SANER53432.2022.00062.

[50] Yang Wang, Lei Cheng, Xin Sun, Design and research of microservice appli-
cation automation testing framework, in: 2019 International Conference on
Information Technology and Computer Application, ITCA, 2019, pp. 257–260,
http://dx.doi.org/10.1109/ITCA49981.2019.00063.

[51] Chu-Fei Wu, Shang-Pin Ma, An-Chi Shau, Hang-Wei Yeh, Testing for event-
driven microservices based on consumer-driven contracts and state models,
in: 2022 29th Asia-Pacific Software Engineering Conference, APSEC, 2022, pp.
467–471, http://dx.doi.org/10.1109/APSEC57359.2022.00064.

[52] Shenglin Zhang, Jun Zhu, Bowen Hao, Yongqian Sun, Xiaohui Nie, Jingwen
Zhu, Xilin Liu, Xiaoqian Li, Yuchi Ma, Dan Pei, Fault diagnosis for test
alarms in microservices through multi-source data, in: Companion Proceedings
of the 32nd ACM International Conference on the Foundations of Software
Engineering, in: FSE 2024, Association for Computing Machinery, New York,
NY, USA, 2024, pp. 115–125, http://dx.doi.org/10.1145/3663529.3663833.

[53] Amr S. Abdelfattah, Tomas Cerny, Jorge Yero, Eunjee Song, Davide Taibi, Test
coverage in microservice systems: An automated approach to E2E and API
test coverage metrics, Electronics 13 (10) (2024) http://dx.doi.org/10.3390/
electronics13101913.

[54] Theofanis Vassiliou-Gioles, Quality assurance of micro-services - when to trust
your micro-service test results? in: 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security Companion (QRS-C), 2021, pp.
01–06, http://dx.doi.org/10.1109/QRS-C55045.2021.00024.

[55] Chu-Fei Wu, Shang-Pin Ma, An-Chi Shau, Hang-Wei Yeh, Testing for event-
driven microservices based on consumer-driven contracts and state models,
in: 2022 29th Asia-Pacific Software Engineering Conference, APSEC, 2022, pp.
467–471, http://dx.doi.org/10.1109/APSEC57359.2022.00064.

[56] Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, Wen-Tin Lee, Shin-Jie Lee, Nien-
Lin Hsueh, Using service dependency graph to analyze and test microservices,
in: 2018 IEEE 42nd Annual Computer Software and Applications Conference,
COMPSAC, vol. 02, 2018, pp. 81–86, http://dx.doi.org/10.1109/COMPSAC.
2018.10207.

[57] Mustafa Almutawa, Qusai Ghabrah, Marco Canini, Towards LLM-assisted system
testing for microservices, in: 2024 IEEE 44th International Conference on
Distributed Computing Systems Workshops, ICDCSW, IEEE, 2024, pp. 29–34,
http://dx.doi.org/10.1109/ICDCSW63686.2024.00011.

[58] Zhenhe Yao, Haowei Ye, Changhua Pei, Guang Cheng, Guangpei Wang, Zhiwei
Liu, Hongwei Chen, Hang Cui, Zeyan Li, Jianhui Li, Gaogang Xie, Dan Pei,
SparseRCA: Unsupervised root cause analysis in sparse microservice testing
traces, in: 2024 IEEE 35th International Symposium on Software Reliability En-
gineering, ISSRE, 2024, pp. 391–402, http://dx.doi.org/10.1109/ISSRE62328.
2024.00045.

[59] Pattarakrit Rattanukul, Chansida Makaranond, Pumipat Watanakulcharus,
Chaiyong Ragkhitwetsagul, Tanapol Nearunchorn, Vasaka Visoottiviseth,
Morakot Choetkiertikul, Thanwadee Sunetnanta, Microusity: A testing tool for
backends for frontends (BFF) microservice systems, in: 2023 IEEE/ACM 31st
International Conference on Program Comprehension, ICPC, IEEE, 2023, pp.
74–78.

[60] Nikita Ashikhmin, Gleb Radchenko, Andrei Tchernykh, RAML-based mock ser-
vice generator for microservice applications testing, in: Supercomputing: Third
Russian Supercomputing Days, RuSCDays 2017, Moscow, Russia, September
25–26, 2017, Revised Selected Papers 3, Springer, 2017, pp. 456–467.

http://refhub.elsevier.com/S0950-5849(25)00209-5/sb21
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb21
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb21
http://dx.doi.org/10.1002/cl2.1230
http://dx.doi.org/10.1002/cl2.1230
http://dx.doi.org/10.1002/cl2.1230
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb23
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb23
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb23
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb24
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb24
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb24
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb25
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb25
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb25
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb25
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb25
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb26
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb26
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb26
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb26
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb26
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb27
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb27
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb27
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb27
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb27
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb27
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb27
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb28
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb28
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb28
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb28
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb28
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb28
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb28
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb29
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb29
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb29
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb29
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb29
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb30
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb30
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb30
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb30
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb30
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb30
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb30
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb31
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb31
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb31
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb31
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb31
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb32
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb32
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb32
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb32
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb32
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb33
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb33
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb33
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb33
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb33
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb34
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb34
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb34
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb34
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb34
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb34
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb34
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb35
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb35
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb35
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb35
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb35
http://dx.doi.org/10.1016/j.jss.2023.111674
https://www.sciencedirect.com/science/article/pii/S0164121223000699
http://dx.doi.org/10.1109/CLOUD62652.2024.00049
http://dx.doi.org/10.1109/CLOUD62652.2024.00049
http://dx.doi.org/10.1109/CLOUD62652.2024.00049
http://dx.doi.org/10.1109/IWQoS61813.2024.10682951
http://dx.doi.org/10.1109/SEAA56994.2022.00022
http://dx.doi.org/10.1109/ICCEA50009.2020.00048
http://dx.doi.org/10.1109/ICCEA50009.2020.00048
http://dx.doi.org/10.1109/ICCEA50009.2020.00048
http://dx.doi.org/10.1109/ITNEC52019.2021.9587260
http://dx.doi.org/10.1109/ITNEC52019.2021.9587260
http://dx.doi.org/10.1109/ITNEC52019.2021.9587260
http://dx.doi.org/10.1109/ICDCS.2016.11
http://dx.doi.org/10.1145/3677182.3677264
http://dx.doi.org/10.1109/ICWS49710.2020.00027
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb45
http://dx.doi.org/10.1002/smr.2429
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2429
http://dx.doi.org/10.1109/DSA59317.2023.00085
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb48
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb48
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb48
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb48
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb48
http://dx.doi.org/10.1109/SANER53432.2022.00062
http://dx.doi.org/10.1109/SANER53432.2022.00062
http://dx.doi.org/10.1109/SANER53432.2022.00062
http://dx.doi.org/10.1109/ITCA49981.2019.00063
http://dx.doi.org/10.1109/APSEC57359.2022.00064
http://dx.doi.org/10.1145/3663529.3663833
http://dx.doi.org/10.3390/electronics13101913
http://dx.doi.org/10.3390/electronics13101913
http://dx.doi.org/10.3390/electronics13101913
http://dx.doi.org/10.1109/QRS-C55045.2021.00024
http://dx.doi.org/10.1109/APSEC57359.2022.00064
http://dx.doi.org/10.1109/COMPSAC.2018.10207
http://dx.doi.org/10.1109/COMPSAC.2018.10207
http://dx.doi.org/10.1109/COMPSAC.2018.10207
http://dx.doi.org/10.1109/ICDCSW63686.2024.00011
http://dx.doi.org/10.1109/ISSRE62328.2024.00045
http://dx.doi.org/10.1109/ISSRE62328.2024.00045
http://dx.doi.org/10.1109/ISSRE62328.2024.00045
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb59
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb60
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb60
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb60
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb60
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb60
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb60
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb60

F. Ponce et al. Information and Software Technology 188 (2025) 107870
[61] Du Lin, Fang Liping, Han Jiajia, Tang Qingzhao, Sun Changhua, Zhang Xiaohui,
Research on microservice application testing based on mock technology, in:
2020 International Conference on Virtual Reality and Intelligent Systems,
ICVRIS, IEEE, Placeholder Address, 2020, pp. 815–819.

[62] Amr S. Abdelfattah, Tomas Cerny, Jorge Yero Salazar, Austin Lehman, Joshua
Hunter, Ashley Bickham, Davide Taibi, End-to-end test coverage metrics in
microservice systems: An automated approach, in: European Conference on
Service-Oriented and Cloud Computing, Springer, One New York Plaza, Suite
4600, New York, 2023, pp. 35–51.

[63] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang,
Linxiao Jing, Tianjun Weng, Xinmeng Sun, Xiaoyun Li, Microrank: End-to-
end latency issue localization with extended spectrum analysis in microservice
environments, in: Proceedings of the Web Conference 2021, 2021, pp.
3087–3098.

[64] Li Wu, Johan Tordsson, Erik Elmroth, Odej Kao, Microrca: Root cause local-
ization of performance issues in microservices, in: NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium, IEEE, 2020, pp. 1–9.

[65] Henning Schulz, Tobias Angerstein, Dušan Okanović, André van Hoorn,
Microservice-tailored generation of session-based workload models for rep-
resentative load testing, in: 2019 IEEE 27th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, MASCOTS, 2019, pp. 323–335, http://dx.doi.org/10.1109/MASCOTS.
2019.00043.

[66] Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Barbara Russo, André van
Hoorn, Henning Schulz, Daniel Menasché, Vilc Rufino, Scalability assess-
ment of microservice architecture deployment configurations: A domain-based
approach leveraging operational profiles and load tests, J. Syst. Softw.
165 (2020) 110564, http://dx.doi.org/10.1016/j.jss.2020.110564, URL https:
//www.sciencedirect.com/science/article/pii/S016412122030042X.

[67] Matteo Camilli, Andrea Janes, Barbara Russo, Automated test-based learning
and verification of performance models for microservices systems, J. Syst. Softw.
187 (2022) 111225.

[68] André de Camargo, Ivan Salvadori, Ronaldo dos Santos Mello, Frank Siqueira,
An architecture to automate performance tests on microservices, iiWAS ’16,
Association for Computing Machinery, New York, NY, USA, 2016, pp. 422–429,
http://dx.doi.org/10.1145/3011141.3011179.

[69] Vincenzo Ferme, Cesare Pautasso, A declarative approach for performance tests
execution in continuous software development environments, in: Proceedings
of the 2018 ACM/SPEC International Conference on Performance Engineering,
2018, pp. 261–272.

[70] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, Christina Delimitrou, Sage:
practical and scalable ML-driven performance debugging in microservices, in:
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, 2021, pp. 135–151.

[71] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi,
Christina Delimitrou, Seer: Leveraging big data to navigate the complexity of
performance debugging in cloud microservices, in: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 19–33.

[72] Luca Giamattei, Antonio Guerriero, Ivano Malavolta, Cristian Mascia, Roberto
Pietrantuono, Stefano Russo, Identifying performance issues in microservice
architectures through causal reasoning, in: Proceedings of the 5th ACM/IEEE
International Conference on Automation of Software Test (AST 2024), 2024,
pp. 149–153.

[73] JinJin Lin, Pengfei Chen, Zibin Zheng, Microscope: Pinpoint performance
issues with causal graphs in micro-service environments, in: Service-Oriented
Computing: 16th International Conference, ICSOC 2018, Hangzhou, China,
November 12-15, 2018, Proceedings 16, Springer, 2018, pp. 3–20.

[74] Lei Liu, Zhiying Tu, Xiang He, Xiaofei Xu, Zhongjie Wang, An empirical study
on underlying correlations between runtime performance deficiencies and ‘‘bad
smells’’ of microservice systems, in: 2021 IEEE International Conference on Web
Services, ICWS, IEEE, 2021, pp. 751–757.

[75] Zhijie Lu, Research on performance optimization method of test management
system based on microservices, in: 2023 4th International Conference on
Computer Engineering and Application, ICCEA, IEEE, 2023, pp. 445–451.

[76] Raghad Matar, Jasmin Jahić, An approach for evaluating the potential impact
of anti-patterns on microservices performance, in: 2023 IEEE 20th International
Conference on Software Architecture Companion (ICSA-C), IEEE, 2023, pp.
167–170.

[77] Raghad Matar, Jasmin Jahic, MDEPT: Microservices design evaluator and
performance tester, in: European Conference on Software Architecture, Springer,
2024, pp. 138–154.

[78] Alwi Maulana, Pradana Ananda Raharja, Design and testing on migration
of remiss-supply in banking system to microservice architecture, in: 2022
IEEE International Conference on Communication, Networks and Satellite,
COMNETSAT, IEEE, 2022, pp. 168–173.

[79] Manuel Peuster, Christian Dröge, Clemens Boos, Holger Karl, Joint testing and
profiling of microservice-based network services using TTCN-3, ICT Express 5
(2) (2019) 150–153.
15
[80] Matteo Camilli, Carmine Colarusso, Barbara Russo, Eugenio Zimeo, Actor-driven
decomposition of microservices through multi-level scalability assessment,
ACM Trans. Softw. Eng. Methodol. 32 (5) (2023) http://dx.doi.org/10.1145/
3583563.

[81] Qiugen Pei, Zheheng Liang, Zeling Wang, Lei Cui, Zhenyue Long, Guoquan Wu,
Search-based performance testing and analysis for microservice-based digital
power applications, in: 2023 6th International Conference on Energy, Electrical
and Power Engineering, CEEPE, 2023, pp. 1522–1527, http://dx.doi.org/10.
1109/CEEPE58418.2023.10165808.

[82] Matteo Camilli, Antonio Guerriero, Andrea Janes, Barbara Russo, Stefano Russo,
Microservices integrated performance and reliability testing, in: 2022 IEEE/ACM
International Conference on Automation of Software Test, AST, 2022, pp.
29–39, http://dx.doi.org/10.1145/3524481.3527233.

[83] Anshul Jindal, Vladimir Podolskiy, Michael Gerndt, Performance modeling
for cloud microservice applications, in: Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, ICPE ’19, Association
for Computing Machinery, New York, NY, USA, 2019, pp. 25–32, http://dx.
doi.org/10.1145/3297663.3310309.

[84] Luca Giamattei, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo, As-
sessing black-box test case generation techniques for microservices, in: Antonio
Vallecillo, Joost Visser, Ricardo Pérez-Castillo (Eds.), Quality of Information and
Communications Technology, Springer International Publishing, Cham, 2022,
pp. 46–60.

[85] Luca Giamattei, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo, Auto-
mated functional and robustness testing of microservice architectures, J. Syst.
Softw. 207 (2024) 111857, http://dx.doi.org/10.1016/j.jss.2023.111857.

[86] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, Dan Ding,
Delta debugging microservice systems, in: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE ’18, Asso-
ciation for Computing Machinery, New York, NY, USA, 2018, pp. 802–807,
http://dx.doi.org/10.1145/3238147.3240730.

[87] Roberto Pietrantuono, Stefano Russo, Antonio Guerriero, Run-time reliability
estimation of microservice architectures, in: 2018 IEEE 29th International
Symposium on Software Reliability Engineering, ISSRE, 2018, pp. 25–35, http:
//dx.doi.org/10.1109/ISSRE.2018.00014.

[88] Roberto Pietrantuono, Stefano Russo, Antonio Guerriero, Testing microservice
architectures for operational reliability, Softw. Test. Verif. Reliab. 30 (2) (2020)
e1725, http://dx.doi.org/10.1002/stvr.1725, e1725 stvr.1725.

[89] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali Basiri, Lorin
Hochstein, Automating failure testing research at internet scale, in: Proceedings
of the Seventh ACM Symposium on Cloud Computing, SoCC ’16, Association
for Computing Machinery, New York, NY, USA, 2016, pp. 17–28, http://dx.doi.
org/10.1145/2987550.2987555.

[90] Michael Assad, Christopher S. Meiklejohn, Heather Miller, Stephan Krusche,
Can my microservice tolerate an unreliable database? Resilience testing with
fault injection and visualization, in: Proceedings of the 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings, in:
ICSE-Companion ’24, Association for Computing Machinery, New York, NY,
USA, 2024, pp. 54–58, http://dx.doi.org/10.1145/3639478.3640021.

[91] Hongyang Chen, Pengfei Chen, Guangba Yu, Xiaoyun Li, Zilong He, MicroFI:
Non-intrusive and prioritized request-level fault injection for microservice
applications, IEEE Trans. Dependable Secur. Comput. 21 (5) (2024) 4921–4938,
http://dx.doi.org/10.1109/TDSC.2024.3363902.

[92] Christopher S. Meiklejohn, Andrea Estrada, Yiwen Song, Heather Miller, Rohan
Padhye, Service-level fault injection testing, in: Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC ’21, Association for Computing Machinery,
New York, NY, USA, 2021, pp. 388–402, http://dx.doi.org/10.1145/3472883.
3487005.

[93] Huayao Wu, Senyao Yu, Xintao Niu, Changhai Nie, Yu Pei, Qiang He, Yun
Yang, Enhancing fault injection testing of service systems via fault-tolerance
bottleneck, IEEE Trans. Softw. Eng. 49 (8) (2023) 4097–4114, http://dx.doi.
org/10.1109/TSE.2023.3285357.

[94] Na Wu, Decheng Zuo, Zhan Zhang, An extensible fault tolerance testing
framework for microservice-based cloud applications, in: Proceedings of the
4th International Conference on Communication and Information Processing,
ICCIP ’18, Association for Computing Machinery, New York, NY, USA, 2018,
pp. 38–42, http://dx.doi.org/10.1145/3290420.3290476.

[95] Tianyi Yang, Cheryl Lee, Jiacheng Shen, Yuxin Su, Cong Feng, Yongqiang Yang,
Michael R. Lyu, MicroRes: Versatile resilience profiling in microservices via
degradation dissemination indexing, in: Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, in: ISSTA 2024,
Association for Computing Machinery, New York, NY, USA, 2024, pp. 325–337,
http://dx.doi.org/10.1145/3650212.3652131.

[96] André De Camargo, Ivan Salvadori, Ronaldo dos Santos Mello, Frank Siqueira,
An architecture to automate performance tests on microservices, in: Proceedings
of the 18th International Conference on Information Integration and Web-Based
Applications and Services, 2016, pp. 422–429.

[97] Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin
Zhang, Chenyang Jia, Zhaogang Wang, Dan Pei, Localizing failure root causes

http://refhub.elsevier.com/S0950-5849(25)00209-5/sb61
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb61
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb61
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb61
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb61
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb61
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb61
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb62
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb63
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb64
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb64
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb64
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb64
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb64
http://dx.doi.org/10.1109/MASCOTS.2019.00043
http://dx.doi.org/10.1109/MASCOTS.2019.00043
http://dx.doi.org/10.1109/MASCOTS.2019.00043
http://dx.doi.org/10.1016/j.jss.2020.110564
https://www.sciencedirect.com/science/article/pii/S016412122030042X
https://www.sciencedirect.com/science/article/pii/S016412122030042X
https://www.sciencedirect.com/science/article/pii/S016412122030042X
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb67
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb67
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb67
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb67
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb67
http://dx.doi.org/10.1145/3011141.3011179
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb69
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb69
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb69
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb69
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb69
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb69
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb69
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb70
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb70
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb70
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb70
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb70
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb70
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb70
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb71
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb72
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb73
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb73
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb73
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb73
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb73
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb73
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb73
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb74
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb74
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb74
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb74
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb74
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb74
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb74
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb75
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb75
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb75
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb75
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb75
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb76
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb76
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb76
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb76
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb76
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb76
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb76
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb77
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb77
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb77
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb77
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb77
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb78
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb78
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb78
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb78
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb78
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb78
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb78
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb79
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb79
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb79
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb79
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb79
http://dx.doi.org/10.1145/3583563
http://dx.doi.org/10.1145/3583563
http://dx.doi.org/10.1145/3583563
http://dx.doi.org/10.1109/CEEPE58418.2023.10165808
http://dx.doi.org/10.1109/CEEPE58418.2023.10165808
http://dx.doi.org/10.1109/CEEPE58418.2023.10165808
http://dx.doi.org/10.1145/3524481.3527233
http://dx.doi.org/10.1145/3297663.3310309
http://dx.doi.org/10.1145/3297663.3310309
http://dx.doi.org/10.1145/3297663.3310309
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb84
http://dx.doi.org/10.1016/j.jss.2023.111857
http://dx.doi.org/10.1145/3238147.3240730
http://dx.doi.org/10.1109/ISSRE.2018.00014
http://dx.doi.org/10.1109/ISSRE.2018.00014
http://dx.doi.org/10.1109/ISSRE.2018.00014
http://dx.doi.org/10.1002/stvr.1725
http://dx.doi.org/10.1145/2987550.2987555
http://dx.doi.org/10.1145/2987550.2987555
http://dx.doi.org/10.1145/2987550.2987555
http://dx.doi.org/10.1145/3639478.3640021
http://dx.doi.org/10.1109/TDSC.2024.3363902
http://dx.doi.org/10.1145/3472883.3487005
http://dx.doi.org/10.1145/3472883.3487005
http://dx.doi.org/10.1145/3472883.3487005
http://dx.doi.org/10.1109/TSE.2023.3285357
http://dx.doi.org/10.1109/TSE.2023.3285357
http://dx.doi.org/10.1109/TSE.2023.3285357
http://dx.doi.org/10.1145/3290420.3290476
http://dx.doi.org/10.1145/3650212.3652131
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb96
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb96
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb96
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb96
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb96
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb96
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb96

F. Ponce et al. Information and Software Technology 188 (2025) 107870
in a microservice through causality inference, in: 2020 IEEE/ACM 28th In-
ternational Symposium on Quality of Service (IWQoS), 2020, pp. 1–10, http:
//dx.doi.org/10.1109/IWQoS49365.2020.9213058.

[98] Peter Alvaro, Joshua Rosen, Joseph M. Hellerstein, Lineage-driven fault in-
jection, in: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, Association for Computing Machinery,
New York, NY, USA, 2015, pp. 331–346, http://dx.doi.org/10.1145/2723372.
2723711.

[99] Orges Cico, Letizia Jaccheri, Anh Nguyen-Duc, He Zhang, Exploring the
intersection between software industry and Software Engineering education-A
systematic mapping of Software Engineering Trends, J. Syst. Softw. 172 (2021)
110736.

[100] Justus Bogner, Roberto Verdecchia, Ilias Gerostathopoulos, Characterizing tech-
nical debt and antipatterns in AI-based systems: A systematic mapping study,
in: 2021 IEEE/ACM International Conference on Technical Debt (TechDebt),
IEEE, 2021, pp. 64–73.

[101] Roberto Verdecchia, Ivano Malavolta, Patricia Lago, Architectural technical debt
identification: The research landscape, in: Proceedings of the 2018 International
Conference on Technical Debt, 2018, pp. 11–20.

[102] Paolo Di Francesco, Ivano Malavolta, Patricia Lago, Research on architecting
microservices: Trends, focus, and potential for industrial adoption, in: 2017
IEEE International Conference on Software Architecture, ICSA, IEEE, 2017, pp.
21–30.

[103] Antonia Bertolino, Software testing research: Achievements, challenges, dreams,
in: Future of Software Engineering, FOSE’07, IEEE, 2007, pp. 85–103.
16
[104] Stefan Fischer, Pirmin Urbanke, Rudolf Ramler, Monika Steidl, Michael
Felderer, An overview of microservice-based systems used for evaluation in
testing and monitoring: A systematic mapping study, in: Proceedings of the
5th ACM/IEEE International Conference on Automation of Software Test (AST
2024), AST ’24, Association for Computing Machinery, New York, NY, USA,
2024, pp. 182–192, http://dx.doi.org/10.1145/3644032.3644445.

[105] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
Anders Wesslén, et al., Experimentation in Software Engineering, vol. 236,
Springer, 2012.

[106] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, Alexan-
der Chatzigeorgiou, Identifying, categorizing and mitigating threats to validity
in software engineering secondary studies, Inf. Softw. Technol. 106 (2019)
201–230, http://dx.doi.org/10.1016/j.infsof.2018.10.006, URL https://www.
sciencedirect.com/science/article/pii/S0950584918302106.

[107] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John
Bailey, Stephen Linkman, Systematic literature reviews in software engineering
– a systematic literature review, Inf. Softw. Technol. 51 (1) (2009) 7–15, http://
dx.doi.org/10.1016/j.infsof.2008.09.009, URL https://www.sciencedirect.com/
science/article/pii/S0950584908001390. Special Section - Most Cited Articles
in 2002 and Regular Research Papers.

[108] Michael Gusenbauer, Neal R. Haddaway, Which academic search systems are
suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities
of google scholar, PubMed, and 26 other resources, Res. Synth. Methods 11 (2)
(2020) 181–217.

[109] Jan Piasecki, Marcin Waligora, Vilius Dranseika, Google search as an additional
source in systematic reviews, Sci. Eng. Ethics 24 (2018) 809–810.

[110] Francisco Ponce, Jacopo Soldani, Hernán Astudillo, Antonio Brogi, Smells and
refactorings for microservices security: A multivocal literature review, J. Syst.
Softw. 192 (2022) 111393, http://dx.doi.org/10.1016/j.jss.2022.111393.

http://dx.doi.org/10.1109/IWQoS49365.2020.9213058
http://dx.doi.org/10.1109/IWQoS49365.2020.9213058
http://dx.doi.org/10.1109/IWQoS49365.2020.9213058
http://dx.doi.org/10.1145/2723372.2723711
http://dx.doi.org/10.1145/2723372.2723711
http://dx.doi.org/10.1145/2723372.2723711
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb99
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb99
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb99
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb99
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb99
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb99
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb99
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb100
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb100
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb100
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb100
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb100
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb100
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb100
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb101
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb101
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb101
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb101
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb101
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb102
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb102
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb102
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb102
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb102
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb102
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb102
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb103
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb103
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb103
http://dx.doi.org/10.1145/3644032.3644445
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb105
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb105
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb105
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb105
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb105
http://dx.doi.org/10.1016/j.infsof.2018.10.006
https://www.sciencedirect.com/science/article/pii/S0950584918302106
https://www.sciencedirect.com/science/article/pii/S0950584918302106
https://www.sciencedirect.com/science/article/pii/S0950584918302106
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2008.09.009
https://www.sciencedirect.com/science/article/pii/S0950584908001390
https://www.sciencedirect.com/science/article/pii/S0950584908001390
https://www.sciencedirect.com/science/article/pii/S0950584908001390
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb108
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb108
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb108
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb108
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb108
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb108
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb108
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb109
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb109
http://refhub.elsevier.com/S0950-5849(25)00209-5/sb109
http://dx.doi.org/10.1016/j.jss.2022.111393

	Microservices testing: A systematic literature review
	Introduction
	Background
	Microservices
	Software Testing
	Test Levels
	Test Techniques
	Objectives of Testing

	ISO/IEC 25010 Software Quality Standard

	Related Work
	Research Design
	Phase 1a: Automated Literature Search
	Phase 1b: Supplementary Automated Query
	Phase 2: Duplicate Removal
	Phase 3: Manual Selection
	Phase 4: Snowballing
	Phase 5: Data Extraction and Synthesis

	Functional Testing
	Regression Testing
	Conformance Testing
	Interface and Application Program Interface Testing

	Non-Functional Testing
	Flexibility
	Performance Efficiency
	Reliability

	Discussion
	When and Where: Publication Trends
	Why: Testing Levels and Objectives
	How: Study Types and Testing Strategies
	What: SUTs

	Threats to Validity
	External Validity
	Internal Validity
	Construct and Conclusions Validity

	Conclusion
	Practical Implications
	Future Research Directions

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

