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 A B S T R A C T

Context: Microservices offer scalability and resilience for modern cloud-native applications but present 
significant challenges in software testing due to their distributed and heterogeneous nature.
Objective: This study aims to consolidate and classify the current body of knowledge on microservice testing 
through a systematic literature review, providing actionable insights for both researchers and practitioners.
Methods: Following established guidelines for systematic literature reviews in software engineering, we 
identified 74 primary studies relevant to microservices testing. These studies were systematically categorized 
using the SWEBOK (Software Engineering Body of Knowledge) taxonomy for software testing. Specifically, we 
classified the identified techniques according to their testing objectives, levels, strategies, and types. We also 
evaluated the study types to gauge the maturity and readiness of the current state-of-the-art in microservice 
testing.
Results: System testing emerged as the most frequently investigated testing level, followed by integration, 
unit, and acceptance testing. Conformance, regression, and API testing were the most common functional 
testing objectives, while performance efficiency and reliability were instead predominant in the case of non-
functional testing. Specification-based testing strategies were the most adopted, followed by usage-based 
and fault-based ones. Additionally, most studies employed laboratory experiments and had low-to-medium 
technology readiness levels, indicating early-stage maturity. The systems under test varied in size and domain, 
with TrainTicket being the most widely used reference benchmark for large systems.
Conclusion: While significant progress has been made in microservice testing, the field remains fragmented, 
with notable gaps in areas such as, e.g., flexibility and security testing. The dominance of early-stage proposals 
highlights the need for more empirical validation and industry-grade benchmarks to facilitate broader adoption. 
This review offers a structured roadmap for future research and practical adoption in microservices testing.
. Introduction

Microservices (MSs) enable realizing cloud-native applications [1], 
ringing various advantages such as fault resilience and scalability [2]. 
his motivates why many IT companies (e.g., Amazon, Meta, Netflix, 
nd Spotify) already deliver their core business through microservice-
ased architectures (MSAs) [3].
The advantages of MSAs come at the price of some pains, one of the 
ost prominent being the inherent complexity of testing MSAs [4,5]. 
n MSA is composed of various heterogeneous services that interact 
o deliver the application’s business. The number of services form-
ng an MSA, together with their interactions, gives rise to complex 
oftware architectures [6]. This in turn makes it challenging to test 
SAs, especially at the level of system and integration tests. Concrete 
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examples of difficult testing tasks are, e.g., measuring the performances 
of interacting services or assessing the overall user experience from the 
frontend of an MSA [5].

Existing solutions for testing MSAs are, however, scattered across 
different pieces of literature. They also often focus only on specific 
testing levels (i.e., unit, integration, or system testing), as well as 
on specific testing objectives, e.g., conformance, regression, or perfor-
mance testing. This fragmentation of the body of knowledge on MS 
testing poses challenges for practitioners seeking to implement a robust 
testing strategy for their MSAs, as well as for researchers wishing to 
contribute and advance the state-of-the-art in MS testing.

To this end, this article aims at systematically reviewing the existing 
solutions for testing MSAs. By relying on established protocols for 
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conducting systematic literature reviews (SLRs) in software engineer-
ing [7,8], we systematically identified 74 primary studies contributing 
to the realm of MS testing, which we then classified by relying on the 
SWEBOK (Software Engineering Body of Knowledge [9]) taxonomy for 
software testing. More precisely, we classified the existing MS testing 
techniques based on the testing objective, level, strategy, and type, 
while also assessing the study types to assess the readiness of the 
state-of-the-art in MS testing. This article reports on the results of our 
systematic review by also discussing the main findings on the 4W1H 
(i.e., what, when, where, why, and how) of testing MSAs.

We believe that the SLR presented in this article can provide benefits 
to both practitioners and researchers working with MSAs. We indeed 
not only help them in finding the testing techniques most suited to the 
needs of their MSAs, but we also discuss some open challenges and 
possible research directions on MS testing.

The rest of this article is organized as follows.  Sections 2 and 3 
provide the necessary background and discuss related work, respec-
tively. Section 4 illustrates the SLR process we followed, aiming at 
encouraging its repeatability. Sections 5 and 6 report on the iden-
tified techniques for functional and non-functional testing of MSAs, 
respectively. Section 7 discussing the 4W1H of testing MSAs. Finally, 
Sections 8 and 9 discuss threats to validity and draw some concluding 
remarks, respectively.

2. Background

2.1. Microservices

Microservices were first introduced in 2014 by Lewis and Fowler in 
their influential blog post [10], where they outlined an architectural 
style for developing applications as collections of small, independent 
services. Each microservice is designed around a specific business 
capability, operates in its own process, and communicates with other 
services within the application via lightweight protocols (such as HTTP 
APIs). These services are typically organized around business func-
tions and can be developed, deployed, and scaled independently, in 
contrast to monolithic systems where the entire application is tightly 
integrated [11]. This architectural approach can be viewed as an evo-
lution of Service-Oriented Architecture (SOA), which emphasizes ser-
vice independence, self-management, and lightweight interaction [12]. 
Microservices are inherently loosely coupled, enabling independent 
deployment through automated, often containerized, platforms [13]. 
This decentralization supports key characteristics such as continuous 
delivery and the use of lightweight protocols for inter-service com-
munication. This independence in deployment supports scalability and 
flexibility, making microservices a natural fit for service-oriented archi-
tectures [14].

2.2. Software testing

Software testing is a crucial activity within the software develop-
ment lifecycle, aimed at verifying that a system functions correctly 
under various conditions. In this work, we categorize the primary 
studies using the SWEBOK taxonomy for software testing. Next, we 
provide an overview of the key test levels, techniques, and objectives, 
as outlined in the SWEBOK [9].

2.2.1. Test levels
The SWEBOK defines four test levels, each targeting different scopes 

and objectives [9]. Unit Testing focuses on verifying the correctness 
of individual components or subprograms in isolation. It is often con-
ducted by developers to ensure that each unit performs as intended.
Integration Testing examines the interaction between integrated units 
or components. It aims to uncover interface errors and assess in-
teroperability between modules or systems. System Testing validates 
the complete and integrated system against specified requirements. It 
2 
addresses both functional and non-functional aspects, such as perfor-
mance, reliability, and security. Acceptance Testing determines whether 
the software meets user needs and requirements. This testing level 
is typically carried out by end users or clients, focusing on usability 
and operational validation to ensure the software is fully ready for 
deployment.

2.2.2. Test techniques
A broad spectrum of test techniques supports the selection and 

design of effective test cases [9]. Specification-based techniques (black-
box testing) derive test cases from requirements and functional spec-
ifications (e.g., equivalence partitioning, boundary value analysis).
Structure-based techniques (white-box testing) leverage knowledge of 
the software’s internal structure (e.g., statement and branch cover-
age). Experience-based techniques rely on testers’ intuition and prior 
experience (e.g., error guessing, exploratory testing). Fault-based and 
mutation techniques simulate or inject faults to assess the sensitivity and 
fault-detection power of test suites. Usage-based techniques model real-
world usage to evaluate reliability and performance under operational 
conditions.

2.2.3. Objectives of testing
Testing can serve multiple objectives depending on context and 

development phase. Conformance Testing verifies that a software system 
adheres to predefined specifications, standards, design rules, or coding 
guidelines. It ensures that the implementation correctly follows formal 
definitions such as communication protocols, file formats, or industry 
standards. Regression testing focuses on confirming that recent changes 
to the codebase have not unintentionally affected existing functionality. 
It involves re-executing previously passed test cases to detect any 
newly introduced defects. Interface and Application Program Interface 
(API) Testing aims to validate the communication between different 
software components or systems, ensuring correct data exchange and 
interaction behavior. For APIs, this involves testing endpoint responses, 
parameter handling, error conditions, and compliance with interface 
specifications. This type of testing is crucial in modular and service-
oriented architectures, where robust and predictable interfaces support 
system integration, scalability, and external interoperability.

For a more comprehensive overview of additional objectives of 
testing, we refer the reader to the SWEBOK [9].

2.3. ISO/IEC 25010 software quality standard

Software quality models are frameworks that define, measure, and 
assess the quality of software products. These models identify key at-
tributes of software quality and establish criteria for evaluating whether 
a software system meets specific standards. To classify primary studies 
focused on non-functional testing in terms of testing objectives, we 
rely on the ISO/IEC 25010 standard [15]. This standard structures soft-
ware quality into nine high-level attributes: functional suitability, per-
formance efficiency, compatibility, interaction capability, reliability, 
security, maintainability, flexibility, and safety.

Performance efficiency, reliability, and flexibility are the quality 
attributes discussed in the primary studies selected for this work. Per-
formance Efficiency relates to the system’s resource usage and respon-
siveness under specified conditions. Key aspects include time behavior, 
resource utilization, and capacity. Reliability measures the system’s 
ability to perform consistently over time. This includes fault toler-
ance, availability, and recoverability. Flexibility reflects the adaptability 
of the system to different environments or requirements, including 
adaptability, scalability, installability, and replaceability.

A comprehensive introduction to the other existing quality at-
tributes can be found in the ISO/IEC 25010 standard [15].
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3. Related work

Our SLR aims at complementing the few existing secondary studies 
on MS testing [16–20]. These prior works cover different angles of 
MS testing, but with different scope, depth, and/or recency of the 
considered primary studies, and this mainly motivates our SLR.

Among the most recent works is the systematic mapping study 
(SMS) by Hui et al. [18], which analyzed literature published up to 
early 2024. Their SMS provides a broad overview by mapping primary 
studies to the testing methodologies they employ. While valuable, it 
focuses primarily on high-level classification of testing approaches and 
does not delve into detailed testing attributes such as testing levels, 
objectives, or strategies. Moreover, Hui et al. [18] do not assess the 
technological maturity of proposed techniques, nor do they analyze 
systems under test (SUTs). Our SLR complements the SMS by Hui 
et al. [18] by going into the details on the 4W1H of MS testing, 
which comprise testing levels, objectives, and strategies, as well as the 
technological maturity of proposed techniques and SUTs.

Similar arguments apply to the SMS by Waseem et al. [20], who 
classify 33 primary studies published between 2015 and 2019. Waseem 
et al. [20] also provide a high-level classification of testing approaches, 
focusing on less recent studies, and still without delving into detailed 
testing attributes, e.g., testing levels, objectives, strategies, or SUT. 
Our SLR complements the SMS by Waseem et al. [20] by providing a 
more up-to-date coverage of the state-of-the-art on MS testing, and by 
going more in-depth with testing attributes. We indeed analyze testing 
levels, objectives, and strategies, as well as the technological maturity 
of proposed techniques and SUTs.

Ghani et al. [17] performed an earlier SLR limited to studies pub-
lished between 2010 and 2018, covering only 15 primary studies. 
Although their focus on testing objectives (specifically, quality at-
tributes) is valuable, the restricted temporal scope and dataset size 
significantly limit its relevance today, especially given the exponential 
growth of research in this field since 2018. We complement the SLR by 
Ghani et al. [17] by providing a more up-to-date analysis of the state-
of-the-art on MS testing, as well as by going beyond testing objectives, 
e.g., by also covering testing levels, strategies, and SUTs.

Finally, Fischer et al. [16] and Simosa and Siqueira [19] focus 
only on one of the testing attributes out of those covered by our 
SLR. Particularly, Fischer et al. [16] provide an SMS on SUTs, iden-
tifying 134 systems that can be used for MS testing and monitoring. 
Simosa and Siqueira [19] instead surveyed contract testing in mi-
croservices between 2015 and 2022, emphasizing techniques and tools 
related to contract-based validation. The specific focus of both Fischer 
et al. [16] and Simosa and Siqueira [19], however, makes their studies 
complementary rather than redundant with ours.

In summary, compared to the existing secondary studies on MS 
testing [16–20], our SLR offers a more detailed, comprehensive and/or 
up-to-date perspective by analyzing 74 primary studies published up 
to the end of 2024. We uniquely classify testing approaches using the 
SWEBOK taxonomy, assess their technological maturity, and identify 
reference SUTs. Additionally, our SLR identifies up-to-date research 
challenges. These contributions collectively complement the results 
available in existing studies and establish the distinct value of our work 
in comparison to prior studies.

4. Research design

Using the Goal-Question-Metric approach [21], the research objec-
tive of our investigation can be formulated as follows:

Analyze testing approaches
For the purpose of knowledge collection and categorization
With respect to academic literature 
From the viewpoint of  researchers
In the context of  microservice-based systems. 
3 
In order to collect the data for our literature review, we follow the 
systematic process outlined by Kitchenham [7].  In order to systemati-
cally identify a set of primary studies, we follow the approach presented 
by Wohlin [8], which entails a bidirectional snowballing search based 
on a starting set obtained via an automated search query executed on 
Google Scholar. The use of Google Scholar allowed us to avoid bias in 
favor of any specific publisher [8]. Further threats related to the use of 
Google Scholar are discussed in Section 8.2.

A high level overview of our research process is depicted in Fig.  1 
and is further detailed in the following sections.

4.1. Phase 1a: Automated literature search

As initial step for our primary studies selection, we collect an initial 
set of potentially relevant studies via the execution of an automated 
query on the Google Scholar literature indexer. The title-focused auto-
mated search was designed based on our research objective, and with 
the aim to gather related literature that explicitly focuses specifically on 
the topic considered while being as encompassing as possible.  Based on 
this rationale, the query utilized results in the exact following search 
string that is utilized to identify the initial set of potentially primary 
studies:

ALLINTITLE: ("microservice*" AND "test*")
Executing the automated search results in the identification of 186 

potentially primary studies, which are then manually filtered via a 
pre-defined set of selection criteria in a later phase (see Phase 4 
Section 4.4).

The query was executed on the 16th of December 2024, and to 
be as inclusive as possible left unbounded the publication date range. 
The results were sorted alphabetically to mitigate possible biases intro-
duced by potentially confounding search ranking algorithms. To be as 
inclusive as possible and mitigate potential threats to internal validity, 
no cutoff point was utilized, i.e., the entirety of the query results was 
considered for manual selection (see also following phases).

4.2. Phase 1b: Supplementary automated query

In order to mitigate potential threats to internal validity related 
to the use of a single literature indexer, we execute an additional 
automated query by leveraging the Scopus digital library.1 A query 
identical to the one utilized in Phase 1 is adopted to automatically 
search potentially primary studies on our second source of data, namely 
the Scopus digital library.

As for the primary query, the supplementary one was executed on 
the 16th of December 2024, and to be as inclusive as possible left 
unbounded the publication date range. The query execution resulted 
in the identification of 278 potentially primary studies.

4.3. Phase 2: Duplicate removal

Merging the results of the automated literature search queries ex-
ecuted in Phase 1a and Phase 1b, we remove the duplicates of the 
two queries by relying on the potentially primary studies metadata, 
namely publication title and publication venue. This process results in 
the removal of 92 primary studies. More specifically, the potentially 
primary studies identified via the Scopus platform result to be a subset 
of the items identified via the Google Scholar literature indexer. As a 
final output of this research step, we identified 186 potentially primary 
studies.

1 https://www.scopus.com/. Accessed 3rd April 2025.

https://www.scopus.com/
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Fig. 1.  Systematic literature review process illustrated through a PRISMA flow diagram [22].
4.4. Phase 3: Manual selection

Following the consolidation of the potentially primary studies set 
identified automatically, we conduct a manual selection process of the 
primary studies based on a pre-defined list of inclusion and exclusion 
criteria. A potentially primary study is selected in our SLR if it satisfies 
all of our inclusion criteria (I) and none of the exclusion ones (E). The 
selection criteria we use are as follows:

• I1: The paper focuses on microservices.
• I2: The paper focuses on software testing.
• I3: The paper proposes a solution for testing microservices.
• E1: Non-English publications.
• E2: Publications for which the full text is not available to us.
• E3: Duplicates of already included publications.
• E4: Secondary or tertiary studies.
• E5: Publications in the form of editorials, tutorials, books, ex-
tended abstracts, etc.

• E6: Non-scientific publications or grey literature.
The first two inclusion criteria (I1, I2) are designed to identify pri-

mary studies that focus on the investigated topic, namely microservice, 
and hence present relevant data for our literature review. The third 
inclusion criteria instead (I3) is utilized to select exclusively studies 
that present an approach to test microservices. This latter inclusion 
criteria allows our investigation to gain a comprehensive overview of 
the existing solutions to test microservices, by excluding adjacent topics 
related to microservice testing, e.g., experience reports. The exclusion 
criteria instead are utilized to ensure that we are able to extract data 
from the papers (E1, E2), we do not include redundant information (E3, 
E4), and consist of scientific literature (E5, E6).  As further clarifications 
on some selection criteria, E2 considered manuscript that are indexed 
but not available online. Regarding E3 instead, in case the extension of 
an already included paper is identified, we included only the extended 
study (instead of the original one) as, by nature, extensions contain 
both the original content and some additional ones.
4 
The initial set of 186 studies is inspected by the four authors, with 
each author analyzing for inclusion a distinct subset of potentially 
primary studies. To ensure agreement among reviewers in the selec-
tion process, the inter-rater agreement is calculated via Fleiss’ kappa 
on a subset of 25 studies. This process results in a Fleiss’ kappa of 
0.78, demonstrating a substantial agreement among reviewers. As an 
additional measure to prevent potential threats to internal validity, 
weekly meetings are held to jointly discuss doubts, corner cases, and 
impediments to further strengthen the alignment among reviewers.

The manual selection process terminates with the selection of 56 
primary studies to be used for the follow-up snowballing process and 
full-text assessment (see Fig.  1).

4.5. Phase 4: Snowballing

To complement our preliminary set of primary studies identified
via the automated literature search, in line with common systematic 
literature review practices Wohlin [8], we adopted a forward and 
backward snowballing process. During this phase, both the paper cited 
by the already included primary studies and the ones citing them 
are inspected for inclusion in our literature review. The snowballing 
process proceeds iteratively in multiple rounds, i.e., the primary studies 
included via snowballing undergo a follow-up snowballing process to 
include new literature. As a stopping criterion, we adopt theoretical 
saturation, i.e., our snowballing process terminates when in a new 
round of snowballing no new papers are selected for inclusion.

The four authors conduct the snowballing simultaneously on a dis-
tinct subset of the primary studies. While the rater alignment is already 
established via inter-rater agreement calculation of the previous phase, 
as a mitigation strategy to potential internal threats to validity, weekly 
meetings are held to discuss doubts and further align the selection 
process among reviewers.

The snowballing process terminates with the inclusion of 21 new 
primary studies, leading to a total number of primary studies consid-
ered in this systematic literature review equal to 74.
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Table 1
Classification of the available functional testing techniques based on testing objective and testing strategy.
 Specification-based Structure-based Usage-based Experience-based Fault-based 
 Regression [25–34] [33,35,36] [36,37] [38]  
 Conformance [39–52] [53–55] [55,56] [57] [58]  
 API [59–61] [62]  
] 
4.6. Phase 5: Data extraction and synthesis

To extract the data from the identified primary studies, we adopt 
a mix of deductive coding (DC) combined with open coding (OC) 
followed up when necessary by an axial coding process (AC) [23]. In 
the following, we report the data attributes collected from each primary 
study, associated with the coding strategy adopted to extract it.

To understand the publication trends of the microservice testing 
literature we consider as demographic data the Publication year (DC), 
and publication venue, namely Journal, Conference or Workshop (DC).

At a more semantic level, we extract from the primary studies (i) 
the study type by following the characterization of Stol and Fitzgerald 
[24] (DC), the testing level as defined in software testing of the SWE-
BOK [9] (DC), if the testing approach regards one or more functional or 
non-functional requirements (DC), in case the non-functional require-
ment(s) considered for testing, as documented in the ISO/IEC 25010 [15
(DC), and the testing type, that could either assume white-box, gray-
box, or black-box values (DC).

To gain a deeper understanding of the microservice testing ap-
proaches reported in the primary studies we also extract from the 
primary studies the testing objective as defined in the SWEBOK [9] and 
complemented via additional codes when necessary (DC, OC, and AC), 
the testing strategy as categorized in the SWEBOK [9] (DC), and the 
method used to validate the testing approaches, that could either be 
in-vitro, in-vivo, in-silico, or in-virtuo (DC). As an additional attribute, 
we also consider if an implementation or tool of the testing approach 
is made available or not (DC).

Finally, we complement our data extraction process by considering 
also the nature of the software under test (SUT) used to evaluate 
the approaches. To this end, we extract from the primary studies the 
number of SUT considered (DC), the SUT size in terms of the number 
of microservices (DC), and the domain of the SUT, e.g., transportation 
or e-commerce (OP and AC).

The data extraction process leads to the scrutiny of the 74 primary 
studies considered in this research according to the 15 aforementioned 
attributes, leading to a total dataset of 1.1k distinct values. The values 
are then analyzed via simple summary visualizations (e.g., barplots and 
heatmaps) and statistical analyses (e.g., percentages) to present the 
collected data in a comprehensive, clear, and objective fashion.2

5. Functional testing

Functional testing ensures that MSAs meet their behavioral re-
quirements, e.g., verifying their functional correctness and/or compli-
ance with specifications. The functional testing techniques proposed in 
the selected studies are classified in Table  1, providing a structured 
overview of their focus areas. The following sections present these 
techniques, organized according to the specific functional objectives 
they target.

2 A replication package for our study is available at https://doi.org/10.
5281/zenodo.16941552.
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5.1. Regression testing

Regression testing result to be a frequent objective covered by 
MS testing literature [25–38]. Among testing strategies adopted in 
MS regression testing research, the majority focuses on specification-
based ones [25–34]. As example, the work of Elsner et al. [28] present
microRTS, an adaptation of dynamic regression test selection tuned 
to be applicable in an end-to-end MS testing scenario. microRTS is 
evaluated by considering a case study considering 12 different versions 
of an application. By filtering in a semi-automated fashion test traces, 
the approach resulted able to reduce testing effort up to 50%. Kargar 
and Hanifizade [31] instead consider at large the topic of automat-
ing regression testing in MSAs. Specifically, the Kargar et al. study 
how MS regression testing process could be integrated in continuous 
delivery environments by considering a specific set of technologies, 
such as GitLab, Jenkins, Docker, and Kubernetes. As other work using 
specification-based testing techniques, Chen et al. [26] present the 
test prioritization approach CIPC. CIPC used as underlying theoretical 
basis for test prioritization the concept of belief propagation, that 
is, a repetitive process for estimated interpretation based on graph 
structure. In CIPC, belief propagation determines test case prioritization 
by analyzing code coverage changes between different versions of the 
MS system. Another specification-based techniques leverages the graph-
like nature of MSAs [25]. Specifically, in the work of Chen et al. 
[25], a PageRank algorithm is used to prioritize test cases based on 
single-objective and multi-objective strategies. The rank of the test 
cases to be executed is calculated based on API gateway logs (similar 
to the test selection approach of Chen et al. [35]). Experimentation 
on four MS-based systems showcase the proposed approach to be 
twofold more effective than random prioritization. In another work 
utilizing the graph-like structure of MS interdependencies, Ma et al. 
[32] propose an approach enabling to reconstruct MS dependencies 
and identify test associated to code changes. The MS dependencies 
reconstruction process leverages service invocation chains, which are 
constructed by utilizing the Java Reflection mechanism, enabling to 
obtain information pertaining microservice endpoints and service calls. 
At a higher level of abstraction, De Angelis et al. [27] address the 
challenge of discovering relations between test programs in MSAs. The 
approach of De Angelis et al. is based on symbolic execution of test 
programs, which is used to collect information about the invocations 
of local and remote APIs performed when running MS programs. The 
information collected is then processed via a rule-based automated rea-
soning engine, enabling to infer dependencies and similarities among 
different test suites.  Schneider et al. [33] presents a systematic test 
concept for developing MSAs which covers different test types, from 
end-to-end to unit tests. The test concept considers the entire test 
pyramid as part of the microservice engineering process. In the pro-
posed approach, the acceptance criteria is specified as Gherkin features 
according to BDD practices, which are used for the development of 
end-to-end tests. Considering a different perspective, Gazzola et al. 
[29] present ExVivoMicroTest, and approach enabling to generate 
test cases for future versions of microservices. ExVivoMicroTest is 
based on lightweight execution monitoring and tracing to reconstruct 
how services are used in production. By processing the obtained ex-
ecution traces, tests are then generated and selected based on their 
relevance. Finally, two papers utilizing on regression testing by using 
a specification-based technique focus also on performance efficiency 
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of MSAs [30,34]. Specifically, Janes and Russo [30] present PPTAM+, 
a tool designed to continuously monitor the degradation of a system 
during its refactoring to a MSA. The tool, designed to be integrated in 
a DevOps pipeline, identifies MS experiencing performance degradation 
issues by comparing a reference operational profile against the run-
time performance collected via regression performance tests. The work 
of Smith et al. [34] instead present a more meta-scientific contribution, 
by presenting a test benchmark to evaluate the effectiveness and effi-
ciency of regression testing approaches. The benchmark includes full 
functional regression testing coverage for two open-source MSAs, and 
is designed to support researchers by providing the necessary tools to 
evaluate regression testing approaches in a systematic and repeatable 
manner.

Only two papers which consider regression testing are based on an 
usage-based testing strategy [36,37]. Cooper et al. [37] a usage-based 
test selection approach by focusing budget aware selection, i.e., test 
selection based on predefined budget constraint, such as limited time, 
resources, or computational costs. The budget aware selection is based 
on the collection of real-world usage traces, which are then utilized 
to identify and execute a subset of tests. De Angelis et al. instead 
use a similar strategy by combining however concrete and symbolic 
execution to support regression testing processes De Angelis et al. [36]. 
The resulting traces are then processed in a similar fashion of the work 
by De Angelis et al. [27] by leveraging rule-based automated reasoning. 
A set of similarity criteria can then be used to identify the subset of test 
cases to be run in a regression testing scenario.

Finally, two researches are the only ones which use different testing 
strategies from all the others, namely structure-based [35] and fault-
based testing strategies [38]. Chen et al. [35] propose MRTS-BP, 
a test selection approach designed to be as lightweight as possible 
on development processes. Considering high integrability, MRTS-BP
utilized as input exclusively API gateway logs, which are used to 
mine MS dependencies and change impacts based on a propagation 
calculation. As the work of Chen et al. [26], the approach is based 
on the concept of belief propagation, that is, a repetitive process for 
estimated interpretation based on graph structure. At the intersection 
of MS regression testing and software reliability instead, He et al. [38] 
present ResilienceGuardian, a fault-based framework designed 
to detect erroneous software changes that reduce fault resilience. The 
framework is based on a classification algorithm that is trained on a set 
of synthetically injected faults. The resulting model is then utilized to 
classify code changes that are more probable to introduce faults in an 
MSA.

5.2. Conformance testing

MSA conformance testing is mainly supported through specification-
based strategies [39–52]. In this context, some studies have focused 
on event-driven microservice testing, which validates the behavior and 
interactions of microservices communicating via asynchronous events. 
For instance, Ma et al. [47] presented a unit testing strategy, con-
sidering message brokers and the saga design pattern. The proposed 
approach enables the creation of unit tests that comprehensively iden-
tify errors in publishing, channel subscriptions, message formatting, 
and error handling.

Specification-based strategies also facilitate fault diagnosis, the pro-
cess of identifying, classifying, and localizing failures in MSAs. No-
tably, Zhang et al. [52] introduced SynthoDiag, a fault diagnosis frame-
work for microservices that automates fault diagnosis using multi-
source logs and a knowledge graph. Long et al. [44] presented Intel-
liFT, a fitness-guided resilience testing technique designed to uncover 
defects in fault-handling logic. Likewise, Heorhiadi et al. [42] intro-
duced Gremlin, a failure injection framework that tests fault-handling 
capabilities by manipulating inter-service messages.

Furthermore, automatic testing has also been explored through
specification-based strategies. For example, Li et al. [43] explored API 
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automation testing for microservices, incorporating machine learn-
ing techniques to generate high-fidelity test data based on historical 
usage patterns, improving regression testing and overall application 
quality. Similarly, Ding et al. [40] proposed an automatic test data 
generation method for microservice applications, leveraging extended 
service interface descriptions and an improved pairwise algorithm to 
enhance testing efficiency.  Rahman and Gao [48] introduce RAATA, 
a reusable automated testing architecture for MS within the context 
of Behavior-Driven Development (BDD). The proposed approach out-
lines how BDD artifacts should be organized to facilitate the reuse 
of acceptance tests across multiple repositories, thereby reducing the 
maintenance burden on developers and testers. Instead of spreading 
BDD features/scenarios across multiple microservices repositories, a 
new repository called Automated Acceptance Tests (AAT) repository 
is introduced. An AAT repository typically has top level directories 
including features, which contains subdirectories for each microservice, 
and step-implementation. Duan et al. [41] instead propose a decision 
tree algorithm to classify and filter test cases, enhancing automation 
and efficiency.

Finally, Ayas et al. [39] provide another example of specification-
based MSA conformance testing, with a different objective than those 
described above. They analyzed 16 GitHub repositories to understand 
how these projects cover different testing levels. The contribution 
by Ayas et al. [39] drafts a testing architecture, outlining activities 
and artifacts, and demonstrates how these align with established best 
practices.

MSA conformance can also be tested via other strategies than those 
specification-based. For example, Wu et al. [55] combine usage-based
and structure-based testing strategies to test the conformance of mi-
croservices. More precisely, Wu et al. [55] introduce CCTS (Compos-
ite Contract Testing Service), a tool that integrates consumer-driven 
contract testing with state models to validate event exchanges and 
detect potential defects like isolated states, cyclic dependencies, and 
unqualified event sequences. CCTS analyzes event logs to verify com-
pliance with expected state transitions, enhancing the reliability of 
event-driven microservices.

The above-mentioned strategies are also used standalone to test 
MSA conformance. Particularly, Ma et al. [56] and Abdelfattah et al. 
[53] focus on coverage aspects in MSA conformance testing, respec-
tively adopting usage-based and structure-based testing strategies. More 
precisely, Ma et al. [56] propose a tool for analyzing and visualizing 
service dependencies in MSAs, which also improves test coverage by 
identifying untested service calls and automatically generating test 
cases. Abdelfattah et al. [53] instead propose test coverage metrics for 
MSA conformance testing, leveraging both static and dynamic analysis 
to map tests to microservice endpoints.

Vassiliou-Gioles [54] provide another example of structure-based
MSA conformance testing, however with a different objective. They 
propose instance identification as a method to enhance integration 
testing by addressing managed service ambiguities, e.g., unknown con-
tributors or temporary blindness. Their ultimate goal is to enable 
tracking of service versions and execution instances, ensuring that 
test results accurately reflect the tested components. By enriching 
service communication with structured metadata, the approach pro-
posed by Vassiliou-Gioles [54] aims at improving observability, namely 
allowing testers to verify that the expected service instances contribute 
to test execution.

Different testing strategies are instead enacted by Almutawa et al. 
[57] and Yao et al. [58], who use experience-based and fault-based
testing, respectively. Particularly, Almutawa et al. [57] propose Kashef, 
an LLM-assisted tool, which employs communicative agents to itera-
tively generate and execute system tests, leveraging LLMs for reasoning 
and code generation. Yao et al. [58] presents a method for fault-
based testing in MSAs, aiming to infer fault probabilities even under 
sparse tracing conditions. These probabilities are then used to estimate 
missing fault propagation details, enabling effective fault localization 
without requiring manual annotation or dense traces.
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Table 2
Classification of the available non-functional testing techniques based on targeted quality attribute and testing strategy.
 Specification-based Structure-based Usage-based Experience-based Fault-based 
 Flexibility [65] [66]  
 Performance efficiency [30,34,67–79] [80,81] [37,82,83] [66]  
 Reliability [84–86] [82,87,88] [38,89–95] 
5.3. Interface and application program interface testing

API testing in MSA is conducted primarily using specification-based
testing strategies, where test cases are derived from the software speci-
fications or requirements [59–61]. For example, Rattanukul et al. [59] 
introduces Microusity, a tool designed to perform RESTful API testing 
for a specific microservice pattern known as backends for frontends 
(BFF). Microusity relies on the OpenAPI specification of the APIs to 
generate test inputs and identify errors based on HTTP response status 
codes. Ashikhmin et al. [60] propose a method to streamline the gener-
ation of mocks for REST services using RESTful API Modeling Language 
(RAML) specifications. Similarly, Lin et al. [61] proposes a mock testing 
platform that supports the simulation of microservice interfaces during 
both development and testing. The proposed approach enables the 
concurrent operation of real and simulated services, aiming to improve 
the efficiency, flexibility, and performance of microservice application 
development and testing.

Yu et al. [63] and Wu et al. [64] conduct API testing in MSA 
using fault-based strategies. More specifically, Yu et al. [63] introduces 
MicroRank, a method that analyzes both normal and abnormal traces to 
identify the root causes of latency issues in microservice environments. 
MicroRank extracts service latency from tracing data and performs 
anomaly detection. By combining PageRank with spectrum analysis, it 
ranks service instances responsible for latency issues, assigning them 
high scores. Wu et al. [64] presents MicroRCA, a system to locate 
root causes of performance issues in microservices. The root causes are 
inferred in real time by correlating application performance symptoms 
with corresponding system resource utilization, without any applica-
tion instrumentation. The root cause localization of MicroRCA is based 
on an attributed graph that models anomaly propagation across services 
and machines.

API testing in MSA can also be approached from a structure-based
perspective. Specifically, Abdelfattah et al. [62] address the challenge 
of assessing the thoroughness of MSA testing. To assist testers, the 
authors introduce test coverage metrics that evaluate the extent of end-
to-end (E2E) test suite coverage for microservice endpoints. They also 
present an automated method for calculating the proposed metrics, 
providing feedback on the completeness of E2E test suites.

6. Non-functional testing

Non-functional testing ensures that MSAs meet critical quality at-
tributes such as flexibility, performance, or reliability. The non-fun-
ctional testing techniques proposed in the selected studies are classified 
in Table  2, providing a structured overview of their focus areas. The 
following sections present these techniques, organized according to the 
specific quality attributes they target.

6.1. Flexibility

While testing MSAs, flexibility is a factor that has been consid-
ered when assessing deployment alternatives or designing test strate-
gies. Avritzer et al. [66] introduces an experience-based testing strategy, 
which proposes a quantitative approach for evaluating the scalability 
of MSAs under different workload scenarios. Their approach leverages 
operational profile data and automated testing to systematically assess 
deployment configurations. By incorporating input domain partitioning 
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and domain-based load testing, Avritzer et al. [66] enable the evalua-
tion of MSAs in terms of their suitability to handle specific operational 
workload conditions, providing a structured assessment of scalability.

Flexibility testing of MSAs can also happen through usage-based
testing strategies, like the one proposed by Schulz et al. [65]. The usage-
based testing strategy by Schulz et al. [65] emphasizes flexibility by 
tailoring load test workloads to target specific microservices and their 
dependencies rather than the entire system. The proposed algorithms – 
log-based and model-based – allow development teams to test individ-
ual services in isolation, considerably reducing resource consumption. 
While this tailored approach slightly reduces representativeness when 
compared to full system-level workload models, it enhances testing flex-
ibility by limiting the number of microservices that must be deployed 
for testing.

6.2. Performance efficiency

Performance efficiency of MSAs is mostly tested via specification-
based testing strategies, which are adopted by 15 primary studies. Out 
of these 15 studies, two papers focus on topics related to code quality, 
namely the correlation between architectural smells and performance 
deficiencies [74] and the impact of anti-patterns on performance [76]. 
More specifically, the study on architectural smells by Liu et al. [74] 
enables testing how architectural smells can cause performance degra-
dation in MSAs. The study on anti-patterns by Matar and Jahić [76] 
builds on the results of Liu et al. [74] by presenting an approach to 
identify anti-patterns that affect performance in MSAs. The approach 
first uses static analysis to detect anti-patterns potentially affecting per-
formance, and subsequently evaluates such assumption via a follow-up 
dynamic analysis.

Giamattei et al. [72] instead propose CAR-PT (Causal-Reasoning-
driven Performance Testing), a model-based testing technique designed 
for the performance testing of MSA. CAR-PT leverages causal reason-
ing to guide the generation of workload configurations, enabling the 
identification of performance issues more effectively and efficiently. 
By automatically discovering and utilizing causal relationships between 
performance metrics (e.g., response time, CPU usage, and memory 
consumption), CAR-PT allows testers to simulate realistic workloads 
that target critical performance conditions.

Two other studies considering specification-based testing strategies 
focus on assessing the performance of software-intensive systems while 
migrating from a monolithic to an MSA [30,78]. Janes and Russo [30] 
propose a specification-based testing tool that enables to monitor the 
potential degradation of microservice performance based on the initial 
system specifications collected empirically via reference operational 
profiles. Maulana and Raharja [78] instead conduct a case study to 
assess the performance impact – and potential degradation – of tran-
sitioning a banking system from a monolithic to an MSA. In this case, 
potentially due to the practical nature of the study, the authors combine 
both load testing and stress testing strategies to assess the performance 
of the MSAs.

Microservice evolution is also considered by De Camargo et al. 
[96], who propose a framework to automate performance testing of 
microservice architectures. The framework, designed to be integrated 
in a continuous development environment, enables to automatically 
execute tests and collect related results by including a specification in 
each microservice. Based on such specification, test are automatically 
executed after each change of a microservice, allowing to monitor the 
performance of each microservice as they evolve in time.
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At a higher level of abstraction, five studies considering specification
based testing strategies to propose approaches to evaluate the perfor-
mance of MSAs [34,67,69,77,79]. The work of Matar and Jahic [77] 
presents a lightweight approach to assess the performance of early 
architectural ideas, e.g., to evaluate the impact that different archi-
tectural solutions may have on performance, or identify performance 
anti-patterns in the early design stages. This is achieved via an initial 
specification of the system, provided with a high-level architectural 
model created manually. The model is then used to statically evaluate 
its theoretical performance, generate the microservice code, and elabo-
rate a test plan. As final step, performance testing results are collected 
dynamically, leading to a final performance report used for decision 
making. Similarly, Camilli et al. [67] present a declarative approach 
based on a custom domain specific language through which both 
standard performance testing approaches (e.g., load tests) and more ad-
vanced ones (e.g., stability boundary detection, and configuration tests) 
can be specified starting from templates. The approach is designed 
by considering its integration in continuous software development 
processes, allowing to monitor the fulfillment of specific performance 
intents throughout the evolution of MSAs.

By considering a more formal modeling of MSA performance, Smith 
et al. [34] propose a specification-based approach to reconstruct the 
performance behavior of MSAs by leveraging discrete time Markov 
chains. The presented approach is based on three subsequent phases, 
namely (i) sampling performance data in production to generate a 
coarse formal description of the users’ behavior, (ii) conduct multi-
ple load testing sessions to refine the model, and (iii) use the final 
specification created to evaluate different deployment options.

The two studies by Smith et al. [34] and Peuster et al. [79] in-
stead focus on combining specification-based testing with monitoring 
capabilities. Specifically, Smith et al. [34] present a benchmark that 
can be used to study the efficacy and effectiveness of novel testing 
approaches, e.g., to study functional regression testing or load testing. 
The work of Peuster et al. [79] takes a more proactive stance, by 
presenting an approach to solution for virtualized, profile and jointly 
test microservice-based network functions and services. While con-
sidering microservice testing, the approach by Peuster et al. [79] is 
strongly tight to networking. Specifically, the authors present a solution 
based on the Testing and Test Control Notation, a testing language 
used in conformance testing of communicating systems, which enables 
to create a generic test framework for virtualized network functions 
implemented as microservices.

The last cluster of papers using specification-based testing ap-
proaches designed to study microservice performance focus on debug-
ging and resolving performance issues [70,71,73,75]. More specifically, 
in the work of Lin et al. [73], an instrumentation-free approach is 
presented to identify performance issues, and potentially also perform 
root-cause analysis, in MSAs. The approach, named Microscope, re-
constructs the causal graph of a MSA based on network connection 
information, and infer the causes of performance issue by tracing 
back anomalies detected in front-end service. Two related approaches 
make use of data-driven techniques to conduct performance debugging 
processes based on specification-based testing techniques. In the work 
of Gan et al. [71] a big data strategy is presented to detect quality of ser-
vice violations based on spatial and temporal patterns. Specifically, the 
approach uses a distributed tracing system to records per-microservice 
latencies and number of requests queued per microservices, enabling to, 
which are then used to train a deep learning model to predict quality 
of service violations. In a similar follow up study, Gan et al. [70] focus 
instead on root cause analysis rather than debugging. In this case, an 
unsupervised model is trained on data collected from tracing systems 
of cloud providers, and subsequently leveraging latency the calculation 
of propagation and inter-service dependencies calculation to identify 
performance issues root causes. Finally, Lu [75] propose a dynamic 
approach to identify performance bottlenecks via stress testing, and 
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subsequently resolve the identified issues by optimizing the deployment 
of MSAs.

From a different perspective, performance testing of MSAs can hap-
pen via other different testing strategies, such as structure-based, usage-
based, and experience-based testing. A structure-based testing strategy 
adopted by Pei et al. [81], proposes a performance analysis approach 
for MSAs that leverages a multi-objective, search-based profiling tech-
nique. On the other hand, Camilli et al. [80] introduce an actor-driven 
decomposition methodology to enhance the modularization of MSAs 
while ensuring performance and scalability improvements.

Camilli et al. [82], Cooper et al. [37] and Jindal et al. [83] instead 
rely on usage-based strategies to test the performance efficiency of 
MSAs. Camilli et al. [82] introduce a methodology and support plat-
form to automatically test MSA operations, which aims to be integrated 
into the DevOps cycle to support continuous testing. Cooper et al. [37] 
instead propose a framework that utilizes real-world usage traces to 
identify a minimal but essential set of performance tests. On the other 
hand, Jindal et al. [83] propose a modeling approach for testing and 
estimating the service capacity of individual microservices.

Last, but not least, Avritzer et al. [66] proposes an experience-
based strategy for the performance assessment of MSAs deployment 
alternatives. Their approach uses automated performance testing re-
sults to quantitatively assess each deployment based on a proposed 
domain-based metric.

6.3. Reliability

As often happens in software systems, reliability testing of MSAs is 
currently mainly supported by means of fault-based testing strategies. 
Most of the existing works focus on system testing of MSAs [38,89,
91–95,97]. Alvaro et al. [89] reasons backwards from working MSAs 
to determine whether failures in their execution could have prevented 
their outcomes [98]. Chen et al. [91] rely on non-intrusive request-level 
fault injection to prioritize high-impact failure test cases. Yang et al. 
[95] profile MSAs’ resilience by correlating system failures with the 
degradation of user-experienced observed while injecting failures in the 
system. He et al. [38] proactively detects erroneous software changes 
reducing fault tolerance using fault injection and KPI analysis. Other 
frameworks leverage communication patterns for non-intrusive fault 
injections [94] or infer fault-tolerance bottlenecks to test redundancy 
without prior system knowledge [93].

Different, yet fault-based, reliability testing strategies are adopted 
by Meiklejohn et al. [92] and Assad et al. [90], who focus on in-
tegration testing. Meiklejohn et al. [92] enable the early testing of 
the resilience of service-to-service communications in an MSA under 
development. This is done by injecting failures in remote service calls, 
relying on the services’ code to be instrumented to enable altering 
the response of such calls. Meiklejohn et al. [92] extends the above 
described solution by enabling the injection of Byzantine failures in 
service-to-database interactions.

Reliability testing of MSAs can also happen through specification-
based testing strategies, like those proposed by Giamattei et al. [84,85]. 
The specification-based testing strategies by Giamattei et al. [84,85] 
rely on stateless pairwise combinatorial techniques for generating test 
cases for system testing of MSAs. Giamattei et al. [85] also provides 
the necessary tooling for executing and monitoring test results, as well 
as for identifying causal relations among the failures observed while 
testing a target MSA.

Last, but not least, Camilli et al. [82] and Pietrantuono et al. [87,88] 
propose usage-based strategies for reliability testing of MSAs, still at 
system level. More precisely, Camilli et al. [82] propose a methodology 
and support platform to enact ex-vivo testing sessions, i.e., in-house 
estimation of the reliability of a target MSA based on usage data 
monitored in prior, in-production runs. Pietrantuono et al. [87,88] 
instead support in-vivo testing by proposing two adaptive sampling 
schemes to identify test cases for an MSA based on its usage profile.
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Fig. 2. Publication frequency per year.

7. Discussion

This section presents the key findings of our systematic review 
using 4W1H (i.e., what, when, where, why, and how) to comprehensively 
examine the landscape of testing MSAs. Please note that the terms in the 
categories can occur multiple times across different studies, as reported 
in Tables  1 and 2.

7.1. When and where: Publication trends

In order to understand the microservice testing research landscape, 
we first focus on the publication intensity of the topic throughout 
the years. An overview of the distribution of our primary studies 
throughout years, grouped by venue type, is documented in Fig.  2.

As we can observe from the figure, the topic of testing microservices 
first appeared in the literature in 2015. For a few years (2015–2017), 
few researchers considered publishing it. However, 2018 marked the 
start of a wave of popularity of the theme, with seven papers published. 
The topic never ceased to gain traction within the research community, 
with up to 14 papers published in a single year in 2024.

By considering the venues where studies on testing microservices 
are published, we can observe a recurrent trend. Specifically, towards 
their inception, research topics are first explored in workshops and 
conference venues, and only after getting consolidated start appearing 
in journal venues [99–101]. This trend can be observed also for mi-
croservice testing, with the topic appearing first in conferences (2015) 
and only after five years in journals. We conjecture that this trend 
reflects the rapid popularization that microservice literature experi-
enced in 2015 [102], which after some years expanded also to the 
well-established software testing domain [103].

In terms of academic publishers, the majority of primary studies 
results to be released by IEEE (35 out of 74 primary studies), followed 
by ACM (16 studies), Springer (11 studies), and Elselvier (7 studies). 
The five remaining studies are published in Wiley (3 studies) and MDPI 
(2 studies).

Highlights

• Research on microservice testing has gained increas-
ing momentum since 2015, peaking in 2024 with 14 
publications—indicating growing interest and maturity 
in the field.

7.2. Why: Testing levels and objectives

To further explore the landscape of microservice testing research, 
we now examine the distribution of primary studies across different 
test levels and objectives.

Fig.  3 displays the distribution of primary studies across the differ-
ent test levels as defined in the SWEBOK [9]: unit, integration, system, 
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Fig. 3. Distribution of primary studies across the different Test Levels.

Fig. 4. Coverage of functional testing objectives.

and acceptance testing. The distribution reveals a strong emphasis 
on system testing, which accounts for the largest group (47 studies). 
Given the complex interactions and non-functional requirements of 
microservices-based systems, system testing appears to be an ideal 
approach for evaluating overall behavior and performance. Integration 
testing follows with 21 studies, reflecting the importance of verifying 
communication between services. Unit testing is less emphasized than 
integration testing, with 15 studies. And acceptance testing is the 
least investigated (5 studies), suggesting limited attention to end-user 
validation.

We also categorized the primary studies based on testing objectives, 
distinguishing between functional and non-functional testing. A total of 
44 studies focused on functional testing, while 36 studies concentrated 
on non-functional testing.

For the testing objectives, we refer to those listed in the SWE-
BOK [9]: conformance, compliance, installation, alpha and beta, regres-
sion, prioritization, non-functional, security, privacy, interface and ap-
plication program interface (API), configuration, usability, and human–
computer interaction.

Fig.  4 displays the distribution of primary studies across the dif-
ferent objectives. The studies were classified into three key testing 
objectives: Conformance, Regression, and API. Conformance testing is 
the most studied, with 23 primary studies, emphasizing the importance 
of ensuring that software systems adhere to specified standards, rules, 
and requirements. Regression testing follows with 14 studies, reflect-
ing its critical role in verifying that modifications do not introduce 
unintended effects. API testing, with 8 studies, highlights the research 
efforts to ensure reliable interactions between system components. To 
offer a different perspective, Fig.  5 presents a combined view of the test 
levels and functional objectives addressed in the primary studies that 
focus on functional testing.

The studies focusing on non-functional testing were further cate-
gorized according to the nine quality characteristics outlined in the 
product quality model defined by ISO/IEC 25010 [15]: functional 
suitability, performance efficiency, compatibility, interaction capabil-
ity, reliability, security, maintainability, flexibility, and safety. Fig.  6 
displays the distribution of primary studies across the different quality 
characteristics.

Performance Efficiency is the most investigated characteristic, with 
21 primary studies. These studies primarily focused on aspects such as 
response time, throughput, and resource utilization. Reliability follows 
with 14 studies investigating fault tolerance, availability, and recov-
erability in microservice architectures. In contrast, Flexibility is the 
least studied, with only 2 studies, highlighting the need for further 
investigation into flexibility in microservice testing to better support 
evolving software environments. Fig.  7 presents a combined view of 
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Fig. 5. Combined coverage of test level and functional testing objectives.

Fig. 6. Coverage of quality attributes.

Fig. 7. Combined coverage of test level and quality attributes.

the test levels and quality attributes addressed in the primary studies 
focusing on non-functional testing.

Highlights

• System testing is the most commonly studied level 
(47 studies), highlighting its importance in evaluating 
complex behaviors and non-functional requirements of 
MSAs.

• While performance efficiency and reliability dominate 
non-functional testing, quality attributes such as flexi-
bility, maintainability, and security remain significantly 
underexplored, indicating potential gaps and research 
directions.

7.3. How: Study types and testing strategies

As illustrated in Fig.  8, specification-based emerges as the most 
widely used strategy. This indicates that the majority of the proposals 
focus on selecting a subset of test cases from the input domain to detect 
specific categories of faults. When this insight is combined with the 
data presented in Fig.  9, we observe that specification-based strategies 
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Fig. 8. Coverage of testing strategies.

Fig. 9. Combined coverage of testing strategies and functional objectives.

are predominantly applied in conformance and regression testing. Con-
formance testing aims to ensure that the SUT adheres to predefined 
standards, rules, specifications, and requirements. Given its structured 
approach, specification-based strategies are used to systematically test 
the MSA against formally defined fault categories. Similarly, regression 
testing, which involves the selective retesting of a SUT to verify that 
modifications have not introduced unintended side effects, also heav-
ily relies on specification-based strategies. This reinforces the role of 
specification-based strategies in maintaining the MSA compliance and 
integrity.

When analyzing the relation between testing strategies and quality 
attributes (Fig.  10), we observe that specification-based is once again 
the most widely used strategy. In this context, it is primarily applied to
Performance Efficiency, with a lesser emphasis on Reliability. In contrast, 
proposals using fault-based strategies are exclusively focused on Relia-
bility, targeting the detection of faults that could, perhaps, compromise 
the MSA availability. On the other hand, usage-based strategies are ap-
plied in a more distributed manner, addressing Performance Efficiency, 
Reliability, and Flexibility. This suggests that the usage-based strategy 
offers a broader perspective by considering different aspects of the MSA 
quality.

Regarding study types, as shown in Fig.  11, there is a clear pref-
erence for controlled environments. The most common study type is 
Laboratory Experiment (50, 63%), followed by Formal Theory (12, 
15%) and Computer Simulation (7, 8%). In contrast, Field, Judgment, 
and Sample Studies are rarely conducted, highlighting the limited 
empirical validation of testing approaches. This reliance on laboratory 
experiments suggests that most findings are derived from structured, ar-
tificial settings. While these settings are valuable for isolating variables 
and ensuring repeatability, they may fail to capture the complexities of 
real-world operational environments. Similarly, most primary studies 
use black-box testing, and only three incorporate gray-box or white-box 
approaches.

From the perspective of Technology Readiness Levels (TRL), most 
proposals remain in the low to mid TRL range (TRL 3–4), meaning they 
are still in the experimental or proof-of-concept stages. To bridge the 
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Fig. 10. Combined coverage of testing strategies and quality attributes.

Fig. 11. Coverage of study types.

gap between research and industry adoption, future studies should fo-
cus on achieving higher TRL, integrating field studies and experiments 
to showcase the effectiveness of these approaches in complex MSAs.

Highlights

• Specification-based is the most used strategy, primarily 
applied in conformance and regression testing to ensure 
MSA compliance and integrity.

• Most proposals rely on laboratory experiments, limit-
ing real-world validation; Increasing the current TRL is 
crucial for industry adoption.

7.4. What: SUTs

Another interesting dimension in analyzing the state-of-the-art of 
microservice testing lies in the what, namely in the size and nature of 
the Systems Under Test (SUTs) employed in the selected studies. Given 
the inherently distributed and modular architecture of MSAs, the size 
of SUTs can influence testing strategies, tooling efficacy, and overall 
evaluation outcomes. To enable a first structured comparison of the 
SUTs covered in the selected studies, we first classified them based on 
the number of constituent microservices: small MSAs comprise up to 9 
microservices, medium MSAs include 10 to 20 microservices, and large
MSAs consist of at least 21 microservices.

Notably, all SUTs sizes result to be significantly covered in the 
selected studies, with small SUTs used in 21 studies, medium SUTs used 
in 14 studies, and large SUTs used in 22 studies. As for small SUTs, 
this mainly depends on the fact that small demo MSAs are used to 
11 
Fig. 12. Combined coverage of SUTs’ application domains and sizes (with 
general purpose demo MSAs excluded from the count).

experiment with the microservice testing techniques proposed in 21 of 
the selected studies, e.g., [37,40,83,88,92]. This widespread reliance on 
small MSAs underscores the need for lightweight MSAs to be used as a 
common and manageable basis for the rapid evaluation of microservice 
testing approaches. However, no existing small MSA seems to emerge 
as widely accepted or used in the selected studies. This calls for small 
MSAs to be identified/proposed to serve as a standard benchmark for 
the rapid evaluation of newly proposed microservice testing solutions.

Different arguments instead apply to medium and large SUTs, which 
are typically used to provide a more thorough assessment of the mi-
croservice testing solutions proposed by 22 of the selected studies. As 
shown in Fig.  12, almost all the selected studies using medium or large 
SUTs relied on MSAs coming from the e-commerce or transportation 
application domains, respectively. This is mainly motivated by the 
fact that SockShop.3 and TrainTicket4 emerge as the de-facto reference 
medium and large SUTs. Sock Shop and TrainTicket are indeed the 
most used medium and large SUTs, with Sock Shop used to assess 
what is proposed by 6 selected studies [64,65,67,73,84,93], while 
TrainTicket is used in 16 selected studies [25,26,29,34,36,44,53,62,74,
80–82,84–86,91,93,95]. This is in line with what is observed by Fischer 
et al. [104], however, with the additional bit that Sock Shop is now 
marked as deprecated and no longer maintained. This raises the issue 
of answering the need for a medium-sized MSA to be used as a reference 
SUT for newly proposed microservice testing solutions.

Highlights

• Need for standardized small and medium MSAs to be used 
as manageable SUTs.

• TrainTicket is the de-facto standard when needing a 
large MSA to be used as SUT to assess proposals 
thoroughly.

3 https://github.com/microservices-demo/microservices-demo
4 https://github.com/FudanSELab/train-ticket

https://github.com/microservices-demo/microservices-demo
https://github.com/FudanSELab/train-ticket
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8. Threats to validity

In this section, we discuss the threats to the validity of our study. 
Following the categorization proposed by Wohlin et al. [105], and 
the guidelines proposed by Ampatzoglou et al. [106], we address four 
categories of threats that may affect the validity of our findings.

8.1. External validity

The potential threats to the external validity of a study affect the 
applicability of the study’s results in a broader and more general 
context [105]. One potential threat to the validity of our results arises 
from the selection of primary studies used to achieve our research 
objective. To mitigate this, we employed a comprehensive digital liter-
ature indexer (namely Google Scholar), which aggregates publications 
from various major digital libraries, such as Scopus and Web of Science. 
To further reduce bias and ensure coverage, we applied a recursive, 
bidirectional snowballing process, continuing the search until theoret-
ical saturation was reached. Another threat to external validity arises 
from the nature of the primary studies themselves, which are limited 
to peer-reviewed academic literature. The scope of our review was 
deliberately defined prior to execution and explicitly excludes white 
and grey literature. As such, we emphasize that our objective is to 
provide an overview of the state of the art in microservices testing. 
In future work, we plan to complement our results with an analysis of 
the state of practice based on white and grey literature available on the 
topic.

8.2. Internal validity

The internal validity of a study concerns the validity of the method 
employed to analyze the study data [105]. An internal threat to validity 
inherent in our chosen research method, namely an SLR, concerns the 
soundness of the research steps and the rigor of their execution. To 
mitigate such threats, we adhered to established and widely recognized 
guidelines for conducting SLRs and snowballing procedures [8,106,
107]. To address potential biases related to subjective interpretation of 
the selected literature, we implemented several mitigation strategies. 
First, we defined a clear set of selection criteria and data extraction 
attributes prior to conducting the review. This structured research 
framework was consistently applied throughout the study, with any un-
certainties or ambiguities resolved through thorough discussion among 
all researchers. Second, we executed a supplementary automated query 
to search for potentially primary studies on a second source of data, 
namely the Scopus digital library. Third, regular weekly meetings were 
held throughout the review process to ensure ongoing alignment in 
literature selection and data extraction decisions.

As outlined by Gusenbauer and Haddaway [108] and Piasecki et al. 
[109] the use of Google Scholar constitutes a potential threat to re-
producibility of the study. However, as described by Wholin in his 
seminar work ‘‘Guidelines for snowballing in systematic literature stud-
ies and a replication in software engineering’’ [8] the search engine 
can constitute a source of data to initiate a snowballing process, as 
done in this research. Therefore, on one hand we mitigate potential 
threats entailed by utilizing Google scholar by conducting a thorough 
bidirectional snowballing process adopting theoretical saturation as 
stop criterion. On the other hand, we promote the independent repli-
cation and scrutiny of our work through a set of a priori detailed 
research steps and a rigorous replication package including the to-
tality of the intermediate and final research outputs and traces. To 
further mitigate potential threats related to utilizing Google Scholar, 
we adopted also a supplementary automated query executed on an 
additional data source, namely the widely-adopted digital library Sco-
pus, which provided results coherent with those obtained from Google 
Scholar (Section 4.2).
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8.3. Construct and conclusions validity

Construct and conclusion validity relate to the generalizability of 
the constructs under investigation and the extent to which the study’s 
conclusions are reasonably supported by the available data, respec-
tively [105]. In our SLR, these aspects may be influenced by ob-
server bias and interpretive subjectivity. To mitigate such threats, 
we quantitatively evaluated inter-rater agreement using Fleiss’ Kappa, 
which indicated a substantial level of agreement among raters (see 
Section 4.4). In addition, conclusions were independently derived by 
multiple researchers and subsequently reconciled through collaborative 
discussion, during which interpretations were cross-checked against the 
selected studies and related literature. As an additional mitigation strat-
egy, all intermediate and final artifacts produced during this research, 
including the paper selection processes, extracted data, and source code 
utilized, are made publicly available for the sake of scrutiny and repli-
cability. Finally, our research procedures are thoroughly documented 
and grounded in established, widely adopted methodological guide-
lines [8,106,107], ensuring transparency and helping to identify any 
remaining, unrecognized threats to construct and conclusion validity.

9. Conclusion

While MSAs offer substantial benefits in terms of scalability, fault 
isolation, and continuous deployment, their distributed and heteroge-
neous nature introduces significant testing complexities. To address 
the fragmented and diverse landscape of microservice testing research, 
this SLR consolidated and classified 74 primary studies, offering an 
overview of current practices and research trends.

Based on the information collected from the primary studies de-
scribed in Sections 5 and 6, and the key findings discussed in Section 7, 
we hereafter describe the practical implications of our results (Sec-
tion 9.1) and possible future directions for advancing microservice 
testing research (Section 9.2).

9.1. Practical implications

The classification provided in this SLR can serve as a first sup-
port for practitioners facing the fragmented landscape of microser-
vice testing. Practitioners can consult our classification to identify 
testing approaches best aligned with their needs and architectural 
configurations.

For example, organizations working on new MSAs can benefit from 
specification-based functional testing early in the development lifecy-
cle. These approaches ensure API conformance, enforce contract-based 
interactions, and detect integration issues before deployment [59–61].

For organizations decomposing a monolithic into an MSA, instead, 
system-level regression testing becomes critical to ensure that decom-
posed services preserve functional behavior. Approaches such as mi-
croRTS [28], CIPC [26], and symbolic test mapping [36] support re-
gression tracking, while tools like PPTAM+ [30] and performance trac-
ing can help to monitor performance degradation across versions [30,
78].

As MSA scale, development teams may prioritize non-functional 
testing strategies. Our SLR highlights relevant techniques for perfor-
mance and reliability evaluation, which are mainly achieved through 
specification-based and fault-based testing strategies, respectively. De-
velopment teams could combine performance efficiency techniques, 
like the one proposed by Matar and Jahic [77], with fault-based re-
liability testing (e.g., He et al. [38]). On the other hand, runtime-
informed test strategies, such as budget-aware test selection [37], 
ex-vivo testing based on production data [82], and change-based test 
prioritization [25], can help to optimize test coverage under time and 
resource constraints.

For teams with mature DevOps pipelines, understanding which test-
ing strategies support rapid iteration without compromising safety is es-
sential. The literature gathered during our SLR shows a strong emphasis 
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on automated, repeatable, and low-intrusion testing, typically achieved 
through specification-based and fault-based strategies. This suggests 
that automated, repeatable tests are central for production-ready MSAs.

9.2. Future research directions

Our SLR findings also provide useful insights for researchers, who 
in turn can leverage our results to explore potential new research 
directions, such as those described below:

• Underexplored Quality Attributes: Although performance and re-
liability have received substantial attention from the collected 
primary studies, quality attributes such as maintainability, flex-
ibility, and security remain notably underexplored. Future re-
search should explore how to evaluate these attributes in dynamic 
and evolving MSAs.

• Security-oriented Testing Strategies: Among the underexplored qual-
ity attributes, it is astonishing that none of the selected primary 
studies directly address security testing on MSAs. This represents 
a substantial research gap. Future research could explore how to 
test MSAs for security vulnerabilities, such as improper service ex-
posure, insufficient authentication or authorization, and insecure 
service-to-service communication [110].

• Empirical Validation: The predominance of studies at TRL 3–4 
highlights a research gap for the applicability of the proposed 
approaches. Future research should prioritize evaluating testing 
approaches in industrial contexts to expose real-world constraints 
and challenges. Collaborations with industry partners, coupled 
with the development of standardized testbeds and datasets, will 
enhance reproducibility and support community-driven bench-
marking.

• Standardized Small and Medium MSAs: There is a lack of stan-
dardized, representative small and medium-scale MSAs for mi-
croservice testing. Future research could focus on developing 
a suite of medium-complexity MSAs, including diverse domain 
logic and varied inter-service dependencies. This would provide 
a bridge between the current overly simplistic toy examples and 
the default standard large MSA (i.e., TrainTicket).

• Unexplored Testing Dimensions: Some functional testing dimensions 
remain unexplored for microservices. For example, compliance 
testing, which verifies adherence to external regulations like data 
protection laws or industry-specific standards, is critical, espe-
cially in domains such as finance and healthcare. Additionally, 
usability and human–computer interaction testing were not ad-
dressed by the primary studies. This is a notable oversight given 
their growing relevance as microservices increasingly underpin 
frontend experiences. Future research could explore testing tech-
niques that assess user learnability, efficiency, and resilience to 
errors.
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