
Autili et al.

RESEARCH

Software Engineering Techniques for Statically
Analyzing Mobile Apps: Research Trends,
Characteristics, and Potential for Industrial
Adoption
Marco Autili1*, Ivano Malavolta2, Alexander Perucci1, Gian Luca Scoccia1 and Roberto Verdecchia2

Abstract

Mobile platforms are rapidly and continuously changing, with support for new sensors, APIs, and programming
abstractions. Static analysis is gaining a growing interest, allowing developers to predict properties about the
run-time behavior of mobile apps without executing them. Over the years, literally hundreds of static analysis
techniques have been proposed, ranging from structural and control-flow analysis to state-based analysis.
In this paper, we present a systematic mapping study aimed at identifying, evaluating and classifying

characteristics, trends and potential for industrial adoption of existing research in static analysis of mobile apps.
Starting from over 12,000 potentially relevant studies, we applied a rigorous selection procedure resulting in 261
primary studies along a time span of 9 years. We analyzed each primary study according to a rigorously-defined
classification framework. The results of this study give a solid foundation for assessing existing and future
approaches for static analysis of mobile apps, especially in terms of their industrial adoptability.
Researchers and practitioners can use the results of this study to (i) identify existing research/technical gaps

to target, (ii) understand how approaches developed in academia can be successfully transferred to industry,
and (iii) better position their (past and future) approaches for static analysis of mobile apps.

Keywords: Software Engineering; Static Analysis; Mobile apps; Systematic mapping study

1 Introduction
Nowadays, the digital media usage time is driven by
mobile devices, with smartphone and tablets account-
ing for 66% of all time spent, against desktop usage
which accounts for 34% only [2]. Specifically, more
than 80% of mobile minutes in all markets are spent
on mobile apps [35]. Indeed, the development of mobile
apps is exponentially growing since the establishment
of a number of app stores from where to download and
install them.
The main key success factors of mobile apps is in fact

the distribution model offered by dedicated app stores,
such as Google Play for Android apps, and the Apple
app store for iOS apps. As of today, these stores make
available millions of mobile apps of different categories
to millions of people, who use them for their everyday
activities like purchasing products, messaging, etc. [2].
Clearly, this is a highly competitive business in which

*Correspondence: marco.autili@univaq.it
1University of L’Aquila, L’Aquila, Italy

Full list of author information is available at the end of the article

even the smallest error may have a tremendous finan-
cial impact. Revenue and profit of a mobile app is often
proportional to the number of its users [241], who may
enjoy using the app (and possibly rate it positively
in the store) or dislike it (and possibly abandon it or
even leaving a negative review in the store). This im-
plies that improving the level of users satisfaction is
fundamental for app developers to both keep existing
users active and attract new ones.
Technically, mobile apps consist of executable files

that are downloaded directly to the end user’s device
and stored locally. Mobile apps are developed atop
the services provided by their underlying mobile plat-
form (e.g., Android). Those services are exposed via
a dedicated Application Programming Interface (API)
with methods related to communication and messag-
ing, graphics, security. Programming languages and
tools for developing mobile apps are platform-specific
(e.g., Java code for Android apps, and Swift code
for Apple iOS apps), and present many challenges
that may hamper the success of a mobile app as a



Autili et al. Page 2 of 37

whole [122, 250]. As empirically emerged in [122], app
developers strongly need better analysis and testing
support, with a focus on important features like mo-
bility, location services, sensors, as well as different ges-
tures and inputs. Indeed, although it may be assumed
that app developers are adhering to development best
practices – mainly related to well-established software
engineering principles and design patterns – there is
still the need of assessing, or even guaranteeing, prop-
erties about apps with a certain degree of confidence.
Examples of those properties include: low energy con-
sumption, efficient use of computational resources, se-
curity, performance, and reliability. Satisfying these
needs would allow (i) app developers to raise the level
of quality of their products and, potentially, their rev-
enues, (ii) app users to use high-quality products in
their everyday activities, and (iii) app store modera-
tors (e.g., Google and Apple) to raise the overall level
of quality and trustworthiness of their stores.
Static program analysis allows for predicting

(precise or approximated) quantitative and qualita-
tive properties related to the run-time behavior of a
program without actually executing it [190]. For in-
stance, static analysis techniques allow for statically
inferring cost-related properties (such as the estima-
tion of the maximal number of loop iterations and the
related worst-case execution time), as well as prop-
erties related to resource consumption [13] (such as
memory/heap usage and energy consumption).
Under this perspective, static analysis of mobile apps

can be a valuable instrument for both (i) app develop-
ers, who can use it to quickly get non-trivial insights
about their apps (e.g., subtle security issues, energy
hotspots due to some programming antipattern, in-
efficient use of hardware sensors) and (ii) app store
moderators, who can use static analysis for systemat-
ically assessing the level of quality of the apps they
distribute, possibly identifying those apps with an un-
acceptable level of quality (e.g., apps with well-known
security flaws, apps asking for suspicious permissions,
apps with strong energy inefficiencies).
Static analysis of mobile apps is gaining a grow-

ing interest in both academia and industry. Liter-
ally hundreds of (often overlapping) kinds of (theo-
retical and practical) static analysis approaches exist
in the literature, ranging from structural and control-
flow analysis, to data-flow and state-based analysis,
interval analysis (used in optimizing compilers) and so
on [190]. Such approaches exploit static analysis tech-
niques from different perspectives and belong to ex-
tremely different research areas of software engineer-
ing, such as software analytics, security, testing, ver-
ification. Industrial tools are also emerging and be-
ing maintained by key players in the technological

panorama. For example, Facebook’s Infer[1] applies
separation logic and bi-abduction for inter-procedural
analysis [42] and it is used by Facebook itself, Spotify,
Mozilla, the Amazon Web Services division, etc.
The goal of this paper is to precisely characterize

existing software engineering research on static anal-
ysis of mobile apps from three different perspectives,
namely: (i) research trends, (ii) the characteristics of
the proposed approaches, and (iii) their potential for
industrial adoption.
In order to achieve this goal, we applied the system-

atic mapping study methodology [204, 258]. The aim
of this methodology is to provide an objective, replica-
ble, and unbiased approach to answer a set of research
questions about the state of the art on a given topic.
In this paper, we systematically selected 261 primary
studies from over 12,000 potentially relevant publica-
tions on static analysis of mobile apps. Then, we de-
fined a classification framework for categorizing the se-
lected approaches and rigorously applied it to the 261
primary studies. Finally, we synthesized the obtained
data to let emerge a crystal-clear snapshot of the state
of the art on static analysis of mobile apps.

The main contributions of this study are:
1 a classification framework for categorizing, com-

paring, and evaluating approaches for static anal-
ysis of mobile apps according to a number of pa-
rameters (e.g., analysis goal, supported platforms,
type and number of needed inputs, types of sup-
ported analysis);

2 an up-to-date map of the state of the art in static
analysis of mobile apps;

3 an evaluation of the potential for industrial adop-
tion of existing research results on static analysis
of mobile apps;

4 a discussion of the emerging challenges and their
implications for future research on static analysis
for mobile apps;

5 a replication package for independent replication
and verification of this study.

The audience of this study is composed of both (i)
researchers interested in adopting existing static anal-
ysis approaches, possibly to further contribute to this
research area by targeting (a subset of) the identified
research challenges (see Section 9), and (ii) app devel-
opers interested to critically understand existing re-
search results and thereby to adopt/extend those ap-
proaches in the context of their products. The latter
point is specially relevant since in this study we also
assessed how approaches developed in academia can
be successfully transferred and adopted in industrial

[1]http://fbinfer.com



Autili et al. Page 3 of 37

projects. As a concrete case, the Infer approach lays
its theoretical foundations in academic results devel-
oped by researchers from the Imperial College and the
Queen Mary University of London [42, 43], and it is
now used by top tech companies such as Facebook,
Amazon, Spotify, Mozilla, Sky.
The rest of the paper is organized as follows. Sec-

tion 2 provides background information on the mobile
apps ecosystem and static program analysis. Section 3
puts our study in context with respect to related work.
The design of our study from a methodological per-
spective is provided in Section 4. The main results
of our study are reported in Sections 5, 6, 7, and 8.
Section 9 discusses and puts the achieved results in
context by also elaborating on future research chal-
lenges. Threats to validity are reported in Section 10.
Section 11 closes the paper.

2 Background
This section provides the reader with background no-
tions on the mobile apps ecosystem (Section 2.1) and
static program analysis (Section 2.2).

2.1 The mobile apps ecosystem
A mobile app (short for mobile application) is a com-
puter program designed to run on mobile devices such
as smartphones and tablet computers. Mobile apps
were originally offered for general productivity and
information retrieval, including email, calendar, con-
tacts, stock market and weather information. However,
public demand drove rapid expansion into other cate-
gories and nowadays, according to a 2017 report, the
global app economy is worth 1.3$ trillions and is pre-
dicted to grow to 6.3$ trillions in 2021 [9].
Mobile apps fall broadly into three categories: na-

tive, web-based, and hybrid [228]. Native apps run on
a device’s operating system and are required to be
adapted for different devices. Web-based apps require
a web browser on a mobile device. Hybrid apps are
web-based apps hosted inside a native application.
Apps that are not pre-installed are generally dis-

tributed to end-users through app stores, application
distribution platforms first appeared in 2008. Dedi-
cated app stores are typically operated by the owners
of the mobile operating systems (such as the Apple
App Store[2], Google Play[3], and the Windows Phone
Store[4]). Generally, mobile apps are downloaded di-
rectly from the distribution platform to a target mo-
bile device. Currently, Android and iOS platforms, the

[2]https://www.apple.com/it/ios/app-store/
[3]https://play.google.com/
[4]https://www.microsoft.com/store/apps/windows-
phone

two most prominent mobile operating systems, make
up over 99% of smartphone sales worldwide [114].
Still, being relatively new, mobile apps present a

wide array of issues and challenges for both end users
and developers. On the one hand, when using mobile
apps, end users often face issues that stem from poor
quality of development (such as apps that exhibit fre-
quent crashes, lack in responsiveness or consume an
abnormal amount of energy or memory) or deliberate
malicious behavior (such as apps that invade privacy
or are unethical [129]). On the other hand, develop-
ers face multiple challenges when developing apps for
mobile devices such as fragmentation, both across mul-
tiple platforms and within the same platform, lack of
robust monitoring, analysis and testing tools, as well
as having to keep up with frequent platform updates
and changes [123].
In the following section, we provide a concise sum-

mary of the topic on which our research focusses,
namely static program analysis techniques, followed
by a concrete example of one of such techniques.

2.2 Static program analysis
The denomination static program analysis encloses a
set of static compile-time techniques that predict com-
putable approximations of values or behaviors arising
at run-time when executing a program [190]. When
applied to mobile apps, static program analysis can be
an effective instrument for both app developers an app
store moderators (e.g., Google, Apple) to predict and
evaluate (precise or approximated) quantitative and
qualitative properties related to the run-time behav-
ior of mobile apps without actually executing them.
Hence, it can be a valuable instrument to create apps
with better quality in a world where a low-quality re-
leases can have devastating consequences [124].
In the literature, static analysis of mobile apps has

been applied with variety of goals in mind, ranging
from malware and privacy leaks detection to detection
of bugs in the app source, to reduction of energy and
memory consumption [15, 16, 93, 113, 144]. To achieve
these goals, researchers have experimented with a va-
riety of different static analysis techniques. Among the
ones worth mentioning, there is data-flow analysis, in
which a program is considered as a graph: nodes are el-
ementary blocks and edges describe how control passes
from one block to another [190]. Taint Analysis is a
special case of data-flow analysis that aims to detect
the existence of a data flow from sensitive data sources,
often simply referred as sources, to untrusted program
statements, called sinks [113]. Type Analysis aims to
verify the type safety of a program, i.e., if we can guar-
antee that the eventual value of any expression in the
program will not violate the expression’s static type.



Autili et al. Page 4 of 37

In other words, type analysis aims to detect type er-
rors in a program source code. Abstract interpretation
is a sound approximation of the semantics of a pro-
gram, based on monotonic functions over ordered sets.
It is able to extract information about the semantics
of a program without performing all the calculations.
Program slicing aims to compute the set of program
statements, referred to as the program slice, which may
affect the values at some point of interest, referred to
as a slicing criterion.
In some cases, static analysis approaches rely on ad-

ditional inputs other than the program itself (e.g.,
knowledge bases, code mappings), either to improve
the accuracy of the analysis or to perform broader
kinds of analyses that would be impossible without.
When the analysis makes use of information collected
at run-time, while executing the program, we refer to
it as hybrid analysis.
Approaches for static analysis of mobile apps can

be generic or platform specific. The latter approaches
are able to analyze only apps developed for a specific
mobile platform, as the analysis leverages or focuses
on programming constructs that are available only on
that platform (e.g., Android Intents).

Example – In the remaining of this section, we de-
scribe CHEX [171], one of the identified primary stud-
ies, in order to give a concrete idea about the typi-
cal traits and features of a software engineering tech-
niques for static analysis of mobile apps. The main
goal of CHEX is to automatically detect component
hijacking vulnerabilities, a specific class of security vul-
nerabilities existing on the Android platform. In this
sense, CHEX is Android-specific. These vulnerabilities
have been modeled from a data-flow analysis perspec-
tive, thus enabling their identification via a reacha-
bility analysis on custom system dependence graphs.
In [171], the authors also devised novel techniques to
tackle analysis challenges arising from the Android’s
programming paradigm, such as multiple app entry
points and asynchronous code execution. CHEX has
been implemented on top of Dalysis, a generic static
analysis framework that the authors built to support
many types of analysis on Android app bytecode.
CHEX was evaluated on 5,486 real Android apps and
correctly identified 254 potential component hijacking
vulnerabilities.

3 Related Work on Static Analysis of
Mobile Apps

In this section, we discuss other existing studies related
to our work. Literature reviews, surveys and mapping
studies on either static analysis approaches or analysis
methodologies and techniques applied to mobile apps
that can be considered as research related to our study.

Based on our knowledge, we found no systematic
mapping study (SMS) and only one systematic litera-
ture review (SLR) on the specific topic of static anal-
ysis of mobile apps [152]. Thus, in the following, we
first discuss in more detail the SLR reported in [152],
which is a valuable and solid work study closely related
to ours. Then, we discuss other works in the literature
that, although having different scopes and objectives,
can be related to our research.

Similarly to our SMS, the SLR in [152] reviewed pub-
lications on approaches involving the use of static anal-
ysis for mobile apps. The main difference between the
SLR in [152] and our SMS is methodological; as exten-
sively discussed in [204] and [135], SLRs aim at synthe-
sizing evidence with a very specific goal in mind (e.g.,
which static analysis technique achieves higher accu-
racy in specific contexts), whereas systematic maps are
primarily concerned with structuring a research area
[204], providing an overview of the direction and inten-
sity of the scientific interest over a specific topic (static
analysis for mobile apps in our case), which sub-topics
are covered, and relevant research gaps and trends.
This difference in aim implies profound methodologi-
cal differences throughout the whole research protocol,
ranging from the nature of the research questions, the
broadness of the searchers, and most importantly the
synthesised findings.
In the following, we provide an overview of the main

methodological differences among our study and the
one in [152]. In addition to Android, our study con-
sidered also other platforms. As per the search strat-
egy, the main difference is that we performed a man-
ual search of top venues for SE and programming lan-
guages, followed by backward snowballing and then
forward snowballing; in [152], the authors performed
automatic search followed by manual search of top
venues for SE, programming languages, security and
privacy, and then authors’ self-check followed by back-
ward snowballing. Concerning the selections criteria,
we considered only peer reviewed work, by excluding
studies in the form of editorials and tutorial, as well
as short and poster papers, secondary or tertiary stud-
ies. In [152], only short papers were excluded. More-
over, differently from them, we accounted for the ex-
istence of some kind of evaluation together with the
availability of an implementation. As a result, they
collected 124 research papers, in the timespan 2011-
2015; we have a better coverage made of 261 primary
studies in the timespan 2007-2019. Finally, similarly
to [152], in our study we perform a vertical analysis of
the extracted data (i.e., we perform an in-depth anal-
ysis of the extracted data for each parameter of our
classification framework); in addition, in our study we
also complement the vertical analysis with horizontal



Autili et al. Page 5 of 37

analysis (i.e., we build contingency tables across pairs
of parameters and investigate on emerging interesting
correlations).
Importantly, in [152], the authors do not consider the

potential for industrial adoption of existing research
on static analysis of mobile apps, as we do through
our research question RQ3. This is a substantial dif-
ference that permitted us to identify in the state of the
art those approaches to static analysis of mobile apps
that are ready for technological transfer and industrial
adoption. Another profitable difference is in the nature
of the study, SLR versus SMS, and in the target au-
dience. As already introduced, in our SMS we target
both researchers and practitioners, such as app devel-
opers, who are interested in selecting/choosing exist-
ing static analysis approaches, and want to critically
understand what they offer and how, in order to opt
for their adoption or possible industrial transfer. The
SLR in [152] more specifically targets researchers and
practitioners that want to propose a new approach to
static analysis or to extend existing ones. In this sense,
we believe that our work and the work in [152] com-
plement one another, and together they constitute a
valuable asset to the academic and industrial world in
the wide spectrum of static analysis.

In [87], a survey about static analysis and model
checking approaches for searching patterns and vulner-
abilities within a software system is reported. The au-
thors examine the proposed algorithms and their effec-
tiveness in finding bugs. A peculiarity of this research
is the comparison between static analysis algorithms
and mathematical logic languages for model checking.
In [205], the authors report on a survey about static

analysis for identifying security issues and vulnerabil-
ities in software systems in general (not specific to
mobile apps). For each type of security vulnerability,
the authors present both relevant studies and the im-
plementation details of the used static analysis algo-
rithms.
A systematic mapping study is reported in [65]. The

study was conducted for classifying and analysing ap-
proaches that combine different static and dynamic
quality assurance techniques. The study includes a
discussion about reported effects, characteristics, and
constraints of the various existing techniques.
A literature review about mobile usability models

can be found in [105], as a means for validating a spe-
cific usability model. Among the main results, from
this literature review it emerges that usability is usu-
ally measured in terms of three key indicators, namely,
effectiveness, efficiency and satisfaction.
Even if some of the above mentioned works are about

static analysis, none of them is specifically focussed on
the static analysis of mobile apps, and none of them is
a systematic literature review.

4 Study Design
This research was organized into three main phases,
which are well-established when it comes to systematic
literature studies [133, 258]: planning, conducting, and
documenting.

Planning. We established the need for performing a
review on static analysis of mobile app (Section 3), we
identified the main research questions (Section 4.1),
and we defined the protocol to be followed by the in-
volved researchers.
Conducting. We performed the mapping study by
following all the steps defined in our research protocol,
namely: (i) search and selection of primary studies, i.e.,
the relevant research articles on static analysis meth-
ods and techniques of mobile apps (Section 4.2), (ii)
extraction of relevant data from each primary study
according to a rigorously-defined classification frame-
work (Section 4.3), and (iii) synthesis of main findings
emerging from the analysis and summary of the data
extracted in the previous activity (Section 4.4).
Documenting. The main activities performed in this
phase are: (i) a thorough elaboration of the data ex-
tracted in the previous phase, with the main goal of
setting the obtained results in their context, (ii) the
discussion of possible threats to validity, specially to
the ones identified during the definition of the review
protocol (in this activity new threats to validity may
emerge too), and (iii) the writing of a final report (i.e.,
this article) describing the performed mapping study.
A complete replication package is publicly avail-

able to allow interested researchers to independently
replicate and verify our study[5]. It includes the review
protocol, the list of both searched and selected stud-
ies, a detailed data extraction form, the raw extracted
data, and the R scripts for data analysis.

4.1 Research questions
We formulate the goal of this study by using the Goal-
Question-Metric perspectives (i.e., purpose, issue, ob-
ject, viewpoint [30]). Table 1 shows the result of the
above mentioned formulation.

Table 1: Goal of this research
Purpose Identify, classify, and evaluate
Issue trends, characteristics and potential for

industrial adoption
Object of existing research in static analysis of

mobile apps
Viewpoint from a researcher’s and practitioner’s

point of view.

[5]https://github.com/sesygroup/

mobile-static-analysis-replication-package



Autili et al. Page 6 of 37

The results of this study are targeted to both (i) re-
searchers willing to further contribute to this research
area, and (ii) practitioners willing to understand ex-
isting research on static analysis approaches of mobile
apps and thereby to be able to adopt those solutions
that better fit with their needs. We refined our abstract
goal into the following research questions:
RQ1: What are the research trends on static analy-

sis of mobile apps?
Rationale: a multitude of researchers are inves-
tigating on static analysis for mobile apps over
time with different degrees of independence and
different methodologies. By answering this re-
search question, we aim at characterizing the
scientific interest on static analysis approaches
of mobile apps, the relevant venues where aca-
demics are publishing their results on the topic,
and their contribution type.

RQ2: What are the characteristics of existing ap-
proaches for static analysis of mobile apps?
Rationale: static analysis of mobile apps is a
multi-faceted research topic, where researchers
can focus on very different aspects (e.g., en-
ergy consumption, security), applying very dif-
ferent research methodologies (e.g., industrial
case studies, empirical evaluations), providing
different
types of contributions (e.g., tools for automat-
ing development activities, techniques for ana-
lyzing a specific aspect of the mobile app). By
answering this research question, we aim at pro-
viding (i) a solid foundation for classifying ex-
isting (and future) research on static analysis of
mobile apps, and (ii) an understanding of cur-
rent research trends and gaps in the state of the
art on static analysis of mobile apps.

RQ3: What is the potential for industrial adop-
tion of existing research on static analysis of
mobile apps?
Rationale: while it is well known that mobile
apps have their roots in industry, many research
groups focus on them from an academic perspec-
tive.
Therefore, it is natural to ask ourselves how
the produced research findings and contribu-
tions can be actually transferred back to indus-
try. By answering this research question we aim
at assessing how and if the current state of the
art on static analysis of mobile apps is ready to
be adopted in industry.

4.2 Search and selection process
Our first choice for searching potentially relevant stud-
ies was to perform an automatic search on known

data sources (e.g., IEEE Xplore, the ACM Digital
Library, SCOPUS). However, from the results of a
preliminary study [14], we understood that the re-
search topic of mobile static analysis resulted to be
extremely heterogeneous; for example, many keywords
like “program analysis” resulted to be profoundly over-
loaded, leading to imprecise and inaccurate automatic
search results. In order to prevent biases associated to
automatic searches, we adopted two complementary
manual search activities. This decision is supported
by the evidence that automatic searches and back-
ward snowballing activities lead to similar results, and
that the decision on which to prefer is context-specific
[116, 256]. Our search strategy was divided into two
subsequent and complementary steps. The first step
was carried out by manually inspecting all the pub-
lications of the top-level software engineering venues.
The papers identified through this first step were then
subsequently utilized as input for a backward and for-
ward snowballing[6] process [257]. In order to ensure
the correctness of the adopted manual approach, the
backward snowballing activity was based exclusively
on the papers selected from the top-level software en-
gineering venues. Furthermore, the backward snow-
balling results were further contemplated by adopting
a forward snowballing process, that ensured soundness
and relevance of the set of the selected primary studies.
Figure 1 shows our search and selection process,

whose main steps are detailed in the following. Our
search and selection process is designed as a multi-
stage process in order to have full control on the num-
ber and characteristics of the studies being either se-
lected or excluded during the various stages.
1. Perform initial manual search. We performed a
manual search by considering exclusively articles pub-
lished in the top-level software engineering conferences
and international journals according to well-recognized
sources in the field [55, 272]. It is important to note
that the main aim of this step was not to select all pri-
mary studies but, as suggested in [256], we aimed at
obtaining a good start set of papers for the subsequent
snowballing procedure (stage 3), i.e., high-quality rele-
vant papers about static analysis techniques for mobile
apps in the field of software engineering. We used the
quality of the publication venues as proxy of the qual-
ity of the potentially relevant studies. Table 2 shows
the considered conferences and journals. The time span
of our search ranges from January 2007[7] to December
2019.

[6]Inspection of the studies referenced by a paper (back-
ward snowballing) and of the studies referencing it (forward

snowballing)
[7]Given that the concept of mobile app exists only
since 2007



Autili et al. Page 7 of 37

Figure 1: The search and selection process of this study

Table 2: Searched data sources with number of potentially relevant studies
Conferences #Studies Journals #Studies

International Conference on Software Engineer-
ing (ICSE)

1,092 IEEE Transactions on Software Engineering
(TSE)

798

European Software Engineering Conference
(ESEC)\ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE)

1,039 ACM Transactions on Software Engineering and
Methodology (TOSEM)

267

International Conference on Fundamental Ap-
proaches to Software Engineering (FASE)

357 Information and Software Technology (IST) 1,456

IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE)

1,012 Automated Software Engineering (ASE journal) 225

ACM SIGPLAN conference on Systems, Pro-
gramming, Languages and Applications: Soft-
ware for Humanity (SPLASH)

668 Software Maintenance & Evolution - Research
& Practice (JSEP)

568

European Conference on Object-Oriented Pro-
gramming (ECOOP)

362 Software and Systems Modeling (SoSyM) 637

International Symposium on Software
Testing and Analysis (ISSTA)

466
Empirical Software Engineering (ESEJ) 686
Journal of Systems and Software (JSS) 2,495

Total 4,996 Total 7,132

The search was performed by manually screening the
DBLP entries of all conference proceedings and journal
issues within the considered time span and contextu-
ally applying the selection criteria described in stage 2.
DBLP is the Computer Science Bibliography from the
University of Trier [142] and contains all proceedings
and issues of the publication venues listed in Table 2.
This step resulted in a total of 12,128 potentially rel-
evant studies distributed across more than 9 years of
research in software engineering.
2. Apply selection criteria. Each study was filtered
according to a set of well-defined selection criteria. The
adopted criteria are detailed in Section 4.2.1. An adap-
tive reading depth was applied in order to carry out
the selection process in a time-efficient and objective
manner [203], because it was not necessary to read
the full text of approaches that clearly did not qualify.
This step resulted in a total of 85 potentially relevant
studies. This significant reduction of the number of
potentially relevant studies is due to the fact that (i)

we considered exclusively top-level venues in the field
of software engineering, and (ii) the considered venues
are quite general, with static analysis of mobile apps
being only one of the many topics of interest of those
venues. In order to reduce possible biases, three re-
searchers were involved in this stage of the study, with
a fourth researcher playing the role of arbiter in case
of conflicts so to ‘avoid endless discussions’ [292]. The
application of the selection criteria lead to an initial
set of 85 primary studies.
3. Backward and forward snowballing. In this
step, we applied backward and forward snowballing in
order to take into account also studies that are pub-
lished outside the contexts of the conferences and jour-
nal considered in the previous step. In particular, this
process was carried out by considering the studies se-
lected in the initial search, and subsequently selecting
relevant papers among those cited by the initially se-
lected ones. This method is commonly referred to as a
backward snowballing activity [256].



Autili et al. Page 8 of 37

In addition to the backward snowballing, we also
analyzed the researches citing the studies selected
through the initial search. This process is usually
referred to as a forward snowballing activity [256].
Specifically, we included this further literature search
method in order to consider also newer studies that,
at that time, had not been included in official jour-
nal volumes or conference proceedings yet. Regarding
the forward snowballing process, the Google Scholar [8]

bibliographic
database was adopted to retrieve the studies citing the
ones selected through the initial search phase.

The final decision about the inclusion of the papers
was based on the adherence of the full text of the
studies to the predefined selection criteria presented
in Section 4.2.1. This step resulted in a total of 296
potentially relevant studies. The total number of po-
tentially relevant studies increased significantly since
in this step we considered papers published in all re-
search venues, which by definition are far more than
the top-level ones.

4. Exclude studies during data extraction activ-
ity. While reading in details each potentially relevant
study, we agreed that 35 studies were semantically out
of the scope of this research, so they were excluded.
This final step led us to the final set of 261 primary
studies.

4.2.1 Selection criteria

Following the guidelines for systematic literature re-
view for software engineering [133], in order to reduce
the likelihood of biases, we defined a set of inclusion
and exclusion criteria beforehand. In the following, we
detail the set of inclusion and exclusion criteria that
guided the selection of the potentially relevant studies.
A potentially relevant study was included if it satisfied
all the inclusion criterion stated below; whereas, it was
discarded if it satisfied at least one of the exclusion cri-
teria reported below.

Inclusion criteria

I1) Studies proposing or using a static analysis method
or technique for mobile apps.

I2) Studies in which the static analysis method or
technique takes as input one or more mobile appli-
cations in the form of binary files or source code.

I3) Studies providing some kind of evaluation of the
proposed method or technique (e.g., via formal
analysis, controlled experiment, exploitation in in-
dustry, application to a simple example).

[8]https://scholar.google.it/

Exclusion criteria
E1) Studies not describing any implementation of the

proposed method or technique.
E2) Secondary or tertiary studies (e.g., systematic lit-

erature reviews, surveys).
E3) Studies in the form of editorials, tutorial, short,

and poster papers, because they do not provide
enough information.

E4) Studies not published in English language.
E5) Studies not peer reviewed.
E6) Studies in which the static analysis method or

technique takes as input only store metadata
(e.g., user reviews, ratings) or other app artifacts
(e.g., manifest files).

4.3 Data extraction
This phase concerns (i) the creation of a classification
framework for the primary studies, and (ii) the collec-
tion of data from each primary study.
In order to carry out a rigorous data extraction pro-

cess, as well as to ease the control and the subsequent
analysis of the extracted data, a predefined data ex-
traction form was designed prior the data extraction
process. The data extraction form is composed of the
various categories of the classification framework. The
classification framework is composed of three distinct
parts, one for each research question of our study[9].
The overview of each part of the classification frame-
work, and respective parameters, is reported in Ta-
ble 3, whereas the definition and values of each specific
parameter is given in Sections 5, 6, and 7.

Table 3: Overview of the classification framework
Research trends (RQ1)

• Year of publication • Publication venue
• Publication venue type • Analysis goal
• Macro analysis goal • Paper goal

Characteristics (RQ2)
• Platform specificity • Implementation
• Static/hybrid approach • Usage of machine learning
• App artifact • Additional inputs
• Analysis pre-steps • Analysis technique

Potential for industrial adoption (RQ3)
• Target stakeholder • Tool availability
• Number of analysed apps • Applied research method
• Industry involvement

For each primary study, three researchers collabora-
tively collected a record with the extracted informa-
tion in the data extraction form for subsequent analy-
sis. As suggested in [258], in order to validate our data
extraction strategy, we performed a sensitivity analy-
sis to check whether the results were consistent, inde-
pendently from the researcher performing the analysis.

[9]For the sake of simplicity, we do not report standard
publication information (e.g., study ID, title, search
strategy), they are available in the replication package.



Autili et al. Page 9 of 37

More specifically, each of the three researchers consid-
ered a random sample of 5 primary studies and ana-
lyzed them independently by filling the data extraction
form for each of them. Then, each disagreement was
discussed and resolved with the intervention of a fourth
researcher. Specifically, this process was carried out by
jointly inspecting the disagreement items, and subse-
quently providing references available in the literature
fitted to solve the item under discussion. For exam-
ple, an early disagreement item arose between two re-
searchers on the internal or external nature of a quality
attribute. Such item was solved by escalating the item
to a fourth researcher, who provided a reference to the
relative standard available in the literature [115] and
additional examples of both types of attributes.

4.4 Data synthesis
The data synthesis activity involves collating and sum-
marizing the data extracted from the primary studies
[134] with the main goal of understanding, analysing,
and classifying current research on static analysis of
mobile apps.
Our data synthesis was split into two main phases:

vertical analysis and horizontal analysis. When per-
forming vertical analysis, we analyzed the extracted
data to find trends and collect information about
each parameter of each category of our classification
framework. When performing horizontal analysis,
we analysed the extracted data to explore possible re-
lations across different parameters of our classification
framework. We used contingency tables for evaluating
the actual existence of those relations[10].
In both phases, we performed a combination of con-

tent analysis (mainly for categorizing and coding the
studies under broad thematic categories) and narra-
tive synthesis (mainly for explaining in details and in-
terpreting the findings coming from the content anal-
ysis). During the horizontal analysis, we used con-
tingency tables for evaluating the actual existence of
inter-parameter relations.

5 Results - Research Trends (RQ1)

5.1 Year of publication
An overview of the year of publication of the primary
studies is reported in Figure 2. Overall, the publication
rate results to be constantly increasing through time
until 2016. In 2017 there were registered a significant
decrease in the publication rate (-25 publications with
respect to the previous year). The number of publica-
tions surges in 2018 (+20 publications) and remains
almost constant in 2019. The lack of growth in recent

[10]For our horizontal analysis we applied the same pro-
cess as the one in [80].

years could indicate that the initial push, tied to the
novelty of the topic, has now stopped. However, the
coming years will be decisive in confirming or denying
this trend.

4 15

2

4

19

1

25

3

2

34

3

1

35

7

6

19

4

32

11

24

9

1

Conference

Journal

Workshop

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Figure 2: Bubble plot of primary studies by year
and venue type

A steep increase of the publication rate can be no-
ticed between the years 2011-2012 and 2015-2016, with
a difference of 17 and 10 publications, respectively.
We can conjecture that the first steep increase (years
2011-2012) is due to the popularity gained in those
years by the Android operating system, with its ver-
sion 4.0. The appearance of lightweight static analysis
approaches for mobile application, e.g., Flowdroid [12],
could instead be one of the root causes of the increase
of publications between the years 2013 and 2014. No
publication was found before the year 2011. Consider-
ing that the concept of mobile app originated in 2007,
we conjecture that the lack of publications in the years
2007-2011 is attributable to the time required by mo-
bile apps to gain widespread diffusion and, hence, for
the topic considered (static analysis methods for mo-
bile) to attract the interest of researchers.

5.2 Publication venue
Studies on static analysis of mobile apps have been
published to a certain extent in all the most prominent
top-level conferences and journals in software engineer-
ing. An overview of the most targeted venues and the
papers there published is reported in Figure 3. The
ICSE conference results to be the venue in which most
studies on this topic were published (31/261), followed
by ASE (30/261). Overall, a high heterogeneity can be
found in the publication venues, which led to a total
number of 112 different venues. Only a small number of
venues results to be focused on mobile related topics.
The vast majority of targeted venues is on general ar-
eas of computing, e.g., software engineering, security,
testing and program analysis.

5.3 Publication venue type
As shown in Figure 4, most of the papers were pub-
lished in conferences (207/261), followed by journals



Autili et al. Page 10 of 37

SPSM
ACM SAC

ISSTA
NDSS

CCS
ASE

ICSE
Other

0 50 100 150 200 250
5
10
12
13
13

30
31

147

Figure 3: Most targeted publication venues

(40/261) and workshops (14/261). The higher number
of conference papers might be due to the high pace
of technological advances in the topic. Specifically, re-
searchers may have focussed more on timely publi-
cations in conference, rather than targeting journals,
which have a (usually) slower publication timeline. In-
terestingly, as shown in Figure 2, 31 out of 40 journal
papers were published from 2016 onwards, which can
be considered as an indication of the maturing of static
analysis techniques for mobile apps as a scientific topic.

Workshop

Journal

Conference

0 50 100 150 200 250

14

40

207

Figure 4: Primary studies by venue type

5.4 Analysis goal
The analysis goal represents the principal purposes
for which the static analysis approaches were con-
ceived. By carefully analyzing the primary studies,
sixteen main analysis goal categories emerged from
the keywording process. In Figure 5, the comprehen-
sive mapping of primary studies to analysis goals
is reported. The most recurrent goals are: privacy
(96/261), malware (66/261), inter-component commu-
nication (33/261), energy (25/261) and inter-app com-
munication (24/261).
From an inspection of the more recurrent goals, we

can observe that most of the studies focus either on
analysing crucial aspects of the mobile ecosystem (e.g.,
privacy and malware) or on improving existing analy-
sis methods (e.g., inter/intra-component communica-
tion). We can conjecture that this trend may be due
to the fast pace of development that usually character-
izes mobile application, where new app releases must
be quickly developed and tested in order to be pub-
lished in the app stores. This may lead to a lack of

Similarity
Obfuscation

Authorship
Antipatterns

Reflection
Library detection

Resource
Framework

Performance
Refactoring

Testing
Inter−app communication

Energy
Inter−component communication

Malware
Privacy

0 50 100 150 200 250

1
1
1
1
5
5
6
8
16
18
23
24
25

33
66

96

Figure 5: Primary studies by analysis goal
(Categories are not mutually exclusive)

interest in analysing less critical software aspects of
the app, such as refactoring the code of the app itself
or identifying specific code anti-patterns.
Example. The European Union data protection regu-
lations impose restriction on the locations of European
users’ personal data transfer. In P2, Eskandari et al.
investigate whether these regulations are respected by
mobile apps, thus safeguarding end users Privacy. For
this purpose, they developed PDTLoc, a static analy-
sis tool that analyzes an app to identify the location
of servers to which personal data is transferred.

5.5 Macro analysis goal
The macro analysis goal refers to the generic goal con-
sidered by the static analyses. The values of this pa-
rameter are based on the definition of internal and
external quality attribute provided in the ISO/IEC
25010 standard [115]. Specifically, external quality at-
tributes provide a “black box” view of the software
under consideration and address properties related to
the execution of the software on hardware and an oper-
ating system, e.g., reliability [115]. Internal quality at-
tributes provide a “white box” view of software under
consideration and address static properties that typ-
ically manifest themselves at development time, e.g.,
maintainability [115]. So, the macro analysis goal of
a primary study can have the following values: (i) ex-
ternal quality, if the approach evaluates one or more
external quality attribute and (ii) internal quality, if
the approach evaluates one or more internal quality at-
tributes. In order to identify approaches which explic-
itly aim to improve existing methods referenced in the
literature, we have a third possible value for this pa-
rameter called improving of methodology ; we use such



Autili et al. Page 11 of 37

value if the main goal of the primary study is to im-
prove a static analysis method or technique.

Improvement of 
methodology

Internal quality

External quality

0 50 100 150 200 250

65

77

168

Figure 6: Primary studies by macro analysis goal
(Categories are not mutually exclusive)

The macro analysis goals considered by the primary
studies are reported in Figure 6. The majority of the
primary studies focus on external quality (168/261). A
smaller amount of studies focuses on the improvement
of static analysis methodologies (77/261) and on inter-
nal quality (65/261)[11]. From this data, we conjecture
that the high pace of the mobile technological advances
and the strong role of end users in the mobile ecosys-
tem are leading researchers to give more importance
to external qualities. Research aimed to refine static
analysis approaches results to be higher than the ones
focusing on internal quality, making us conjecture that
the ones considering internal quality are either at an
early stage of development or have been less explored
than the ones improving the existing methods.

In addition, the distribution of macro analysis goals
throughout the years is depicted in Figure 7. Here,
we observe that, although studies focusing on external
quality have been the majority in each of the consid-
ered years, a steady increase in number can be ob-
served for studies that focus on either methodology
improvement or internal quality, from 2013 to 2016.
Due to the decrease in number of publications occured
in 2017, studies that focus on either methodology im-
provement or internal quality also decrease.

Example. A resource leak is a common bug caused
by missing release of resources that require program-
mers to explicitly release them (e.g., camera and sen-
sors). Although not directly observable by end users,
a resource leak might lead to several problems such as
performance degradation and occurrences of crashes.
Relda2 (P42), a light-weight static analysis tool for the
automatic detection of resource leaks in Android apps,
is an example of a primary study aimed at improving
an internal quality attribute.

[11]It is important to note that these categories are not
mutually exclusive, i.e., a paper could be mapped to
more than one category if it addresses more than one
type of goal.

Figure 7: Macro analysis goal by year
(Categories are not mutually exclusive)

5.6 Paper goal

This parameter can be of two types, namely: (i) Qual-
ity attribute assessment, if the research reported in the
primary study focuses on assessing a quality attribute
of mobile apps (e.g., security); (ii) Improvement of
methodology, if the research reported in the primary
study focuses on improving existing static analyses for
mobile apps.

Improvement of 
methodology

Quality attribute 
assessment

0 50 100 150 200 250

83

187

Figure 8: Primary studies by analysis goal
(Categories are not mutually exclusive)

The goals taken into account by the primary stud-
ies is documented in Figure 8. The majority of the
primary studies (187/261) focuses on the assessment
of some quality attribute(s) of mobile apps. A lower
number instead (83/261) considers the improvement
of static analysis techniques. We can conjecture that
this trend can be associated to the more “immediate
impact”, e.g., ease of adoption and real-life utilization
by practitioners. From this, we can conjecture that a
certain maturity with respect with assessment of apps
quality attributes has been achieved (and hence a high
presence of such approaches is observable), which is re-
flected in the reasonable amount of techniques aimed
exclusively at improving the existing methods.

Example. Ripple (P4) is an incomplete information
environment aware static reflection analysis for An-
droid apps. Ripple is an improvement of methodology,
as it is able to resolve reflective calls more soundly than
conventional string inference. It enables more precise
taint analyses when used in combination with tools
such as FlowDroid (P86).



Autili et al. Page 12 of 37

Main findings on research trends:
◮ The intensity of research on static analysis for

mobile apps has been growing year by year,
until 2016, especially after app-specific tech-
niques have been devised (e.g., Flowdroid).
Following a slight fluctuation in 2017, the
number of publications seems to have recov-
ered and remains stable in most recent years.

◮ Researchers are targeting primarily confer-
ences (e.g., ASE and ICSE), even if journal
publications have been much more targeted
in recent years.

◮ Many of the approaches are focussing on
security-related concerns, such as privacy
leaks identification and malware detection.

◮ Approaches for enhancing the modeling and
analysis of both inter-component communi-
cation (e.g., intent raising across Android ac-
tivities) and inter-app communication are re-
ceiving quite an intensive scientific attention.

◮ The vast majority of primary studies is tar-
geting the assessment of external quality at-
tributes (e.g., security, energy consumption).
Only a smaller portion focussed on assessing
internal quality attributes (e.g., maintainabil-
ity, reusability).

◮ Reasonable research effort is being devoted to
the improvement of the methodology, such as
devising more sound static analyses support
for more events in the mobile components life-
cycles (e.g., Android intents sharing).

6 Results - Characteristics of Approaches
(RQ2)

6.1 Platform specificity

This parameter identifies whether the proposed ap-

proach is specifically designed for a specific platform

(e.g., Android or iOS ) or if it is generic and can in

principle be applied to any platform. As shown in Fig-

ure 9, the vast majority of the approaches (239/261)

presents an analysis approach specific for Android;

only one study (1/261) presents an approach specific

for iOS. A smaller amount of studies (21/261) presents

an approach that is generic. Possible reasons for this

imbalance may be due to the popularity and the open-

source nature of the Android platform, which eases the

effort required by researchers during the design of new

analyses. Furthermore, Android app binaries can be

straightforwardly disassembled with off-the-shelf soft-

ware libraries (e.g., apktool[12], dex2jar[13]), and their
internal structure and contained static resources are
easily analyzable in an automatic way.

iOS

Generic

Android

0 50 100 150 200 250

1

21

239

Figure 9: Primary studies by platform specificity

Example. As an example of platform specificity, P20
presents a technique to optimize energy consumption
of mobile apps minimizing the number of HTTP re-
quests that they perform. Proposed technique uses
static analysis to detect Sequential HTTP Requests
Sessions, i.e., sequences of HTTP requests in which
generation of the first request implies that the follow-
ing requests will also be made. Energy savings can be
achieved by bundling these requests. The technique is
Generic and applicable to all major mobile platforms,
as mechanisms available to perform HTTP requests
are similar across these platforms.

6.2 Implementation
Values for the implementation parameter, summarized
in Figure 10, were extracted from the primary stud-
ies according to whether the implementation used for
evaluation purposes is implemented for a specific plat-
form, e.g., Android or iOS, or it is Generic, applicable
to apps developed for any platform.

Other
iOS

Generic
Android

0 50 100 150 200 250
1
1
2

257

Figure 10: Primary studies by platform
implementation

Almost all the studies (257/261) implement the
proposed approach exclusively for the Android plat-
form. Two studies present approaches (2/261) having
a generic implementation, applicable to any platform.
Only one study (1/261) presents an approach that is
implemented specifically for the iOS platform. Other
less popular platforms are almost completely absent,

[12]http://ibotpeaches.github.io/Apktool
[13]http://github.com/pxb1988/dex2jar



Autili et al. Page 13 of 37

with only one study (1/261) implementing the pro-
posed analysis on TouchDevelop scripts [234]. We spec-
ulate that the reason for this disproportion, in addi-
tion to the ones already evidenced in the discussion of
the platform specificity parameter, stem from the fact
that some of the most popular static analysis frame-
works (e.g., Soot [239] and WALA [209]) are adapted
to support analysis of Android apps. The same cannot
be said for the other platforms and, hence, researchers
interested in performing static analysis on apps de-
signed for those platforms experience a higher barrier
to entry as they must develop their own tools, often
from scratch.
Example. PiOS (P134) studies the privacy threats
that applications written for Apple’s iOS may pose to
users. To this end, the authors leverage static anal-
ysis techniques to extract data flows from iOS apps.
PiOS is an iOS -specific implementation of the pro-
posed technique, that automates the data flow extrac-
tion process from binaries resulting from the compila-
tion of Objective-C code.

6.3 Static/Hybrid approach
The static/hybrid approach parameter describes whether
an approach relies on static analysis only (Static) or
utilizes some form of dynamic analysis also (Hybrid).

Hybrid

Static

0 50 100 150 200 250

58

203

Figure 11: Primary studies by usage of dynamic
analysis

Results for the extraction of this parameter are sum-
marized in Figure 11. The preponderance of the stud-
ies (203/261) present an approach that relies on static
analysis only. Nonetheless, a considerable amount of
them (58/261) present an approach that complements
static analysis with dynamic analysis. The presence
of dynamic analysis in a considerable portion of the
studies can be explained by considering that, despite
all its drawbacks, dynamic analysis still provides an
invaluable contribution for a variety of purposes, such
as privacy leaks detection, GUI-modeling, energy pro-
filing. A further discussion on the fields where dynamic
analysis is most common can be found in Section 8.
Example. SmartDroid (P113) is an hybrid analysis
technique whose goal is identifying UI-based trigger
conditions required to expose the sensitive behavior of
Android malwares. As shown in Figure 14, SmartDroid

uses static analysis to extract Activity and Function
call graphs from the application binaries. Then, guided
by the static analysis results, it uses dynamic analysis
to interact with the UI and identify UI-based condi-
tions required to trigger sensitive APIs.

Source
code

Binary

0 50 100 150 200 250

31

238

Figure 12: Primary studies by additional app
artifacts (Categories not mutually exclusive)

6.4 Usage of machine learning techniques

Values for this parameter are summarized in Figure 13.
The possible values identify whether the approach un-
der evaluation complements its analysis with machine
learning techniques (Yes) or not (No). A vast ma-
jority of the studies (213/261) does not make use of
machine learning in the proposed approach. The re-
maining studies (48/261) perform features extraction
from the application source code or other intermediate
representations (e.g., a method-level call graph), and
applies machine learning techniques on the extracted
features. Machine learning techniques are widely used
for some specific goals (e.g., malware detection), but
their application to others has not been explored yet
by researchers.

Yes

No

0 50 100 150 200 250

48

213

Figure 13: Primary studies by usage of machine
learning

Example. An example of usage of machine learn-
ing coupled with static analysis is P28. In this study,
the authors adopts a machine learning approach that
leverages the use of data flow application program in-
terfaces (APIs) as classification features to detect An-
droid malware. Static analysis is employed to extract
data flow related API-level features, used to train a
k-nearest neighbor model for malware classification.



Autili et al. Page 14 of 37

6.5 App artifact
The values of this parameter describe what formats are
accepted as input by the selected studies for the apps
to be analyzed. As shown in Figure 12, the majority of
the studies (238/261) accepts as input apps in the form
of binary packages (Binary), i.e., APK (Android PacK-
age) files for the Android platform or IPA (iPhone Ap-
plication Archive) packages for the iOS platform.
This implies that the proposed analyses can be per-

formed by a variety of subjects (app store moderators,
researchers, security experts), and not only by app de-
velopers. Nonetheless, a considerable amount of pri-
mary studies (31/261) takes as input the app source
code (Source Code), hence targeting app developers
and researchers. In those cases, developers can poten-
tially integrate them into their development workflow,
e.g., as dedicated analyses integrated into the Android
Studio IDE or as specific steps in their continuous inte-
gration pipeline. Note that both APK and source code
are valid inputs for some of the studies.

Figure 14: Example of an hybrid analysis technique

6.6 Additional inputs
The possible values for the additional inputs parame-
ter, listed in Figure 15, identify what other inputs, if
any, are required by the primary studies to perform
the proposed analysis (in addition to the app itself).
Overall, the majority of primary studies (194/261) is
able to perform the analysis without any additional
input, whereas 67/261 studies require some additional
inputs. We consider this to be a positive trend, as it
simplifies the adoption of the proposed techniques by
industry and other researchers, additionally enabling
batch analysis of a large quantity of apps more eas-
ily. Nevertheless, as for P123, in some cases relying
on additional inputs is a necessity, e.g., when the app
needs to be executed in a controlled, non-random, and
non-trivial manner.
When focusing on the studies requiring additional in-

puts, we can observe that additional inputs are mostly
required by techniques that verify whether given poli-
cies, rules, or constraints are violated (13/261). This

Workload description
UI elements

System profile
Other tools output

Libraries of interest
Issue reports

Git−based code history
Execution traces

Code snippets
APK versions

User defined analysis
Permissions of interest

Test cases
Libraries metadata

App store descriptions
Platform description
Methods of interest

Source code mappings
Policies & rules

0 50 100 150 200 250

1
1
1
1
1
1
1
1
1
1
2
3
4
4
7
8
10
11
13

Figure 15: Primary studies by additional input
(Categories are not mutually exclusive)

is followed by mappings from the source code of the
app to other auxiliary information (11/261) and by
techniques that focus on a list of one or more meth-
ods leveraging the app source code (10/261). A num-
ber of studies (7/261) take as input app descriptions
retrieved through app stores, and leverage this infor-
mation in order to perform ad-hoc analyses. For ex-
ample, CHABADA [94] aims at automatically identi-
fying malicious apps by evaluating how their imple-
mentation differs from their description in the app
store. Some proposed techniques take as input the
platform (8/261) or system (1/261) profiles for ap-
plication execution. Other studies (4/261) take as in-
put test cases. This is particularly noteworthy as test
cases are artifacts commonly produced during the soft-
ware development cycle, and how information can be
extracted from test artifacts has widely been investi-
gated in the software engineering literature [3, 141].
Other studies (3/261) focus on problems pertaining
to system permissions and, consequently, take as in-
put an identifier of the permissions of interest. Two
studies (2/261) require as input the specification of
a user-defined analysis. Similarly, requires the user to
write down some additional code snippets to perform
the analysis (1/261). Two studies focus on app evo-
lution and extract change information from multiple
APK versions (1/261) or from the Git repository code
history (1/261). One study requires a description of
the workload to be executed (1/261) and one study
requires execution traces (1/261). One study focuses
on the behavior triggered by the interaction with user



Autili et al. Page 15 of 37

interface (UI) elements and hence requires as input a
list of the latter (1/261). Interestingly, only one study
(1/261) leverages information extracted from bug re-
ports to perform the analysis and only one study takes
as input information provided by other analysis tools
(1/261). It is important to notice that the vast ma-
jority of these additional inputs require the knowledge
of a developer or a domain expert in order to be re-
produced and only a handful can be reproduced by
end-users. This makes it harder to reproduce the re-
sults and might hinder large-scale adoption.
Example. As an example, Figure 16 presents eCalc
(P123), a technique involving two main steps that are
performed by an Execution Traces Generator and an
Analyzer, respectively. The Execution Traces Gener-
ator uses test cases for generating execution traces.
Although this step requires to execute the software ar-
tifact under analysis, the actual analysis step is stat-
ically performed by the Analyzer on the execution
traces by taking as input a CPU profile, without re-
quiring the execution of the software artifact. This ad-
ditional input is needed for automatically running and
profiling the app under analysis multiple times in or-
der to take into account the well-known phenomenon
of energy consumption fluctuations at run-time.

Figure 16: Example of an analysis technique
requiring additional inputs

6.7 Analysis pre-steps
The analysis pre-steps parameter identifies whether
the studies under evaluation require steps that must
be executed manually before the analysis can be per-
formed. Results are listed in Figure 17.
The majority of the approaches (192/261) does not

require any analysis pre-step. A still considerable
amount (69/261) requires some analysis pre-step to be
performed manually. Examples of possible pre-steps in-
clude, but are not limited to, building models of the
platform APIs or libraries used by the application un-
der analysis, collecting execution traces, collecting run-
time power consumption measures, creating rule sets
or security policies. Similarly to the previous parame-
ter, having to perform manual steps before or during

Yes

No

0 50 100 150 200 250

69

192

Figure 17: Primary studies by need of analysis
pre-steps

the application of a static analysis approach may hin-
der its reproducibility and large-scale adoption.

Example. UIPicker (P71) is a primary study that
makes use of preprocesing steps. UIPicker aims to re-
duce the risks to which users are exposed when us-
ing an application by automatically identifying sen-
sitive user inputs. To this end, in its preprocessing
module, it extracts the layouts texts and reorganizes
them through natural language processing techniques
for further usage. This pre-step includes word splitting,
redundant content removal and stemming.

6.8 Analysis technique

This parameter identifies the family of static analysis
techniques performed by the approaches proposed in
the primary studies. Results are summarized in Fig-
ure 18.

Typestate analysis
Termination analysis

Statistical analysis
Responsiveness analysis

Opcode analysis
Nullness analysis

Formal analysis
Class analysis

Pattern−based analysis
Code instrumentation

Type inference
String analysis

Model checking
Constant propagation

Similarity−based analysis
Abstract interpretation

Points−to analysis
Symbolic execution

Slicing
Model−based analysis

Classification
Taint analysis

Data mining
Flow analysis

0 50 100 150 200 250

1
1
1
1
1
1
1
1
2
2
4
5
5
5
6
6
9
12
13
13

29
33

46
171

Figure 18: Primary studies by analysis technique
(Categories are not mutually exclusive)



Autili et al. Page 16 of 37

A wide variety of static analysis techniques is used
in the primary studies, the most common being Flow
(171/261). A considerable amount of primary studies
limit their analysis to data mining (46/261) to ex-
tract relevant information from the application byte-
code or source code. Taint Analysis (33/261) follows
as the third most adopted analysis technique. Ma-
chine learning classification, slicing and model-based
analysis are also other relevantly used techniques,
each being used in twenty-nine (29/261), thirteen
(13/261), and thirteen (13/261) studies, respectively.
Other less frequently used techniques are symbolic
execution (12/261), points-to analysis (9/261), ab-
stract interpretation (6/261), similarity-based analy-
sis (6/261), constant propagation (5/261), string anal-
ysis (5/261), model checking (5/261), type inference
(4/261), code instrumentation (2/261), pattern-based
analysis (2/261), code-instrumentation (2/261), class
analysis (1/261), formal analysis (1/261), opcode anal-
ysis (1/261), nullness analysis (1/261), responsiveness
analysis (1/261), statistical analysis (1/261), termina-
tion analysis (1/261), and typestate analysis (1/261).
We speculate that the popularity of Flow and Taint
analysis is due to the fact that many of the issues re-
searchers want to detect in mobile apps can be mod-
eled under those analysis paradigms and, as further
discussed in Section 8, it appears that researchers iden-
tify the technique to be used in a goal-driven fashion.
We also believe that, again, researchers are limited by
the available frameworks and tools, and choose to fo-
cus more on those techniques for which mature tools
exist (e.g., Soot).
Example. AppSealer (P79) aims to automatically de-
tect and prevent component hijacking attacks, a class
of vulnerabilities commonly appearing in Android ap-
plications. When triggered by attackers, the vulnera-
ble apps can expose sensitive information and compro-
mise data integrity. For this purpose, AppSealer em-
ploys a combination of flow analysis and backward slic-
ing. First, flow- and context-sensitive inter-procedural
dataflow analysis is performed to track the propaga-
tion of sensitive information and detect if it prop-
agates into dangerous data sinks. Then, employing
backward slicing, one or more program slices that di-
rectly contribute to the dangerous information flow are
computed. With the guidance of the computed slices,
AppSealer automatically creates patches to deal with
the discovered vulnerability, placing guarding state-
ments at affected sinks to block the propagation of
dangerous information.

Main findings on characteristics of approaches:
◮ Being open source pays off from a scientific

perspective. The vast majority of the stud-

ied approaches is specific to the Android plat-
form, both from a conceptual and implemen-
tation perspective. Thanks to its open-source
nature, Android gives more control and flexi-
bility, and fuels an ecosystem of accompany-
ing tools and libraries useful for static anal-
ysis (avoiding to reinvent the wheel). This is
also proved by the fact that Android has been
chosen as implementation platform also for
generic static analysis approaches.

◮ Static analysis of mobile apps is widely per-
formed in isolation and by considering only
the app to be analyzed (no additional input
like test cases or platform profiles). If on the
one side this is a confirmation of the fact that
static analysis is a very versatile tool for an-
alyzing non-trivial properties of mobile apps,
on the other side, researchers may be loosing
an opportunity for pushing further by com-
plementing static analysis with other artifacts
and/or additional analysis techniques (e.g.,
like done in the eCalc approach in P123).

◮ Machine learning techniques seem to be
promising and are applied in conjunction with
static analysis techniques. Machine learning
techniques are widely used for some goals
(mainly for security), but they are not yet
fully explored in other areas, such as app store
analysis [180] or software repository mining.

◮ Many are the static analysis techniques used
by researchers when considering mobile apps,
ranging from flow analysis to taint analysis,
to type inference and abstract interpretation.
The clear winner is flow analysis. We conjec-
ture that this success is mainly due to a com-
bination of factors: (i) as of today, the pro-
gramming model of mobile platforms is inher-
ently based on a flow of (often asynchronous)
messages exchanged between a set of compo-
nents (e.g., Android activities, iOS views) re-
acting to events (e.g., a tap of the user, a call-
back from a sensor request); (ii) flow analysis
nicely lends itself to identify and predicate
on both intra- and inter-app interactions (a
cornerstone capability for security and relia-
bility analyses); (iii) the availability of open-
source tools like Soot that developers can use
as building blocks for their own approaches.



Autili et al. Page 17 of 37

7 Results - Potential for Industrial
Adoption (RQ3)

7.1 Target stakeholder
As shown in Figure 19, app developers are the most
recurrent stakeholders of static analysis approaches
(150/261).

Researcher

User

Platform
vendor

App
developer

0 50 100 150 200 250

7

20

126

150

Figure 19: Primary studies by target stakeholder
(Categories are not mutually exclusive)

Platform vendors (126/261) like Apple and Google
distribute apps via their own dedicated mobile ap-
plication markets. They can benefit from the use of
static analysis approaches in their market places for
systematically assessing the level of quality of their
distributed apps, possibly identifying those apps with
an unacceptable level of quality (e.g., apps with well-
known security flaws, apps asking for suspicious per-
missions, apps with strong energy inefficiencies). In-
terestingly, some approaches directly target app users
(20/261), who might use static analyses to better un-
derstand how their installed apps behave and for exam-
ining and granting explicit information flows within an
application. Also, users may be interested in implicit
information flows across multiple applications, such as
permissions for reading the phone number and send-
ing it over the network. As an example, one of the 12
studies targeting users focuses on debugging energy ef-
ficiency of apps in their real context of use. Specifically,
in P39 the user can launch an automatically instru-
mented app to precisely record and report observed
energy-related failures in order to assists the devel-
oper by automatically localizing the reported defects
and suggesting patch locations. Last but not least, 7
primary studies explicitly mention researchers as tar-
get stakeholders, who can extend and/or apply the
proposed techniques (and their results) to their own
studies on mobile applications.
Example. FicFinder (P22) aims to ease the effort re-
quired by developers to deal with compatibility issues
that might be present in their apps due to the frag-
mented nature of the Android platform. FicFinder au-
tomatically detects compatibility issues by performing

static code analysis based on a model that captures
Android APIs behavior as well as their associated con-
text by which compatibility issues are triggered. Once
detected, FicFinder reports actionable debugging in-
formation to developers.

7.2 Tool availability
All the primary studies contribute with a tool imple-
menting the proposed approach. Nonetheless, our re-
sults also show that only 97 studies over 261 (see Fig-
ure 20) released the tool, making it publicly available
for download and adoption. When possible, the avail-
ability of a tool supporting the proposed approach is
desirable as it surely helps in making the obtained re-
sults more credible, reproducible, and replicable by the
community.

Yes

No

0 50 100 150 200 250

97

164

Figure 20: Primary studies by tool availability

7.3 Number of analysed apps
The authors of the analyzed primary studies evaluate
and validate their findings by using an input set of ap-
plications. The evaluation of this parameter builds on
the assumption that approaches evaluated on a larger
set of apps are more adoptable in industry since it
is less likely that they exhibit unexpected behaviors
(specially for corner cases). Here, we categorized the
primary studies according to the number of apps used
for evaluating them.

Medium

Low

High

0 50 100 150 200 250

53

83

125

Figure 21: Primary studies by number of
evaluated apps

As shown in Figure 21, in the majority of studies
(125/261) the number of applications used for evalu-
ating the proposed approach is greater than 1,000, fol-
lowed by those studies which evaluated their approach
by using less than 100 apps (83/261), and those studies



Autili et al. Page 18 of 37

(53/261) which took into account a medium set of apps
(between 100 and 1,000). This result is promising in
that a relatively good number of approaches was eval-
uated on a high number of applications, making the
scientific community and practitioners reasonably con-
fident about their applicability in industrial contexts.
Nevertheless, it is important to note that evaluating
an approach on a low number of apps should not be
seen as a strongly negative point because it may have
been a necessity from an empirical perspective. For ex-
ample, the number of analyzed apps could depend on
the execution time of the analysis tool; if the analysis
tool requires a large amount of time for each app (e.g.,
because including user thinking time), then the input
set of applications is inevitably small in order to keep
the experiment duration acceptable from a pragmatic
perspective.
Example. AutoPPG (P15) aims to facilitate the pro-
cess of writing privacy policies for mobile apps. A pri-
vacy policy is a statement informing users how their in-
formation will be collected, used, and disclosed. Failing
to adhere to privacy policies is can lead to severe conse-
quences, such as the issue of steep fines. AutoPPG con-
ducts static code analysis on mobile apps by extracting
their behavior and subsequently relating such behav-
ior to the personal information stored by the end-users.
Once the relation between the app behavior and per-
sonal data is established, AutoPPG leverages natural
language processing techniques to generate a textual
description of the fair privacy policy which character-
izes the analyzed app. Due to the time consuming na-
ture of manually comparing the statically generated
privacy policy with the existing one, the evaluation of
AutoPPG was limited to the low number of 20 ran-
domly selected apps.

7.4 Applied research method
This parameter represents the type of applied research
method used to assess the proposed technique. Possi-
ble values of this parameter are Validation and Evalu-
ation. Validation is done in lab contexts using applica-
tions specifically created or customized for the purpose
of their approach evaluation. Evaluation takes place in
real-world (industrial) contexts, using exclusively un-
modified applications. The latter generally provides a
higher level of evidence about the practical applicabil-
ity of a proposed technique.
From the analysis of the primary studies, it emerged

that the majority, during the evaluation phase, use
exclusively unmodified applications (see Figure 22)
mined from an app market (234/261). In other cases,
the applications to be analysed were created for the
purpose of the evaluation, or they were customized ver-
sions of real apps (46/261). In some cases (e.g., P14,

Validation

Evaluation

0 50 100 150 200 250

46

234

Figure 22: Primary studies by applied research
method (Categories are not mutually exclusive)

P17, P169, P259), a combination of real and custom
applications is used; in these cases, custom apps sup-
port the evaluation of the proposed approach to ex-
ercise specific aspects of the proposed static analysis
approach (e.g., corner cases when building a control
flow graph of the app under analysis), which are not
fully covered by the mined original apps.
Overall, the obtained results are promising since

approaches evaluated on (a potentially large number
of) real apps, in principle, undergo a more realis-
tic investigation with respect to those evaluated on
synthetically-built apps. This realism comes also from
the fact that apps mined from app stores are devel-
oped in real industrial contexts involving practitioners
working under real business and organizational con-
straints (e.g., release deadlines, specific development
workflows). Moreover, apps mined from app stores
can be totally different from synthetic apps because
the former are distributed to and downloaded by real
users; it is well known that users play a central role
in the success (and indirectly in the development pro-
cess) of the apps, e.g., by providing publicly accessible
app ratings and reviews [180], deciding to uninstall
disappointing apps.
Example. In P14, the authors propose two automated
static analysis techniques for automatic detection of a
privilege-escalation attack known as Android Wicked
Delegation (AWiDe). In order to manually verify the
correctness of the two detection techniques, apps for
evaluation experiments were collected from F-Droid
[14], an online repository of free open source Android
apps, in order to be able to inspect the app source
code. As 70% of collected apps were also published on
the Google Play store the study performs both Vali-
dation and Evaluation.

7.5 Industry involvement
Each primary study was classified as (i) Academia, if
the authors are affiliated exclusively to an academic or-
ganization, e.g., university or research center; (ii) In-
dustry if the authors are affiliated exclusively to an

[14]https://f-droid.org/en/



Autili et al. Page 19 of 37

industrial organization, e.g., a company, startup, or

software house; (iii) Academia and Industry if some

of the authors are affiliated to an academic organiza-

tion and some others to an industrial one. As depicted

in Figure 23, the vast majority of the authors of our

primary studies is academic (231/261), followed by a

combination of researchers and industrial practitioners

(29/261), and finally 1 contribution involves industrial

authors only. The emerged result is quite disappoint-

ing, as in almost all of the studies there is no involve-

ment of industrial researchers or practitioners.

Figure 23: Distribution of industry involvement

In the single industry-only primary study (P91), the

authors tackle the problem of Android application col-

lusion. Specifically, they state that existing analysis

techniques focused on identifying undesirable behav-

iors in single-apps neglecting multi-application collu-

sion danger. Therefore, the authors present a collection

of tools that provide static information flow analysis

across sets of applications, showing a holistic view of

all the applications running on a particular device. The

techniques proposed in P91 include: (i) static binary

single-app analysis, (ii) security lint tool to mitigate

the limits of static binary analysis, (iii) multi-app in-

formation flow analysis, and (iv) evaluation engine to

detect information flows that violate specified security

policies. We believe that P91 is a good example of a

research study tackling an industrially-relevant prob-

lem and proposing an industry-driven solution. Aca-

demic researchers could compare with or be inspired

by the work in P91 for designing and evaluating the

approaches for static analysis of mobile apps of the

future.

Main findings on potential for industrial adop-
tion:
◮ It comes without a surprise that app devel-

opers and platform vendors are the most tar-
geted stakeholders. Still, a potentially unex-
plored venue is related to static analysis tar-
geting the end users of mobile apps, who may
have different requirements and needs with
respect to the apps currently installed in their
devices.

◮ In the vast majority of primary studies, re-
searchers are not providing any tool imple-
menting their proposed approaches. This re-
sult is strongly negative, as it impacts stud-
ies replications and comparative evaluations,
which are at the basis of the scientific method.
We suggest researchers to always provide
publicly available implementations of their
approaches (when possible); this will help re-
searchers and practitioners in improving the
overall quality of research in static analysis of
mobile apps.

◮ The evaluation of the proposed approaches is
generally performed on unmodified apps (i.e.,
experimentation in the wild). The number of
apps considered in the evaluation phase is ei-
ther high (more than 1,000) or low (less than
100).

◮ As a community, we should encourage new
connections between academia and industry
in order to potentially improve the knowl-
edge exchanged between them, where (i) re-
search is performed on industrially relevant
problems and (ii) new methods, technologies
and tools are transferred from academia to
industry.

8 Orthogonal Findings
This section reports on the results of our horizontal
analysis. It is worth recalling that, in this phase of
the study, we (i) built contingency tables for pairs of
parameters coming from our vertical analysis, (ii) ana-
lyzed each one of them, and (iii) identified perspectives
of interest.

Analysis goal - Platform specificity. Privacy is
the most recurrent analysis goal for all platforms, es-
pecially for the Android operating system. The only
iOS approach found in the literature is also focusing on
privacy. Malware results to be the second most studied
subject in both Android and generic approaches. Over-
all, very few studies are platform-independent, and
none for the categories performance, inter-app com-
munication, and antipatterns.



Autili et al. Page 20 of 37

We conjecture that the popularity of privacy and
malware analysis goals can be associated to the ubiq-
uity and handling of sensitive data that nowadays
characterizes mobile apps. As a consequence, new
methods and techniques to address the associated chal-
lenges is receiving a growing attention. Indeed, many of
the researches focusing on privacy rely on a technique,
namely, the inspection of the AndroidManifest.xml,
which is quite simple to implement. This consideration
further explains the high occurrences of such studies.
Regarding the performance, inter-app communication
and antipatterns goals, we hypothesize that such goals
can be studied exclusively from a platform-specific
point of view due to their tight relationship with the
platform on which the app is running.
Analysis goal - Static\Hybrid approach. Except
for frameworks and antipatterns, which result to be
supported exclusively by static analysis, the majority
of the goal categories are studied through hybrid ap-
proaches. Overall, privacy results to be the most stud-
ied subject in both static and dynamic approaches (74
static approaches and 22 hybrid ones). Energy con-
sumption (13 static approaches and 12 hybrid ones) is
the second most recurrent goal of hybrid analyses.
We believe that the rationale behind the popular-

ity of hybrid approaches resides in the ability to cir-
cumvent weaknesses that arise when using only one
kind of analysis, hence making it possible to gather
more comprehensive, yet precise, results. As presented
in the previous section, the popularity of the privacy
goal can be justified by the interest of final users, devel-
opers and app store vendors to protect sensitive data
from unauthorised access. The high number of hybrid
approach targeted at the energy goal evidences the re-
liance of such approaches on dynamic methodologies,
utilised to exercise the applications under analysis, and
gather empirical energy consumption measurements.
On the other hand, we conjecture that the lack of usage
of dynamic analysis by approaches aimed at the frame-
works and antipatterns goals is due to the nature of
these goals, which are more tightly related to source
code metrics rather than runtime ones, thus making
static analysis techniques more suitable for them.
Analysis goal - App artifact. In general, the vast
majority of the approaches require the APK package
of the mobile application. This has to be attributed
to the skewed data gathered for this research, from
which most of the approaches result to focus on An-
droid applications. In contrast, the goals that require
more often source code are the ones focusing on refac-
toring and performance. Additionally, some goals that
do not require access to the source code of the appli-
cation were identified, namely reflection, antipatterns,
similarity, obfuscation, and authorship.

Regarding the goals for which analyses are often per-
formed on source code, we believe that the reason un-
derlying this trend is that these types of analysis re-
quire the exact source code of the app under analysis
to be carried out properly. Even though Android de-
compilers and disassemblers do exist, at the time of
writing, their precision is not high enough to perform
these kind of analysis on packaged applications [192].
On the other hand, when focusing on the analysis goals
requiring an APK as input, we can notice that for test-
ing, privacy and energy consumption researchers have
been focusing on black-box approaches, while neglect-
ing white-box ones (at least partially). For these goals,
approaches of the latter kind could be of assistance
during development of mobile apps, either notifying
developers when they unknowingly insert known an-
tipatterns in their code (e.g., an energy hotspot in the
case of energy consumption or a privacy leak in the
case of privacy) or in helping them in performing more
efficient testing (in the case of testing).
Analysis technique - Analysis pre-steps. Eight
out of 24 analysis techniques do not require pre-steps.
In fact, nulness, points-to and termination analyses
are carried out by inspecting the source code reposi-
tory of the application, and hence do not require addi-
tional tooling or configuration. The remaining 16 anal-
ysis techniques require pre-steps of different nature. As
expected, most of the analysis techniques needing pre-
steps require the manipulation of source code, such as
abstract interpretation (for which two out of three pa-
pers required analysis pre-steps). In general, only three
of the 24 identified analysis techniques resulted to re-
quire in the majority of the cases analysis pre-steps.
This indicates that the vast majority of analysis tech-
niques is executable “as is”, i.e., without requiring any
additional process before the analysis can be actually
carried out.
Target stakeholder - Analysis goal. Approaches
targeting app stores vendors result to be mostly in-
terested in malware (57) and privacy (56 studies), fol-
lowed by inter-app and inter-component communica-
tion (15 and 14 studies respectively). Approaches tar-
geting developers also result to be mostly interested
in privacy-related analyses (48 studies), but also con-
sider more low-level goals, such as energy consump-
tion (25 studies), inter-component communication (24
studies), and testing (23 studies). Approaches tar-
geting researchers result to be mostly related to the
improvement of the state of the art analysis tech-
niques, hence often considering goals related to inter-
component communication (4 studies), and frame-
works (3 studies). As expected, approaches targeting
end users result to be mostly interested in privacy (14
studies), and approaches targeting app store vendors



Autili et al. Page 21 of 37

are more interested in malware than developers (57
against 8 studies). In contrast, approaches targeting
developers result to be more interested than those tar-
geting app store vendors in analyses related to testing
(21 against 2 study), resources (6 against 0), refactor-
ing (16 against 2), performance (16 against 0), and
energy (25 against 0). Again, this indicates that ap-
proaches targeting developers are more interested in
the quality of the applications than those targeting
app store vendors; the latter are mainly focused on
ensuring the security of the end user by identifying
potential malware and privacy leaks.
Usage of machine learning - Analysis goal. Us-
age of machine learning techniques is not evenly dis-
tributed among all goals. In particular, machine learn-
ing techniques are mostly employed for the goal of
malware detection: out of 48 studies leveraging ma-
chine learning techniques in their analyses, 32 fall into
the malware goal, the remainder is split among pri-
vacy (11), inter-component communication (4) and
inter-app communication (2), energy (1) and obfus-
cator identification (1) (remember that goals are not
mutually exclusive). This trend is traceable to the com-
mon techniques utilized to identify malware applica-
tions, which mostly often rely on training a classifier
on a collected dataset of both benign and malicious
applications. It is worth noting that the same machine
learning techniques can potentially be applied when
targeting other goals, such as performance or energy
consumption; surprisingly, only one of the studies that
fall into those goals make use of machine learning. We
believe that this is due to the greater effort required
for the collection of large datasets when considering
these goals.
Industry involvement - Analysis goal. As ex-
pected, all analysis goals are considered by aca-
demic researchers. energy (25/25), inter-component
communication (26/33), malware (59/66), and pri-
vacy (81/96) are the most targeted goals for aca-
demic researchers. In some cases, when the analysis
goal concerns privacy (15/96), malware (6/66), inter-
component communication (6/33), inter-app commu-
nication (2/24), framework (2/8), testing (1/23), re-
source (1/6), and refactoring (1/18), academic re-
searchers are supported by industrial professionals.
By analyzing these results, we can conjecture that,

although industrial organizations are interested in ad-
dressing the issues related to these goals, there is still
a lack of industrial involvement when targeting other
research goals, such as energy and performance, that
would improve the overall user experience of mobile
apps. We argue that researchers should more actively
try to involve industry practitioners when working on
such goals.

Target stakeholder - Analysis technique.
Approaches to be utilized by app stores vendors have a
more prominent usage of techniques such as data min-
ing (33/46), taint analysis (18/33), and classification
(21/29). This is in line with the most prominent goal
of such stakeholder, i.e., identifying malicious applica-
tions in order to remove them from their stores. On
the contrary, approaches to be utilized by developers,
which are more interested in the inner workings of the
applications, result to be characterized by a higher us-
age of techniques based on flow analysis (108/171).
An explanation for this trend is the difference in per-
formances among different static analysis techniques:
approaches targeted at app stores must be highly scal-
able, as they have to be executed daily on thousands
of apps; approaches targeted at developers have less
stringent requirements. This evidences that improving
the performances of some techniques is a relevant open
problem, as they are currently a limiting factor for the
kind of analyses that can be performed on app stores.
Tool availability - Analysis goal. When dealing
with static analysis, automation is a crucial require-
ment for an approach to be effectively adopted in prac-
tice. Although for the majority of the identified anal-
ysis goals many different approaches have been pro-
posed, most of them do not have a (released) tool ready
for adoption by practitioners. On the one hand, we can
argue that addressing goals such as privacy and mal-
ware, may require the realization of a mature support-
ing tool requiring a development effort that cannot be
always afforded. On the other hand, addressing some
goals represent more a theoretical interest, with poten-
tially marginal practical impact, such as the study of
an analysis framework itself. Nonetheless, we encour-
age researchers to undergo the extra effort required
for making their analysis tool available to the research
community: not only it makes easier to replicate their
results but also analysis types for which a mature tool
has been made available have been far more explored
by the scientific community (as in the case of Flow-
droid [12] for flow analysis).

9 Discussion and Future Research
Challenges

The results presented in the previous sections give a
data-driven, objective overview of the current state of
the art on static analysis for mobile apps. In this sec-
tion, we provide our own interpretation of the main
points we deem as important challenges for future re-
searchers in this area.
Is there life after Android? When considering the
targeted platforms, it is evident that Android is the
clear winner, with more than 90% of approaches tar-
geting it. If on the one hand, we could have expected



Autili et al. Page 22 of 37

this result (as of today, Android is the most popular
mobile operating system with more than 90% market
share [2] and a relatively large number of open-source
tools for apps analysis), on the other hand, it makes us
wonder what will be the fate of this Android-specific
large body of knowledge and tools we researchers are
producing in the future. If we look back in time, it
is widely recognized that the mobile ecosystem is ex-
tremely dynamic, with platforms unpredictably raising
and failing in terms of sells of devices, companies ac-
quisitions, users flowing to/from other platforms. For
example, 10 years ago, Apple iOS and Symbian were
having 38% and 16% of the market share, whereas to-
day they account for less than 14% together[15].
It is encouraging to see that 2 approaches out of 261

are generic (even though the implementation of the
majority of them is again Android-specific). We believe
that in the future researchers should reason at a higher
level of abstraction, and focus more on approaches
which are technology-independent, generic, and appli-
cable to different platforms with reasonable effort. It
is only in this way that our research results will pass
the test of time and will (hopefully) remain relevant
also in the future, despite the inevitable technologi-
cal waves we will be facing. It is important to note
that we are not suggesting to totally neglect platform-
specific aspects, rather we are proposing to design our
own research products to be platform-independent and
robust with respect to (future) technologies; among
many, researchers might take advantage of the well-
known principles of extensibility and separation of con-
cerns, of layered or plugin-based architectures for mak-
ing their research products applicable in the context of
new technologies without disrupting their general prin-
ciples and base mechanisms. This will also speed up
research by helping researchers in avoiding to reinvent
the wheel whenever a (potentially applicable) research
product will be applied to a new mobile platform.
Analysis goals shall be expanded substantially.
The results of our study tell that privacy and malware
are the most targeted analysis goals, far more than
the others (e.g., performance, energy, resources usage).
This is a clear gap that we, as researchers in the area
of mobile apps analysis, should be filling in the future.
Given its strong importance for mobile apps, it seems

that performance is extremely under-explored. Indeed,
performance is a fundamental aspect of mobile apps
development and is one of the top concerns for both
developers and users; indeed, frequent complaints in
app stores are about apps’ performance, impacting the
ratings of the apps and potentially undermining their

[15]https://www.statista.com/statistics/263453/global-
market-share-held-by-smartphone-operating-systems/

chances of success [59, 163]. Moreover, anti-patterns
identification and refactoring are among the least ex-
plored analysis goals so far, despite the fact that bug
fixing and code re-organization are among the most
recurrent activities of mobile apps developers [198].
In this context, P52 can be considered as a refer-
ence study about how to propose, design, and eval-
uate a refactoring method for mobile apps. Specifi-
cally, P52 presents a preliminary large-scale formative
study about how developers approach asynchronous
programming in Android apps. Then, based on the
obtained results (e.g., that developers are using the
Android AsyncTask construct also for long running op-
erations, potentially leading to memory leaks, lost re-
sults, and wasted energy), a tool-based method is pro-
posed for (i) statically identifying usages of the Async-
Task construct which can be automatically improved,
and (ii) refactoring those parts of the app via a safe
code rewriting algorithm. Finally, an empirical eval-
uation provides objective and reproducible evidence
about the applicability and saved effort of the pro-
posed method.
Users are being left out of the equation. From
the results of RQ3, it emerged that only 20 studies
consider end users as stakeholders, revealing that re-
searchers are mostly focusing on techniques aimed at
assisting developers, store moderators and researchers
instead. Although this unbalance is not unexpected,
when also considering that the majority of studies fo-
cused on privacy as their goal, we can notice a lack
of users-first privacy approaches. Indeed, privacy is a
subjective property, as different users may have differ-
ent concerns when judging the trustability of an ap-
plication. Current solutions fail to address this subjec-
tive aspect of privacy, considering all users as equals.
In light of these considerations, we can identify one
research area currently open and overlooked: the de-
sign of more user-centric approaches to privacy, where
users are provided with the necessary tools to specify
and validate the “personal” requirements to which an
application must comply [219, 220].
Developers are being left out of the equation
too! Even though when answering RQ3 it emerged
that practitioners were involved in 30 studies, it also
emerged that almost all approaches have not been
evaluated or adopted in an industrial environment.
We consider this finding as an indication that prac-
titioners are involved in the technical phases of the
study (e.g., elicitation of the requirements for the ap-
proaches, analysis steps definition, experiments results
evaluation), but not as subjects of the evaluation of the
proposed approaches. This situation is in strong con-
trast with the fact that the most recurrent stakehold-
ers of the proposed approaches are the practitioners



Autili et al. Page 23 of 37

themselves. For the future, we strongly advise to close
the loop by including practitioners in all the phases
of the studies, specially while (i) defining the assump-
tions, requirements, and usage scenarios of the pro-
posed static analysis approaches, as well as (ii) evalu-
ating the proposed approaches in terms of their use-
fulness, applicability, and usability. At best, the latter
can be performed by applying the case study method-
ology [258]. This is already happening in other research
areas within the software engineering domain, such as
software energy efficiency [240], technical debt [181]
and software testing [215].
Tools and datasets shall be released and pub-
licly available. An underlying problem which hinders
the effective uptake of static analysis of mobile apps re-
search lies in tool availability. In fact, from the results
of our research, we evince that only a small portion
of tools utilized or developed in the primary studies
are available online. This constitutes a serious prob-
lem for researchers interested in extending or adapting
tools which have been already developed. Additionally,
the data utilized in the primary studies (e.g., accurate
versioning history of apps used for experimentation)
is only seldom available. This potentially slows down
investigations, as datasets still have to be created on
an ad-hoc basis for researches, as the number of al-
ready available ones is scarce. In recent times, this
trend has been opposed by the constitution of some
conference tracks explicitly aimed to make datasets
publicly available. Among the most prominent ones are
the “Artifact” track of the International Conference on
Software Maintenance and Evolution (ICSME), and
the “Data Showcase” track of the Mining Software
Repositories (MSR) conference. Researches belonging
to this tracks range from general purpose datasets, e.g.,
large versioning datasets focusing on Android appli-
cations [89], to context-specific datasets, e.g., to sup-
port dynamic analyses of Android applications [41].
Finally, from the findings of our study, we detect a
shortcoming shared by many studies of static analysis
of mobile apps, namely the impossibility to replicate
the reported results. In fact, the absence of structured
replication packages, in form of tools and dataset uti-
lized, precludes the possibility to replicate the results
reported in the primary studies. This constitutes a ma-
jor problem affecting not only researchers interested in
the field of mobile static analysis, but also the sound-
ness of the studies itself.

10 Threats to Validity
In order to ensure the high quality of the data gath-
ered for this study, a well-defined research protocol
was established before carrying out the data collection.
The research activities were designed by following a set

of well-accepted and revised guidelines for systematic
mapping studies [134]. From the formalization of such
guidelines, we established the research protocol that
was strictly followed all throughout the evolution of
the study, as documented in Section 4. In addition,
in order to further ensure the adherence to the estab-
lished protocol and the envisioned quality standards,
all the steps of the research (e.g., study design, search
and selection, data extraction, data analysis) were car-
ried out in team. This activity was deemed necessary
also to lower potential sources of bias by discussing
crucial considerations in team. Even by adopting a me-
thodic literature review approach, threats to validity
are still unavoidable. The remaining of this section re-
ports on the main threats to validity to our study and
how we mitigated them.

External validity refers to conditions that hinder the
ability to generalize the results of our research [258].
The major threat of this category is represented by
the fact that our primary studies are not representa-
tive of the state of the art research on static analysis of
mobile applications. In order to mitigate this threat,
we adopted a search strategy consisting of a manual
search encompassing all the top-level software engi-
neering conferences[16] and international journals[17]

according to well known sources in the field. Such pro-
cess was further extended by executing a backward
and forward snowballing process on the selected liter-
ature. In order to ensure the quality of the selected re-
searches, we exclusively considered peer-reviewed pa-
pers and excluded the so-called grey literature, such as
white papers, editorials, etc. We disregard such deci-
sion as a significant source of bias, as peer-review pro-
cesses are a standard requirement for high-quality pub-
lications. Finally, we adopted a set of well-defined in-
clusion and exclusion criteria, which rigorously guided
our selection of the literature.

Internal Validity refers to the influences that can
affect the design of the study, without the researcher’s
knowledge [258]. In this regard, we defined a priori a
rigorous research protocol for the study. The classifi-
cation framework adopted was established iteratively
by strictly following the keywording process and it has
been piloted by three researchers in an independent
manner. Regarding the synthesis of the collected data,
such process was carried out by adopting simple and
well-assessed descriptive statistics. Subsequently, dur-
ing the orthogonal analysis, we performed sanity tests
on the extracted data by cross-analyzing different pa-
rameters of the established classification framework.

[16]http://goo.gl/auU7su
[17]http://www.webofknowledge.com



Autili et al. Page 24 of 37

Construct validity refers to the extent to which the
primary studies selected are suited to answer our re-
search questions [258]. In order to mitigate such threat,
we manually inspected thoroughly the literature pub-
lished in the top-level software engineering conferences
and journals. This procedure was performed by ad-
hering to a rigorous predefined protocol. In addition,
the results of such process were expanded by integrat-
ing the results gathered through a backward and for-
ward snowballing process. Subsequently, we method-
ologically selected the identified studies by applying a
set of well-documented inclusion and exclusion crite-
ria. This latter process was carried out by three re-
searchers independently. As recommended by Wholin
et al. [258], a random sample of eight studies were se-
lected and analyzed by all three researchers in order
to ensure that the analyses were aligned.

Conclusion validity refers to issues that might hin-
der the ability to draw the correct conclusion from the
data gathered [258]. In order to minimize the presence
such threat, we carefully carried out the data extrac-
tion and analysis by strictly adhering to an a priori de-
fined protocol. Such protocol was specifically conceived
to collect the data necessary to answer our research
questions. This enabled us to reduce potential sources
of bias resulting from the data extraction and analyses
processes. In addition, such methodology guaranteed
us that the extracted data was fitted to answer our
research questions. In order to further mitigate poten-
tial threats to conclusion validity, we adhered to the
best practices reported in several well-known guide-
lines for systematic literature reviews [133, 204, 258].
Such guidelines were strictly followed throughout each
phase of our research, and were comprehensively docu-
mented in order to make our research approach trans-
parent and replicable.

11 Conclusions
The systematic mapping study reported in this paper
permitted us to precisely characterize the most rele-
vant methods and techniques for statically analyzing
mobile apps. Starting from over 12,000 potentially rele-
vant studies, we applied a rigorous selection procedure
resulting in 261 primary studies along 122 scientific
venues and a time span of 9 years.
We rigorously defined a classification framework with

the target of identifying, evaluating and classifying
the characteristics of existing approaches to the static
analysis of mobile apps, while understanding trends
and potentials of industrial adoption.
The main findings of this study have been synthe-

sized by performing (i) a combination of content anal-
ysis and narrative synthesis (vertical analysis), and (ii)

a correspondence analysis via contingency tables (hor-
izontal analysis).

Our study will help researchers and practitioners in
identifying the purposes and the limitations of exist-
ing research on static analysis of mobile apps. Also, we
assessed the potential of research on static analysis of
mobile apps, discussing how to foster industrial adop-
tion and technological transfer. The knowledge of the
potential of existing methods and techniques consti-
tutes a reference framework in support of researchers
and practitioners, such as app developers, who are in-
terested in selecting/choosing existing static analysis
approaches, and want to critically understand what
they offer and how. In this sense, we can argue that
this work constitutes a valuable asset to the academic
and industrial world in the wide spectrum of static
analysis.

12 Declarations

Availability of data and materials

The datasets analysed during the current study are available in the github

repository, https://github.com/sesygroup/

mobile-static-analysis-replication-package.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was funded by the authors’ institutional affiliations.

Author’s contributions

The authors equally contributed to the elaboration of this survey. All

authors read and approved the final manuscript. Authors are listed in

alphabetical order.

Acknowledgements

This research was funded by the authors’ institutional affiliations.

13 List of abbreviations

API: Application Programming Interface

SMS: Systematic Mapping Study

SLR: Systematic Literature Review

SE: Software Engineering

RQ: Research Question

APK: Android PacKage

IPA: iPhone Application Archive IDE: integrated Development Environment

AWiDe: Android Wicked Delegation

ICSE: International Conference on Software Engineering

ASE: Automated Software Engineering

ICSME: International Conference on Software Maintenance and Evolution

MSR: Mining Software Repositories

Author details
1University of L’Aquila, L’Aquila, Italy. 2Vrije Universiteit Amsterdam,

Amsterdam, Netherlands.

References
1. Aafer Y, Du W, Yin H (2013) Droidapiminer: Mining api-level

features for robust malware detection in android. In: International

conference on security and privacy in communication systems,

Springer, pp 86–103

2. Adam Lella, Andrew Lipsman (2017) The U.S. Mobile App Report.

ComsCore white paper

3. Agrawal H, Alberi JL, Horgan JR, Li JJ, London S, Wong WE, Ghosh

S, Wilde N (1998) Mining system tests to aid software maintenance.

Computer 31(7):64–73



Autili et al. Page 25 of 37

4. Ahmad M, Costamagna V, Crispo B, Bergadano F (2017) Teicc:

targeted execution of inter-component communications in android. In:

Proceedings of the symposium on applied computing, pp 1747–1752

5. Al Rahat T, Feng Y, Tian Y (2019) Oauthlint: an empirical study on

oauth bugs in android applications. In: 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE),

IEEE, pp 293–304

6. Alam S, Qu Z, Riley R, Chen Y, Rastogi V (2017) Droidnative:

Automating and optimizing detection of android native code malware

variants. computers & security 65:230–246

7. Allen J, Landen M, Chaba S, Ji Y, Chung SPH, Lee W (2018)

Improving accuracy of android malware detection with lightweight

contextual awareness. In: Proceedings of the 34th Annual Computer

Security Applications Conference, pp 210–221

8. Allix K, Bissyandé TF, Jérome Q, Klein J, State R, Le Traon Y

(2016) Empirical assessment of machine learning-based malware

detectors for android. Empirical Softw Engg pp 183–211

9. Annie A (2017) App annie’s global app economy forecast, last

accessed: 27/09/2017. URL http:

//go.appannie.com/report-app-economy-forecast-part-two

10. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C

(2014) Drebin: Effective and explainable detection of android

malware in your pocket. In: Ndss, vol 14, pp 23–26

11. Arzt S, Bodden E (2016) Stubdroid: automatic inference of precise

data-flow summaries for the android framework. In: Proceedings of

the 38th International Conference on Software Engineering, ACM, pp

725–735

12. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon

Y, Octeau D, McDaniel P (2014) Flowdroid: Precise context, flow,

field, object-sensitive and lifecycle-aware taint analysis for android

apps. Acm Sigplan Notices 49(6):259–269

13. Autili M, Benedetto PD, Inverardi P (2013) A hybrid approach for

resource-based comparison of adaptable java applications. Science of

Computer Programming 78(8):987–1009,

14. Autili M, Malavolta I, Perucci A, Scoccia GL (2015) Perspectives on

static analysis of mobile apps (invited talk). In: Proceedings of the

3rd International Workshop on Software Development Lifecycle for

Mobile, ACM, pp 29–30

15. Avdiienko V, Kuznetsov K, Gorla A, Zeller A, Arzt S, Rasthofer S,

Bodden E (2015) Mining apps for abnormal usage of sensitive data.

In: Proceedings of the 37th International Conference on Software

Engineering-Volume 1, IEEE Press, pp 426–436

16. Azim T, Neamtiu I (2013) Targeted and depth-first exploration for

systematic testing of android apps. In: Acm Sigplan Notices, ACM,

vol 48, pp 641–660

17. Backes M, Bugiel S, Derr E (2016) Reliable third-party library

detection in android and its security applications. In: Proceedings of

the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pp 356–367

18. Bae S, Lee S, Ryu S (2019) Towards understanding and reasoning

about android interoperations. In: 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE), IEEE, pp 223–233

19. Bagheri H, Kang E, Malek S, Jackson D (2015) Detection of design

flaws in the android permission protocol through bounded verification.

In: International Symposium on Formal Methods, Springer, pp 73–89

20. Bagheri H, Sadeghi A, Garcia J, Malek S (2015) Covert:

Compositional analysis of android inter-app permission leakage. IEEE

transactions on Software Engineering 41(9):866–886

21. Bagheri H, Sadeghi A, Jabbarvand R, Malek S (2016) Practical,

formal synthesis and automatic enforcement of security policies for

android. In: Dependable Systems and Networks (DSN), 2016 46th

Annual IEEE/IFIP International Conference on, IEEE, pp 514–525

22. Bagheri H, Wang J, Aerts J, Malek S (2018) Efficient, evolutionary

security analysis of interacting android apps. In: 2018 IEEE

International Conference on Software Maintenance and Evolution

(ICSME), IEEE, pp 357–368

23. Bai G, Ye Q, Wu Y, Botha H, Sun J, Liu Y, Dong JS, Visser W

(2017) Towards model checking android applications. IEEE

Transactions on Software Engineering 44(6):595–612

24. Banerjee A, Chong LK, Chattopadhyay S, Roychoudhury A (2014)

Detecting energy bugs and hotspots in mobile apps. In: Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, ACM, pp 588–598

25. Banerjee A, Guo HF, Roychoudhury A (2016) Debugging

energy-efficiency related field failures in mobile apps. In: Proceedings

of the International Conference on Mobile Software Engineering and

Systems, ACM, pp 127–138

26. Banerjee A, Chong LK, Ballabriga C, Roychoudhury A (2018)

Energypatch: Repairing resource leaks to improve energy-efficiency of

android apps. IEEE Transactions on Software Engineering

44(5):470–490

27. Barros P, Just R, Millstein S, Vines P, Dietl W, Ernst MD, et al

(2015) Static analysis of implicit control flow: Resolving java

reflection and android intents (t). In: Automated Software

Engineering (ASE), 2015 30th IEEE/ACM International Conference

on, IEEE, pp 669–679

28. Bartel A, Klein J, Le Traon Y, Monperrus M (2012) Automatically

securing permission-based software by reducing the attack surface:

An application to android. In: Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering, ACM,

pp 274–277

29. Bartel A, Klein J, Monperrus M, Le Traon Y (2014) Static analysis

for extracting permission checks of a large scale framework: The

challenges and solutions for analyzing android. IEEE Transactions on

Software Engineering 40(6):617–632

30. Basili VR, Caldiera G, Rombach HD (1994) The Goal Question

Metric Approach. In: Encyclopedia of Software Engineering, vol 2,

Wiley, pp 528–532

31. Bastani O, Anand S, Aiken A (2015) Interactively verifying absence

of explicit information flows in android apps. In: ACM SIGPLAN

Notices, ACM, vol 50, pp 299–315

32. Batyuk L, Herpich M, Camtepe SA, Raddatz K, Schmidt AD,

Albayrak S (2011) Using static analysis for automatic assessment and

mitigation of unwanted and malicious activities within android

applications. In: Malicious and Unwanted Software (MALWARE),

2011 6th International Conference on, IEEE, pp 66–72

33. Baumgärtner L, Graubner P, Schmidt N, Freisleben B (2015) Andro

lyze: A distributed framework for efficient android app analysis. In:

Mobile Services (MS), 2015 IEEE International Conference on, IEEE,

pp 73–80

34. Behrouz RJ, Sadeghi A, Garcia J, Malek S, Ammann P (2015)

Ecodroid: An approach for energy-based ranking of android apps. In:

Green and Sustainable Software (GREENS), 2015 IEEE/ACM 4th

International Workshop on, IEEE, pp 8–14

35. Ben Martin (2017) The Global Mobile Report - comScore’s

cross-market comparison of mobile trends and behaviours. ComsCore

white paper

36. Bianchi A, Corbetta J, Invernizzi L, Fratantonio Y, Kruegel C, Vigna

G (2015) What the app is that? deception and countermeasures in

the android user interface. In: 2015 IEEE Symposium on Security and

Privacy (SP), IEEE, pp 931–948

37. Bosu A, Liu F, Yao D, Wang G (2017) Collusive data leak and more:

Large-scale threat analysis of inter-app communications. In:

Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security, pp 71–85

38. Brucker AD, Herzberg M (2016) On the static analysis of hybrid

mobile apps. In: International Symposium on Engineering Secure

Software and Systems, Springer, pp 72–88

39. Brutschy L, Ferrara P, Müller P (2014) Static analysis for

independent app developers. In: ACM SIGPLAN Notices, ACM,

vol 49, pp 847–860

40. Brutschy L, Ferrara P, Tripp O, Pistoia M (2015) Shamdroid:

gracefully degrading functionality in the presence of limited resource

access. In: ACM SIGPLAN Notices, ACM, vol 50, pp 316–331

41. Cai H, Ryder BG (2017) Artifacts for dynamic analysis of android

apps. In: 2017 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2017, Shanghai, China,

September 17-22, 2017, p 659, , URL

https://doi.org/10.1109/ICSME.2017.36

42. Calcagno C, Distefano D (2011) Infer: An automatic program verifier

for memory safety of c programs. NASA Formal Methods pp 459–465



Autili et al. Page 26 of 37

43. Calcagno C, Distefano D, O’Hearn P, Yang H (2009) Compositional

shape analysis by means of bi-abduction. In: ACM SIGPLAN Notices,

ACM, vol 44, pp 289–300

44. Calzavara S, Grishchenko I, Maffei M (2016) Horndroid: Practical and

sound static analysis of android applications by smt solving. In: 2016

IEEE European Symposium on Security and Privacy (EuroS&P),

IEEE, pp 47–62

45. Cam NT, Phuoc NCH (2017) Nesedroid—android malware detection

based on network traffic and sensitive resource accessing. In:

Proceedings of the International Conference on Data Engineering and

Communication Technology, Springer, pp 19–30

46. Canfora G, Martinelli F, Mercaldo F, Nardone V, Santone A, Visaggio

CA (2018) Leila: formal tool for identifying mobile malicious

behaviour. IEEE Transactions on Software Engineering

45(12):1230–1252

47. Cao Y, Fratantonio Y, Bianchi A, Egele M, Kruegel C, Vigna G, Chen

Y (2015) Edgeminer: Automatically detecting implicit control flow

transitions through the android framework. In: NDSS

48. Chan PP, Hui LC, Yiu SM (2012) Droidchecker: analyzing android

applications for capability leak. In: Proceedings of the fifth ACM

conference on Security and Privacy in Wireless and Mobile Networks,

ACM, pp 125–136

49. Chen K, Liu P, Zhang Y (2014) Achieving accuracy and scalability

simultaneously in detecting application clones on android markets. In:

Proceedings of the 36th International Conference on Software

Engineering, pp 175–186

50. Chen KZ, Johnson NM, D’Silva V, Dai S, MacNamara K, Magrino

TR, Wu EX, Rinard M, Song DX (2013) Contextual policy

enforcement in android applications with permission event graphs. In:

NDSS, vol 234

51. Chen X, Chen J, Liu B, Ma Y, Zhang Y, Zhong H (2019) Androidoff:

Offloading android application based on cost estimation. Journal of

Systems and Software 158:110,418

52. Chen X, Li C, Wang D, Wen S, Zhang J, Nepal S, Xiang Y, Ren K

(2019) Android hiv: A study of repackaging malware for evading

machine-learning detection. IEEE Transactions on Information

Forensics and Security 15:987–1001

53. Chin E, Felt AP, Greenwood K, Wagner D (2011) Analyzing

inter-application communication in android. In: Proceedings of the

9th international conference on Mobile systems, applications, and

services, ACM, pp 239–252

54. Choi B, Kim J, Cho D, Kim S, Han D (2018) Appx: an automated

app acceleration framework for low latency mobile app. In:

Proceedings of the 14th International Conference on emerging

Networking EXperiments and Technologies, pp 27–40

55. Clarivate (2019) Isi web of science, last accessed: 06/11/2019. URL

http://www.webofknowledge.com

56. Crussell J, Gibler C, Chen H (2013) Andarwin: Scalable detection of

semantically similar android applications. In: European Symposium on

Research in Computer Security, Springer, pp 182–199

57. Cui X, Yu D, Chan P, Hui LC, Yiu SM, Qing S (2014) Cochecker:

Detecting capability and sensitive data leaks from component chains

in android. In: Australasian Conference on Information Security and

Privacy, Springer, pp 446–453

58. Cui X, Wang J, Hui LC, Xie Z, Zeng T, Yiu SM (2015) Wechecker:

efficient and precise detection of privilege escalation vulnerabilities in

android apps. In: Proceedings of the 8th ACM Conference on Security

& Privacy in Wireless and Mobile Networks, pp 1–12

59. Das T, Penta MD, Malavolta I (2016) A quantitative and qualitative

investigation of performance-related commits in android apps. In:

2016 IEEE International Conference on Software Maintenance and

Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016, pp

443–447, URL

http://www.ivanomalavolta.com/files/papers/ICSME_2016.pdf

60. Del Vecchio J, Shen F, Yee KM, Wang B, Ko SY, Ziarek L (2015)

String analysis of android applications (n). In: Automated Software

Engineering (ASE), 2015 30th IEEE/ACM International Conference

on, IEEE, pp 680–685

61. Demissie BF, Ghio D, Ceccato M, Avancini A (2016) Identifying

android inter app communication vulnerabilities using static and

dynamic analysis. In: Proceedings of the International Conference on

Mobile Software Engineering and Systems, ACM, pp 255–266

62. Demissie BF, Ceccato M, Shar LK (2018) Anflo: Detecting

anomalous sensitive information flows in android apps. In: 2018

IEEE/ACM 5th International Conference on Mobile Software

Engineering and Systems (MOBILESoft), IEEE, pp 24–34

63. Egele M, Kruegel C, Kirda E, Vigna G (2011) Pios: Detecting privacy

leaks in ios applications. In: NDSS, pp 177–183

64. Egele M, Brumley D, Fratantonio Y, Kruegel C (2013) An empirical

study of cryptographic misuse in android applications. In: Proceedings

of the 2013 ACM SIGSAC conference on Computer &

communications security, ACM, pp 73–84

65. Elberzhager F, Münch J, Nha VTN (2012) A systematic mapping

study on the combination of static and dynamic quality assurance

techniques. Information and Software Technology 54(1):1–15

66. Elish KO, Yao D, Ryder BG (2012) User-centric dependence analysis

for identifying malicious mobile apps. In: Workshop on Mobile

Security Technologies

67. Ernst MD, Just R, Millstein S, Dietl W, Pernsteiner S, Roesner F,

Koscher K, Barros PB, Bhoraskar R, Han S, et al (2014)

Collaborative verification of information flow for a high-assurance app

store. In: Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, ACM, pp 1092–1104

68. Eskandari M, Kessler B, Ahmad M, de Oliveira AS, Crispo B (2017)

Analyzing remote server locations for personal data transfers in

mobile apps. Proceedings on Privacy Enhancing Technologies

2017(1):118–131

69. Fahl S, Harbach M, Muders T, Baumgärtner L, Freisleben B, Smith

M (2012) Why eve and mallory love android: An analysis of android

ssl (in) security. In: Proceedings of the 2012 ACM conference on

Computer and communications security, ACM, pp 50–61

70. Fan L, Su T, Chen S, Meng G, Liu Y, Xu L, Pu G (2018) Efficiently

manifesting asynchronous programming errors in android apps. In:

Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering, pp 486–497

71. Fan M, Liu J, Wang W, Li H, Tian Z, Liu T (2017) Dapasa: detecting

android piggybacked apps through sensitive subgraph analysis. IEEE

Transactions on Information Forensics and Security 12(8):1772–1785

72. Fan M, Liu J, Luo X, Chen K, Tian Z, Zheng Q, Liu T (2018)

Android malware familial classification and representative sample

selection via frequent subgraph analysis. IEEE Transactions on

Information Forensics and Security 13(8):1890–1905

73. Fan M, Luo X, Liu J, Wang M, Nong C, Zheng Q, Liu T (2019)

Graph embedding based familial analysis of android malware using

unsupervised learning. In: 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE), IEEE, pp 771–782

74. Fazzini M, Xin Q, Orso A (2019) Automated api-usage update for

android apps. In: Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis, pp

204–215

75. Feizollah A, Anuar NB, Salleh R, Suarez-Tangil G, Furnell S (2017)

Androdialysis: Analysis of android intent effectiveness in malware

detection. computers & security 65:121–134

76. Felt AP, Chin E, Hanna S, Song D, Wagner D (2011) Android

permissions demystified. In: Proceedings of the 18th ACM conference

on Computer and communications security, ACM, pp 627–638

77. Feng R, Meng G, Xie X, Su T, Liu Y, Lin SW (2019) Learning

performance optimization from code changes for android apps. In:

2019 IEEE International Conference on Software Testing, Verification

and Validation Workshops (ICSTW), IEEE, pp 285–290

78. Feng Y, Anand S, Dillig I, Aiken A (2014) Apposcopy:

Semantics-based detection of android malware through static analysis.

In: Proceedings of the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ACM, pp 576–587

79. Ferrari A, Gallucci D, Puccinelli D, Giordano S (2015) Detecting

energy leaks in android app with poem. In: Pervasive Computing and

Communication Workshops (PerCom Workshops), 2015 IEEE

International Conference on, IEEE, pp 421–426

80. Franzago M, Di Ruscio D, Malavolta I, Muccini H (2017)

Collaborative model-driven software engineering: a classification

framework and a research map. IEEE Transactions on Software

Engineering



Autili et al. Page 27 of 37

81. Fratantonio Y, Machiry A, Bianchi A, Kruegel C, Vigna G (2015)

Clapp: Characterizing loops in android applications. In: Proceedings

of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ACM, pp 687–697

82. Fratantonio Y, Bianchi A, Robertson W, Kirda E, Kruegel C, Vigna G

(2016) Triggerscope: Towards detecting logic bombs in android

applications. In: Security and Privacy (SP), 2016 IEEE Symposium

on, IEEE, pp 377–396

83. Gadient P, Ghafari M, Frischknecht P, Nierstrasz O (2019) Security

code smells in android icc. Empirical software engineering

24(5):3046–3076

84. Gao X, Tan SH, Dong Z, Roychoudhury A (2018) Android testing via

synthetic symbolic execution. In: 2018 33rd IEEE/ACM International

Conference on Automated Software Engineering (ASE), IEEE, pp

419–429

85. Garcia J, Hammad M, Ghorbani N, Malek S (2017) Automatic

generation of inter-component communication exploits for android

applications. In: Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, pp 661–671

86. Garcia J, Hammad M, Malek S (2018) Lightweight,

obfuscation-resilient detection and family identification of android

malware. ACM Transactions on Software Engineering and

Methodology (TOSEM) 26(3):1–29

87. Garcıa-Ferreira I, Laorden C, Santos I, Bringas PG (2014) A survey

on static analysis and model checking. In: International Joint

Conference SOCO’14-CISIS’14-ICEUTE’14: Bilbao, Spain, June

25th-27th, 2014, Proceedings, Springer, vol 299, p 443

88. Gascon H, Yamaguchi F, Arp D, Rieck K (2013) Structural detection

of android malware using embedded call graphs. In: Proceedings of

the 2013 ACM workshop on Artificial intelligence and security, ACM,

pp 45–54

89. Geiger FX, Malavolta I, Pascarella L, Palomba F, Nucci DD,

Malavolta I, Bacchelli A (2018) A Graph-based Dataset of Commit

History of Real-World Android apps. In: Proceedings of the 15th

International Conference on Mining Software Repositories, MSR,

ACM, New York, NY, p to appear, URL

http://www.ivanomalavolta.com/files/papers/MSR_2018.pdf

90. Gibler C, Crussell J, Erickson J, Chen H (2012) Androidleaks:

automatically detecting potential privacy leaks in android applications

on a large scale. In: International Conference on Trust and

Trustworthy Computing, Springer, pp 291–307

91. Gonzalez H, Stakhanova N, Ghorbani AA (2018) Authorship

attribution of android apps. In: Proceedings of the Eighth ACM

Conference on Data and Application Security and Privacy, pp

277–286

92. Gordon MI, Kim D, Perkins JH, Gilham L, Nguyen N, Rinard MC

(2015) Information flow analysis of android applications in droidsafe.

In: NDSS, vol 15, p 110

93. Gorla A, Tavecchia I, Gross F, Zeller A (2014) Checking app behavior

against app descriptions. In: Proceedings of the 36th International

Conference on Software Engineering, ACM, pp 1025–1035

94. Gorla A, Tavecchia I, Gross F, Zeller A (2014) Checking app behavior

against app descriptions. In: Proceedings of the 36th International

Conference on Software Engineering, ICSE 2014, pp 1025–1035

95. Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012) Riskranker:

scalable and accurate zero-day android malware detection. In:

Proceedings of the 10th international conference on Mobile systems,

applications, and services, ACM, pp 281–294

96. Grace MC, Zhou Y, Wang Z, Jiang X (2012) Systematic detection of

capability leaks in stock android smartphones. In: NDSS, vol 14, p 19

97. Gui J, Li D, Wan M, Halfond WG (2016) Lightweight measurement

and estimation of mobile ad energy consumption. In: Green and

Sustainable Software (GREENS), 2016 IEEE/ACM 5th International

Workshop on, IEEE, pp 1–7

98. Guo C, Zhang J, Yan J, Zhang Z, Zhang Y (2013) Characterizing and

detecting resource leaks in android applications. In: Automated

Software Engineering (ASE), 2013 IEEE/ACM 28th International

Conference on, IEEE, pp 389–398

99. Guo C, Ye Q, Dong N, Bai G, Dong JS, Xu J (2016) Automatic

construction of callback model for android application. In:

Engineering of Complex Computer Systems (ICECCS), 2016 21st

International Conference on, IEEE, pp 231–234

100. Hammad M, Garcia J, Malek S (2018) Self-protection of android

systems from inter-component communication attacks. In: 2018 33rd

IEEE/ACM International Conference on Automated Software

Engineering (ASE), IEEE, pp 726–737

101. Hammad M, Bagheri H, Malek S (2019) Deldroid: an automated

approach for determination and enforcement of least-privilege

architecture in android. Journal of Systems and Software 149:83–100

102. Hanna S, Huang L, Wu E, Li S, Chen C, Song D (2012) Juxtapp: A

scalable system for detecting code reuse among android applications.

In: International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, Springer, pp 62–81

103. Hao S, Li D, Halfond WG, Govindan R (2012) Estimating android

applications’ cpu energy usage via bytecode profiling. In: Proceedings

of the First International Workshop on Green and Sustainable

Software, IEEE Press, pp 1–7

104. Hao S, Li D, Halfond WG, Govindan R (2013) Estimating mobile

application energy consumption using program analysis. In:

Proceedings of the 2013 International Conference on Software

Engineering, IEEE Press, pp 92–101

105. Harrison R, Flood D, Duce D (2013) Usability of mobile applications:

literature review and rationale for a new usability model. Journal of

Interaction Science 1(1):1–16

106. He D, Li L, Wang L, Zheng H, Li G, Xue J (2018) Understanding and

detecting evolution-induced compatibility issues in android apps. In:

2018 33rd IEEE/ACM International Conference on Automated

Software Engineering (ASE), IEEE, pp 167–177

107. He J, Chen T, Wang P, Wu Z, Yan J (2019) Android multitasking

mechanism: Formal semantics and static analysis of apps. In: Asian

Symposium on Programming Languages and Systems, Springer, pp

291–312

108. Hecht G, Benomar O, Rouvoy R, Moha N, Duchien L (2015)

Tracking the software quality of android applications along their

evolution (t). In: Automated Software Engineering (ASE), 2015 30th

IEEE/ACM International Conference on, IEEE, pp 236–247

109. Hoffmann J, Ussath M, Holz T, Spreitzenbarth M (2013) Slicing

droids: program slicing for smali code. In: Proceedings of the 28th

Annual ACM Symposium on Applied Computing, ACM, pp

1844–1851

110. Holavanalli S, Manuel D, Nanjundaswamy V, Rosenberg B, Shen F,

Ko SY, Ziarek L (2013) Flow permissions for android. In: Proceedings

of the 28th IEEE/ACM International Conference on Automated

Software Engineering, IEEE Press, pp 652–657

111. Huang J, Zhang X, Tan L, Wang P, Liang B (2014) Asdroid:

Detecting stealthy behaviors in android applications by user interface

and program behavior contradiction. In: Proceedings of the 36th

International Conference on Software Engineering, ACM, pp

1036–1046

112. Huang J, Li Z, Xiao X, Wu Z, Lu K, Zhang X, Jiang G (2015) Supor:

Precise and scalable sensitive user input detection for android apps.

In: USENIX Security Symposium, pp 977–992

113. Huang W, Dong Y, Milanova A, Dolby J (2015) Scalable and precise

taint analysis for android. In: Proceedings of the 2015 International

Symposium on Software Testing and Analysis, pp 106–117

114. Inc G (2017) Title of citation, last accessed: 27/09/2017

115. ISO/IEC (2010) Iso/iec 25010 system and software quality models.

Tech. rep.

116. Jalali S, Wohlin C (2012) Systematic literature studies: Database

searches vs. backward snowballing. In: Proceedings of the ACM-IEEE

International Symposium on Empirical Software Engineering and

Measurement, ACM, New York, NY, USA, ESEM ’12, pp 29–38

117. Jang Jw, Kang H, Woo J, Mohaisen A, Kim HK (2015)

Andro-autopsy: Anti-malware system based on similarity matching of

malware and malware creator-centric information. Digital

Investigation 14:17–35

118. Jeon J, Micinski KK, Vaughan JA, Fogel A, Reddy N, Foster JS,

Millstein T (2012) Dr. android and mr. hide: fine-grained permissions

in android applications. In: Proceedings of the second ACM workshop

on Security and privacy in smartphones and mobile devices, ACM, pp

3–14



Autili et al. Page 28 of 37

119. Jia YJ, Chen QA, Lin Y, Kong C, Mao ZM (2017) Open doors for

bob and mallory: Open port usage in android apps and security

implications. In: 2017 IEEE European Symposium on Security and

Privacy (EuroS&P), IEEE, pp 190–203

120. Jiang YZX, Xuxian Z (2013) Detecting passive content leaks and

pollution in android applications. In: Proceedings of the 20th Network

and Distributed System Security Symposium (NDSS)

121. Jin X, Hu X, Ying K, Du W, Yin H, Peri GN (2014) Code injection

attacks on html5-based mobile apps: Characterization, detection and

mitigation. In: Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, ACM, pp 66–77

122. Joorabchi ME, Mesbah A, Kruchten P (2013) Real challenges in

mobile app development. In: Empirical Software Engineering and

Measurement, 2013, pp 15–24

123. Joorabchi ME, Mesbah A, Kruchten P (2013) Real challenges in

mobile app development. In: Empirical Software Engineering and

Measurement, 2013 ACM/IEEE International Symposium on, IEEE,

pp 15–24

124. Joorabchi ME, Mesbah A, Kruchten P (2013) Real challenges in

mobile app development. In: 2013 ACM / IEEE International

Symposium on Empirical Software Engineering and Measurement, pp

15–24

125. Junaid M, Liu D, Kung D (2016) Dexteroid: Detecting malicious

behaviors in android apps using reverse-engineered life cycle models.

computers & security 59:92–117

126. Junaid M, Ming J, Kung D (2018) Statedroid: Stateful detection of

stealthy attacks in android apps via horn-clause verification. In:

Proceedings of the 34th Annual Computer Security Applications

Conference, pp 198–209

127. Keng JCJ (2016) Automated testing and notification of mobile app

privacy leak-cause behaviours. In: Automated Software Engineering

(ASE), 2016 31st IEEE/ACM International Conference on, IEEE, pp

880–883

128. Keng JCJ, Jiang L, Wee TK, Balan RK (2016) Graph-aided directed

testing of android applications for checking runtime privacy

behaviours. In: Proceedings of the 11th International Workshop on

Automation of Software Test, ACM, pp 57–63

129. Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do

mobile app users complain about? IEEE Software 32(3):70–77

130. Kim CHP, Kroening D, Kwiatkowska M (2016) Static program

analysis for identifying energy bugs in graphics-intensive mobile apps.

In: Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS), 2016 IEEE 24th

International Symposium on, IEEE, pp 115–124

131. Kim J, Yoon Y, Yi K, Shin J, Center S (2012) Scandal: Static

analyzer for detecting privacy leaks in android applications. MoST

12:110

132. Kim J, Choi H, Namkung H, Choi W, Choi B, Hong H, Kim Y, Lee J,

Han D (2016) Enabling automatic protocol behavior analysis for

android applications. In: Proceedings of the 12th International on

Conference on emerging Networking EXperiments and Technologies,

ACM, pp 281–295

133. Kitchenham B, Brereton P (2013) A systematic review of systematic

review process research in software engineering. Information and

software technology 55(12):2049–2075

134. Kitchenham BA, Charters S (2007) Guidelines for performing

systematic literature reviews in software engineering. Tech. Rep.

EBSE-2007-01, Keele University and University of Durham

135. Kitchenham BA, Budgen D, Brereton OP (2010) The value of

mapping studies-a participant-observer case study. In: EASE, vol 10,

pp 25–33

136. Klieber W, Flynn L, Bhosale A, Jia L, Bauer L (2014) Android taint

flow analysis for app sets. In: Proceedings of the 3rd ACM SIGPLAN

International Workshop on the State of the Art in Java Program

Analysis, ACM, pp 1–6

137. Koch W, Chaabane A, Egele M, Robertson W, Kirda E (2017)

Semi-automated discovery of server-based information oversharing

vulnerabilities in android applications. In: Proceedings of the 26th

ACM SIGSOFT International Symposium on Software Testing and

Analysis, pp 147–157

138. Lai D, Rubin J (2019) Goal-driven exploration for android

applications. In: 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE), IEEE, pp 115–127

139. Lee S, Dolby J, Ryu S (2016) Hybridroid: static analysis framework

for android hybrid applications. In: Automated Software Engineering

(ASE), 2016 31st IEEE/ACM International Conference on, IEEE, pp

250–261

140. Lee YK, Bang JY, Safi G, Shahbazian A, Zhao Y, Medvidovic N

(2017) A sealant for inter-app security holes in android. In: 2017

IEEE/ACM 39th International Conference on Software Engineering

(ICSE), IEEE, pp 312–323

141. Lemos OAL, Bajracharya S, Ossher J, Masiero PC, Lopes C (2011) A

test-driven approach to code search and its application to the reuse

of auxiliary functionality. Information and Software Technology

53(4):294–306

142. Ley M (2002) The dblp computer science bibliography: Evolution,

research issues, perspectives. In: International symposium on string

processing and information retrieval, Springer, pp 1–10

143. Li D, Hao S, Halfond WG, Govindan R (2013) Calculating source line

level energy information for android applications. In: Proceedings of

the 2013 International Symposium on Software Testing and Analysis,

ACM, pp 78–89

144. Li D, Lyu Y, Gui J, Halfond WG (2016) Automated energy

optimization of http requests for mobile applications. In: Software

Engineering (ICSE), 2016 IEEE/ACM 38th International Conference

on, IEEE, pp 249–260

145. Li L, Bartel A, Klein J, Le Traon Y (2014) Automatically exploiting

potential component leaks in android applications. In: Trust, Security

and Privacy in Computing and Communications (TrustCom), 2014

IEEE 13th International Conference on, IEEE, pp 388–397

146. Li L, Allix K, Li D, Bartel A, Bissyandé TF, Klein J (2015) Potential

component leaks in android apps: An investigation into a new feature

set for malware detection. In: 2015 IEEE International Conference on

Software Quality, Reliability and Security, IEEE, pp 195–200

147. Li L, Bartel A, Bissyandé TF, Klein J, Le Traon Y (2015)

Apkcombiner: Combining multiple android apps to support inter-app

analysis. In: IFIP International Information Security and Privacy

Conference, Springer, pp 513–527

148. Li L, Bartel A, Bissyandé TF, Klein J, Le Traon Y, Arzt S, Rasthofer

S, Bodden E, Octeau D, McDaniel P (2015) Iccta: Detecting

inter-component privacy leaks in android apps. In: Proceedings of the

37th International Conference on Software Engineering-Volume 1,

IEEE Press, pp 280–291

149. Li L, Bissyandé TF, Octeau D, Klein J (2016) Droidra: Taming

reflection to support whole-program analysis of android apps. In:

Proceedings of the 25th International Symposium on Software

Testing and Analysis, ACM, pp 318–329

150. Li L, Bissyandé TF, Octeau D, Klein J (2016) Reflection-aware static

analysis of android apps. In: Automated Software Engineering (ASE),

2016 31st IEEE/ACM International Conference on, IEEE, pp 756–761

151. Li L, Li D, Bartel A, Bissyandé TF, Klein J, Traon YL (2016)

Towards a generic framework for automating extensive analysis of

android applications. In: Proceedings of the 31st Annual ACM

Symposium on Applied Computing, ACM, pp 1460–1465

152. Li L, Bissyandé TF, Papadakis M, Rasthofer S, Bartel A, Octeau D,

Klein J, Le Traon Y (2017) Static analysis of android apps: A

systematic literature review. Information and Software Technology

153. Li L, Bissyandé TF, Wang H, Klein J (2018) Cid: Automating the

detection of api-related compatibility issues in android apps. In:

Proceedings of the 27th ACM SIGSOFT International Symposium on

Software Testing and Analysis, pp 153–163

154. Li L, Riom T, Bissyandé TF, Wang H, Klein J, et al (2019) Revisiting

the impact of common libraries for android-related investigations.

Journal of Systems and Software 154:157–175

155. Li M, Wang W, Wang P, Wang S, Wu D, Liu J, Xue R, Huo W

(2017) Libd: Scalable and precise third-party library detection in

android markets. In: 2017 IEEE/ACM 39th International Conference

on Software Engineering (ICSE), IEEE, pp 335–346

156. Li W, Jiang Y, Xu C, Liu Y, Ma X, Lü J (2019) Characterizing and

detecting inefficient image displaying issues in android apps. In: 2019

IEEE 26th International Conference on Software Analysis, Evolution



Autili et al. Page 29 of 37

and Reengineering (SANER), IEEE, pp 355–365

157. Li Y, Guo Y, Chen X (2016) Peruim: Understanding mobile

application privacy with permission-ui mapping. In: Proceedings of

the 2016 ACM International Joint Conference on Pervasive and

Ubiquitous Computing, ACM, pp 682–693

158. Li Z, Sun J, Yan Q, Srisa-an W, Bachala S (2018) Grandroid:

Graph-based detection of malicious network behaviors in android

applications. In: International Conference on Security and Privacy in

Communication Systems, Springer, pp 264–280

159. Li Z, Sun J, Yan Q, Srisa-an W, Tsutano Y (2019) Obfusifier:

Obfuscation-resistant android malware detection system. In:

International Conference on Security and Privacy in Communication

Systems, Springer, pp 214–234

160. Liang S, Keep AW, Might M, Lyde S, Gilray T, Aldous P, Van Horn

D (2013) Sound and precise malware analysis for android via

pushdown reachability and entry-point saturation. In: Proceedings of

the Third ACM workshop on Security and privacy in smartphones &

mobile devices, ACM, pp 21–32

161. Lin Y, Radoi C, Dig D (2014) Retrofitting concurrency for android

applications through refactoring. In: Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software

Engineering, ACM, pp 341–352

162. Lin Y, Okur S, Dig D (2015) Study and refactoring of android

asynchronous programming (t). In: Automated Software Engineering

(ASE), 2015 30th IEEE/ACM International Conference on, IEEE, pp

224–235

163. Linares-Vasquez M, Vendome C, Luo Q, Poshyvanyk D (2015) How

developers detect and fix performance bottlenecks in android apps.

In: 2015 IEEE International Conference on Software Maintenance and

Evolution (ICSME), IEEE, pp 352–361

164. Liu A, Guo C, Wang W, Qiu Y, Xu J (2019) Static back-stack

transition analysis for android. IEEE Access 7:110,781–110,793

165. Liu J, Wu T, Yan J, Zhang J (2016) Fixing resource leaks in android

apps with light-weight static analysis and low-overhead

instrumentation. In: 2016 IEEE 27th International Symposium on

Software Reliability Engineering (ISSRE), IEEE, pp 342–352

166. Liu J, Wu D, Xue J (2018) Tdroid: Exposing app switching attacks in

android with control flow specialization. In: 2018 33rd IEEE/ACM

International Conference on Automated Software Engineering (ASE),

IEEE, pp 236–247

167. Liu Y, Xu C, Cheung SC (2014) Characterizing and detecting

performance bugs for smartphone applications. In: Proceedings of the

36th International Conference on Software Engineering, ACM, pp

1013–1024

168. Liu Y, Xu C, Cheung SC, Lu J (2014) Greendroid: Automated

diagnosis of energy inefficiency for smartphone applications. IEEE

Transactions on Software Engineering (1):1–1

169. Liu Y, Xu C, Cheung SC, Terragni V (2016) Understanding and

detecting wake lock misuses for android applications. In: Proceedings

of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, ACM, pp 396–409

170. Lortz S, Mantel H, Starostin A, Bähr T, Schneider D, Weber A

(2014) Cassandra: Towards a certifying app store for android. In:

Proceedings of the 4th ACM Workshop on Security and Privacy in

Smartphones & Mobile Devices, ACM, pp 93–104

171. Lu L, Li Z, Wu Z, Lee W, Jiang G (2012) Chex: statically vetting

android apps for component hijacking vulnerabilities. In: Proceedings

of the 2012 ACM conference on Computer and communications

security, ACM, pp 229–240

172. Lyu Y, Li D, Halfond WG (2018) Remove rats from your code:

automated optimization of resource inefficient database writes for

mobile applications. In: Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis, pp

310–321

173. Ma J, Liu S, Jiang Y, Tao X, Xu C, Lu J (2018) Lesdroid: a tool for

detecting exported service leaks of android applications. In:

Proceedings of the 26th Conference on Program Comprehension, pp

244–254

174. Ma S, Bertino E, Nepal S, Li J, Ostry D, Deng RH, Jha S (2019)

Finding flaws from password authentication code in android apps. In:

European Symposium on Research in Computer Security, Springer, pp

619–637

175. Ma Z, Wang H, Guo Y, Chen X (2016) Libradar: Fast and accurate

detection of third-party libraries in android apps. In: Proceedings of

the 38th international conference on software engineering companion,

pp 653–656

176. Mahmood R, Mirzaei N, Malek S (2014) Evodroid: Segmented

evolutionary testing of android apps. In: Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pp 599–609

177. Mann C, Starostin A (2012) A framework for static detection of

privacy leaks in android applications. In: Proceedings of the 27th

annual ACM symposium on applied computing, ACM, pp 1457–1462

178. Maqsood HMA, Qureshi KN, Bashir F, Islam NU (2019) Privacy

leakage through exploitation of vulnerable inter-app communication

on android. In: 2019 13th International Conference on Open Source

Systems and Technologies (ICOSST), IEEE, pp 1–6

179. Mariconti E, Onwuzurike L, Andriotis P, De Cristofaro E, Ross G,

Stringhini G (2017) Mamadroid: Detecting android malware by

building markov chains of behavioral models. In: 24th Annual

Network and Distributed System Security Symposium, NDSS 2017,

San Diego, California, USA, February 26 - March 1, 2017

180. Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2017) A survey of

app store analysis for software engineering. IEEE transactions on

software engineering 43(9):817–847

181. Martini A, Bosch J (2015) The danger of architectural technical debt:

Contagious debt and vicious circles. In: Software Architecture

(WICSA), 2015 12th Working IEEE/IFIP Conference on, IEEE, pp

1–10

182. Mirzaei N, Bagheri H, Mahmood R, Malek S (2015) Sig-droid:

Automated system input generation for android applications. In: 2015

IEEE 26th International Symposium on Software Reliability

Engineering (ISSRE), IEEE, pp 461–471

183. Mirzaei N, Garcia J, Bagheri H, Sadeghi A, Malek S (2016) Reducing

combinatorics in gui testing of android applications. In: 2016

IEEE/ACM 38th International Conference on Software Engineering

(ICSE), IEEE, pp 559–570

184. Mishra A, Kanade A, Srikant Y (2016) Asynchrony-aware static

analysis of android applications. In: 2016 ACM/IEEE International

Conference on Formal Methods and Models for System Design

(MEMOCODE), IEEE, pp 163–172

185. Morales R, Saborido R, Khomh F, Chicano F, Antoniol G (2017)

Earmo: an energy-aware refactoring approach for mobile apps. IEEE

Transactions on Software Engineering 44(12):1176–1206

186. Moran K, Linares-Vásquez M, Bernal-Cárdenas C, Vendome C,

Poshyvanyk D (2016) Automatically discovering, reporting and

reproducing android application crashes. In: 2016 IEEE international

conference on software testing, verification and validation (icst),

IEEE, pp 33–44

187. Nan Y, Yang M, Yang Z, Zhou S, Gu G, Wang X (2015) Uipicker:

User-input privacy identification in mobile applications. In: USENIX

Security Symposium, pp 993–1008

188. Narayanan A, Chandramohan M, Chen L, Liu Y (2018) A multi-view

context-aware approach to android malware detection and malicious

code localization. Empirical Software Engineering 23(3):1222–1274

189. Narayanan A, Soh C, Chen L, Liu Y, Wang L (2018) apk2vec:

Semi-supervised multi-view representation learning for profiling

android applications. In: 2018 IEEE International Conference on Data

Mining (ICDM), IEEE, pp 357–366

190. Nielson F, Nielson HR, Hankin C (2015) Principles of program

analysis. Springer

191. Nirumand A, Zamani B, Tork Ladani B (2019) Vandroid: A

framework for vulnerability analysis of android applications using a

model-driven reverse engineering technique. Software: Practice and

Experience 49(1):70–99

192. Nolan G (2012) Decompiling android. Apress

193. Octeau D, McDaniel P, Jha S, Bartel A, Bodden E, Klein J, Le Traon

Y (2013) Effective inter-component communication mapping in

android with epicc: An essential step towards holistic security analysis.

Effective Inter-Component Communication Mapping in Android with

Epicc: An Essential Step Towards Holistic Security Analysis



Autili et al. Page 30 of 37

194. Octeau D, Luchaup D, Dering M, Jha S, McDaniel P (2015)

Composite constant propagation: Application to android

inter-component communication analysis. In: Proceedings of the 37th

International Conference on Software Engineering-Volume 1, IEEE

Press, pp 77–88

195. Octeau D, Jha S, Dering M, McDaniel P, Bartel A, Li L, Klein J,

Le Traon Y (2016) Combining static analysis with probabilistic

models to enable market-scale android inter-component analysis. In:

ACM SIGPLAN Notices, ACM, vol 51, pp 469–484

196. Ongkosit T, Takada S (2014) Responsiveness analysis tool for android

application. In: Proceedings of the 2nd International Workshop on

Software Development Lifecycle for Mobile, ACM, pp 1–4

197. Pan L, Cui B, Yan J, Ma X, Yan J, Zhang J (2019) Androlic: an

extensible flow, context, object, field, and path-sensitive static

analysis framework for android. In: Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis,

pp 394–397

198. Pascarella L, Geiger FX, Palomba F, Nucci DD, Malavolta I, Bacchelli

A (2018) Self-Reported Activities of Android Developers. In: 5th

IEEE/ACM International Conference on Mobile Software Engineering

and Systems, ACM, New York, NY, p to appear, URL http://www.

ivanomalavolta.com/files/papers/mobilesoft_2018_self.pdf

199. Pathak A, Jindal A, Hu YC, Midkiff SP (2012) What is keeping my

phone awake?: characterizing and detecting no-sleep energy bugs in

smartphone apps. In: Proceedings of the 10th international conference

on Mobile systems, applications, and services, ACM, pp 267–280

200. Pauck F, Wehrheim H (2019) Together strong: cooperative android

app analysis. In: Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pp 374–384

201. Payet É, Spoto F (2012) Static analysis of android programs.

Information and Software Technology 54(11):1192–1201

202. Peiravian N, Zhu X (2013) Machine learning for android malware

detection using permission and api calls. In: 2013 IEEE 25th

international conference on tools with artificial intelligence, IEEE, pp

300–305

203. Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic

mapping studies in software engineering. In: Proceedings of the 12th

International Conference on Evaluation and Assessment in Software

Engineering, British Computer Society, Swinton, UK, UK, EASE’08,

pp 68–77, URL

http://dl.acm.org/citation.cfm?id=2227115.2227123

204. Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for

conducting systematic mapping studies in software engineering: An

update. Information and Software Technology 64:1–18

205. Pistoia M, Chandra S, Fink SJ, Yahav E (2007) A survey of static

analysis methods for identifying security vulnerabilities in software

systems. IBM Systems Journal 46(2):265–288

206. Radhakrishna A, Lewchenko NV, Meier S, Mover S, Sripada KC,

Zufferey D, Chang BYE, Cernỳ P (2018) Droidstar: callback

typestates for android classes. In: 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE), IEEE, pp 1160–1170

207. Rasthofer S, Arzt S, Triller S, Pradel M (2017) Making malory

behave maliciously: Targeted fuzzing of android execution

environments. In: 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE), IEEE, pp 300–311

208. Ravitch T, Creswick ER, Tomb A, Foltzer A, Elliott T, Casburn L

(2014) Multi-app security analysis with fuse: Statically detecting

android app collusion. In: Proceedings of the 4th Program Protection

and Reverse Engineering Workshop, ACM, p 4

209. Research I (2006) T.j. watson libraries for analysis, last accessed:

06/11/2019. URL

http://wala.sourceforge.net/wiki/index.php/Main_Page

210. Rosen S, Qian Z, Mao ZM (2013) Appprofiler: a flexible method of

exposing privacy-related behavior in android applications to end users.

In: Proceedings of the third ACM conference on Data and application

security and privacy, ACM, pp 221–232

211. Rountev A, Yan D (2014) Static reference analysis for gui objects in

android software. In: Proceedings of Annual IEEE/ACM International

Symposium on Code Generation and Optimization, ACM, p 143

212. Rubin J, Gordon MI, Nguyen N, Rinard M (2015) Covert

communication in mobile applications (t). In: Automated Software

Engineering (ASE), 2015 30th IEEE/ACM International Conference

on, IEEE, pp 647–657

213. Sadeghi A, Jabbarvand R, Malek S (2017) Patdroid: permission-aware

gui testing of android. In: Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering, pp 220–232

214. Sadeghi A, Jabbarvand R, Ghorbani N, Bagheri H, Malek S (2018) A

temporal permission analysis and enforcement framework for android.

In: Proceedings of the 40th International Conference on Software

Engineering, pp 846–857

215. Sahaf Z, Garousi V, Pfahl D, Irving R, Amannejad Y (2014) When to

automate software testing? decision support based on system

dynamics: an industrial case study. In: Proceedings of the 2014

International Conference on Software and System Process, ACM, pp

149–158

216. Sattler F, von Rhein A, Berger T, Johansson NS, Hardø MM, Apel S

(2018) Lifting inter-app data-flow analysis to large app sets.

Automated Software Engineering 25(2):315–346

217. Scalabrino S, Bavota G, Linares-Vásquez M, Lanza M, Oliveto R

(2019) Data-driven solutions to detect api compatibility issues in

android: an empirical study. In: 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR), IEEE, pp

288–298

218. Scalabrino S, Bavota G, Linares-Vásquez M, Piantadosi V, Lanza M,

Oliveto R (2020) Api compatibility issues in android: Causes and

effectiveness of data-driven detection techniques. Empirical Software

Engineering 25(6):5006–5046

219. Scoccia GL, Malavolta I, Autili M, Di Salle A, Inverardi P (2017)

User-centric android flexible permissions. In: Software Engineering

Companion (ICSE-C), 2017 IEEE/ACM 39th International

Conference on, IEEE, pp 365–367

220. Scoccia GL, Malavolta I, Autili M, Di Salle A, Inverardi P (2019)

Enhancing trustability of android applications via user-centric flexible

permissions. IEEE Computer Architecture Letters (01):1–1

221. Shan Z, Azim T, Neamtiu I (2016) Finding resume and restart errors

in android applications. In: ACM SIGPLAN Notices, ACM, vol 51, pp

864–880

222. Shan Z, Neamtiu I, Samuel R (2018) Self-hiding behavior in android

apps: detection and characterization. In: Proceedings of the 40th

International Conference on Software Engineering, pp 728–739

223. Shao Y, Luo X, Qian C, Zhu P, Zhang L (2014) Towards a scalable

resource-driven approach for detecting repackaged android

applications. In: Proceedings of the 30th Annual Computer Security

Applications Conference, pp 56–65

224. Sharma A, Nasre R (2019) Qadroid: regression event selection for

android applications. In: Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis, pp 66–77

225. Shen F, Vishnubhotla N, Todarka C, Arora M, Dhandapani B, Lehner

EJ, Ko SY, Ziarek L (2014) Information flows as a permission

mechanism. In: Proceedings of the 29th ACM/IEEE international

conference on Automated software engineering, ACM, pp 515–526

226. Sinha L, Bhandari S, Faruki P, Gaur MS, Laxmi V, Conti M (2016)

Flowmine: Android app analysis via data flow. In: Consumer

Communications & Networking Conference (CCNC), 2016 13th IEEE

Annual, IEEE, pp 435–441

227. Slavin R, Wang X, Hosseini MB, Hester J, Krishnan R, Bhatia J,

Breaux TD, Niu J (2016) Toward a framework for detecting privacy

policy violations in android application code. In: Proceedings of the

38th International Conference on Software Engineering, pp 25–36

228. Software I (2013) Native, web or hybrid mobile-app development.

thought leadership white paper.

229. Song H, Lin D, Zhu S, Wang W, Zhang S (2019) Ads-sa: System for

automatically detecting sensitive path of android applications based

on static analysis. In: International Conference on Smart City and

Informatization, Springer, pp 309–322

230. Song W, Zhang J, Huang J (2019) Servdroid: detecting service usage

inefficiencies in android applications. In: Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, pp

362–373



Autili et al. Page 31 of 37

231. Sounthiraraj D, Sahs J, Greenwood G, Lin Z, Khan L (2014)

Smv-hunter: Large scale, automated detection of ssl/tls

man-in-the-middle vulnerabilities in android apps. In: In Proceedings

of the 21st Annual Network and Distributed System Security

Symposium (NDSS’14, Citeseer

232. Su T, Meng G, Chen Y, Wu K, Yang W, Yao Y, Pu G, Liu Y, Su Z

(2017) Guided, stochastic model-based gui testing of android apps.

In: Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, pp 245–256

233. Suzuki N, Kamina T, Maruyama K (2016) Detecting invalid layer

combinations using control-flow analysis for android. In: Proceedings

of the 8th International Workshop on Context-Oriented

Programming, ACM, pp 27–32

234. Tillmann N, Moskal M, de Halleux J, Fahndrich M (2011)

Touchdevelop: programming cloud-connected mobile devices via

touchscreen. In: Proceedings of the 10th SIGPLAN symposium on

New ideas, new paradigms, and reflections on programming and

software, ACM, pp 49–60

235. Titze D, Lux M, Schuette J (2017) Ordol: Obfuscation-resilient

detection of libraries in android applications. In: 2017 IEEE

Trustcom/BigDataSE/ICESS, IEEE, pp 618–625

236. Tiwari A, Groß S, Hammer C (2019) Iifa: modular inter-app intent

information flow analysis of android applications. In: International

Conference on Security and Privacy in Communication Systems,

Springer, pp 335–349

237. Tiwari A, Prakash J, Groß S, Hammer C (2019) Ludroid: A large

scale analysis of android–web hybridization. In: 2019 19th

International Working Conference on Source Code Analysis and

Manipulation (SCAM), IEEE, pp 256–267

238. Tsutano Y, Bachala S, Srisa-An W, Rothermel G, Dinh J (2017) An

efficient, robust, and scalable approach for analyzing interacting

android apps. In: 2017 IEEE/ACM 39th International Conference on

Software Engineering (ICSE), IEEE, pp 324–334

239. Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V

(1999) Soot-a java bytecode optimization framework. In: Proceedings

of the 1999 conference of the Centre for Advanced Studies on

Collaborative research, IBM Press, p 13

240. Verdecchia R, Procaccianti G, Malavolta I, Lago P, Koedijk J (2017)

Estimating energy impact of software releases and deployment

strategies: The KPMG case study. In: Empirical Software Engineering

and Measurement (ESEM), 2017 ACM/IEEE International

Symposium on, IEEE, pp 257–266

241. Vu PM, Nguyen TT, Pham HV, Nguyen TT (2015) Mining user

opinions in mobile app reviews: A keyword-based approach (t). In:

Automated Software Engineering (ASE), 2015 30th IEEE/ACM

International Conference on, IEEE, pp 749–759

242. Wang H, Guo Y, Ma Z, Chen X (2015) Wukong: A scalable and

accurate two-phase approach to android app clone detection. In:

Proceedings of the 2015 International Symposium on Software

Testing and Analysis, ACM, New York, NY, USA, ISSTA 2015, pp

71–82, , URL http://doi.acm.org/10.1145/2771783.2771795

243. Wang H, Guo Y, Tang Z, Bai G, Chen X (2015) Reevaluating android

permission gaps with static and dynamic analysis. In: Global

Communications Conference (GLOBECOM), 2015 IEEE, IEEE, pp

1–6

244. Wang H, Hong J, Guo Y (2015) Using text mining to infer the

purpose of permission use in mobile apps. In: Proceedings of the 2015

ACM International Joint Conference on Pervasive and Ubiquitous

Computing, ACM, pp 1107–1118

245. Wang H, Li Y, Guo Y, Agarwal Y, Hong JI (2017) Understanding the

purpose of permission use in mobile apps. ACM Transactions on

Information Systems (TOIS) 35(4):1–40

246. Wang X, Qin X, Hosseini MB, Slavin R, Breaux TD, Niu J (2018)

Guileak: Tracing privacy policy claims on user input data for android

applications. In: Proceedings of the 40th International Conference on

Software Engineering, pp 37–47

247. Wang Y, Rountev A (2016) Profiling the responsiveness of android

applications via automated resource amplification. In: Proceedings of

the International Conference on Mobile Software Engineering and

Systems, ACM, pp 48–58

248. Wang Y, Rountev A (2017) Who changed you? obfuscator

identification for android. In: 2017 IEEE/ACM 4th International

Conference on Mobile Software Engineering and Systems

(MOBILESoft), IEEE, pp 154–164

249. Wang Y, Wu H, Zhang H, Rountev A (2018) Orlis:

Obfuscation-resilient library detection for android. In: 2018

IEEE/ACM 5th International Conference on Mobile Software

Engineering and Systems (MOBILESoft), IEEE, pp 13–23

250. Wasserman AI (2010) Software engineering issues for mobile

application development. In: Proceedings of the FSE/SDP workshop

on Future of software engineering research, ACM, pp 397–400

251. Watanabe T, Akiyama M, Sakai T, Mori T (2015) Understanding the

inconsistencies between text descriptions and the use of

privacy-sensitive resources of mobile apps. In: Eleventh Symposium

On Usable Privacy and Security ({SOUPS} 2015), pp 241–255

252. Wei F, Roy S, Ou X, et al (2014) Amandroid: A precise and general

inter-component data flow analysis framework for security vetting of

android apps. In: Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, ACM, pp 1329–1341

253. Wei L, Liu Y, Cheung SC (2016) Taming android fragmentation:

Characterizing and detecting compatibility issues for android apps. In:

Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering, ACM, pp 226–237

254. Wei L, Liu Y, Cheung SC (2017) Oasis: prioritizing static analysis

warnings for android apps based on app user reviews. In: Proceedings

of the 2017 11th Joint Meeting on Foundations of Software

Engineering, pp 672–682

255. Wei L, Liu Y, Cheung SC (2019) Pivot: learning api-device

correlations to facilitate android compatibility issue detection. In:

2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE), IEEE, pp 878–888

256. Wohlin C (2014) Guidelines for snowballing in systematic literature

studies and a replication in software engineering. In: Proceedings of

the 18th International Conference on Evaluation and Assessment in

Software Engineering, ACM, New York, NY, USA, EASE ’14, pp

38:1–38:10

257. Wohlin C (2014) Guidelines for snowballing in systematic literature

studies and a replication in software engineering. In: Proceedings of

the 18th international conference on evaluation and assessment in

software engineering, ACM, p 38

258. Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A

(2012) Experimentation in Software Engineering. Computer Science,

Springer

259. Wong MY, Lie D (2016) Intellidroid: A targeted input generator for

the dynamic analysis of android malware. In: NDSS, vol 16, pp 21–24

260. Wong MY, Lie D (2018) Tackling runtime-based obfuscation in

android with {TIRO}. In: 27th {USENIX} Security Symposium

({USENIX} Security 18), pp 1247–1262

261. Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat:

Android malware detection through manifest and api calls tracing. In:

Information Security (Asia JCIS), 2012 Seventh Asia Joint

Conference on, IEEE, pp 62–69

262. Wu H, Yang S, Rountev A (2016) Static detection of energy defect

patterns in android applications. In: Proceedings of the 25th

International Conference on Compiler Construction, pp 185–195

263. Wu H, Zhang H, Wang Y, Rountev A (2019) Sentinel: generating gui

tests for sensor leaks in android and android wear apps. Software

Quality Journal pp 1–33

264. Wu J, Cui T, Ban T, Guo S, Cui L (2015) Paddyfrog: systematically

detecting confused deputy vulnerability in android applications.

Security and Communication Networks 8(13):2338–2349

265. Wu S, Wang P, Li X, Zhang Y (2016) Effective detection of android

malware based on the usage of data flow apis and machine learning.

Information and Software Technology 75:17–25

266. Wu T, Yang Y (2016) Capadroid: Detecting capability leak for

android applications. In: International Conference on Security, Privacy

and Anonymity in Computation, Communication and Storage,

Springer, pp 95–104

267. Wu T, Liu J, Deng X, Yan J, Zhang J (2016) Relda2: an effective

static analysis tool for resource leak detection in android apps. In:

Automated Software Engineering (ASE), 2016 31st IEEE/ACM



Autili et al. Page 32 of 37

International Conference on, IEEE, pp 762–767

268. Wu Y, Li X, Zou D, Yang W, Zhang X, Jin H (2019) Malscan: Fast

market-wide mobile malware scanning by social-network centrality

analysis. In: 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE), IEEE, pp 139–150

269. Xi S, Yang S, Xiao X, Yao Y, Xiong Y, Xu F, Wang H, Gao P, Liu Z,

Xu F, et al (2019) Deepintent: Deep icon-behavior learning for

detecting intention-behavior discrepancy in mobile apps. In:

Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, pp 2421–2436

270. Xiao X, Tillmann N, Fahndrich M, De Halleux J, Moskal M, Xie T

(2015) User-aware privacy control via extended

static-information-flow analysis. Automated Software Engineering

22(3):333–366

271. Xiao X, Wang X, Cao Z, Wang H, Gao P (2019) Iconintent:

automatic identification of sensitive ui widgets based on icon

classification for android apps. In: 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE), IEEE, pp 257–268

272. Xie T (2002) Software engineering conferences (statistics), last

accessed: 06/11/2019. URL

http://taoxie.cs.illinois.edu/seconferences.htm

273. Xu Z, Fan D, Qin S (2016) State-taint analysis for detecting resource

bugs. In: Theoretical Aspects of Software Engineering (TASE), 2016

10th International Symposium on, IEEE, pp 168–175

274. Xu Z, Ren K, Qin S, Craciun F (2018) Cdgdroid: Android malware

detection based on deep learning using cfg and dfg. In: International

Conference on Formal Engineering Methods, Springer, pp 177–193

275. Yan J, Deng X, Wang P, Wu T, Yan J, Zhang J (2018)

Characterizing and identifying misexposed activities in android

applications. In: Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering, pp 691–701

276. Yang S, Yan D, Wu H, Wang Y, Rountev A (2015) Static

control-flow analysis of user-driven callbacks in android applications.

In: Proceedings of the 37th International Conference on Software

Engineering-Volume 1, IEEE Press, pp 89–99

277. Yang S, Wu H, Zhang H, Wang Y, Swaminathan C, Yan D, Rountev

A (2018) Static window transition graphs for android. Automated

Software Engineering 25(4):833–873

278. Yang W, Prasad MR, Xie T (2013) A grey-box approach for

automated gui-model generation of mobile applications. In:

International Conference on Fundamental Approaches to Software

Engineering, Springer, pp 250–265

279. Yang W, Xiao X, Andow B, Li S, Xie T, Enck W (2015) Appcontext:

Differentiating malicious and benign mobile app behaviors using

context. In: Proceedings of the 37th International Conference on

Software Engineering-Volume 1, IEEE Press, pp 303–313

280. Yang W, Prasad MR, Xie T (2018) Enmobile: Entity-based

characterization and analysis of mobile malware. In: Proceedings of

the 40th International Conference on Software Engineering, pp

384–394

281. Yang X, Lo D, Li L, Xia X, Bissyandé TF, Klein J (2017)

Characterizing malicious android apps by mining topic-specific data

flow signatures. Information and Software Technology 90:27–39

282. Yang Z, Yang M (2012) Leakminer: Detect information leakage on

android with static taint analysis. In: Software Engineering (WCSE),

2012 Third World Congress on, IEEE, pp 101–104

283. Yang Z, Yang M, Zhang Y, Gu G, Ning P, Wang XS (2013)

Appintent: Analyzing sensitive data transmission in android for

privacy leakage detection. In: Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, ACM, pp

1043–1054

284. Yerima SY, Sezer S, McWilliams G, Muttik I (2013) A new android

malware detection approach using bayesian classification. In: 2013

IEEE 27th international conference on advanced information

networking and applications (AINA), IEEE, pp 121–128

285. Yu L, Zhang T, Luo X, Xue L (2015) Autoppg: Towards automatic

generation of privacy policy for android applications. In: Proceedings

of the 5th Annual ACM CCS Workshop on Security and Privacy in

Smartphones and Mobile Devices, ACM, pp 39–50

286. Yu L, Luo X, Qian C, Wang S (2016) Revisiting the

description-to-behavior fidelity in android applications. In: Software

Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd

International Conference on, IEEE, vol 1, pp 415–426

287. Yu L, Luo X, Qian C, Wang S, Leung HK (2017) Enhancing the

description-to-behavior fidelity in android apps with privacy policy.

IEEE Transactions on Software Engineering 44(9):834–854

288. Yu L, Zhang T, Luo X, Xue L, Chang H (2017) Toward automatically

generating privacy policy for android apps. IEEE Transactions on

Information Forensics and Security 12(4):865–880

289. Zhang C, Wang H, Wang R, Guo Y, Xu G (2018) Re-checking app

behavior against app description in the context of third-party libraries.

In: SEKE, pp 665–664

290. Zhang D, Wang R, Lin Z, Guo D, Cao X (2016) Iacdroid: Preventing

inter-app communication capability leaks in android. In: Computers

and Communication (ISCC), 2016 IEEE Symposium on, IEEE, pp

443–449

291. Zhang F, Huang H, Zhu S, Wu D, Liu P (2014) Viewdroid: Towards

obfuscation-resilient mobile application repackaging detection. In:

Proceedings of the 2014 ACM conference on Security and privacy in

wireless & mobile networks, pp 25–36

292. Zhang H, Babar MA (2013) Systematic reviews in software

engineering: An empirical investigation. Information and Software

Technology 55(7):1341–1354

293. Zhang H, Wu H, Rountev A (2016) Automated test generation for

detection of leaks in android applications. In: Proceedings of the 11th

International Workshop on Automation of Software Test, ACM, pp

64–70

294. Zhang J, Qin Z, Zhang K, Yin H, Zou J (2018) Dalvik opcode graph

based android malware variants detection using global topology

features. IEEE Access 6:51,964–51,974

295. Zhang J, Beresford AR, Kollmann SA (2019) Libid: reliable

identification of obfuscated third-party android libraries. In:

Proceedings of the 28th ACM SIGSOFT International Symposium on

Software Testing and Analysis, pp 55–65

296. Zhang M, Yin H (2014) Appsealer: Automatic generation of

vulnerability-specific patches for preventing component hijacking

attacks in android applications. In: NDSS

297. Zhang M, Yin H (2014) Efficient, context-aware privacy leakage

confinement for android applications without firmware modding. In:

Proceedings of the 9th ACM symposium on Information, computer

and communications security, ACM, pp 259–270

298. Zhang M, Duan Y, Yin H, Zhao Z (2014) Semantics-aware android

malware classification using weighted contextual api dependency

graphs. In: Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, ACM, pp 1105–1116

299. Zhang M, Duan Y, Feng Q, Yin H (2015) Towards automatic

generation of security-centric descriptions for android apps. In:

Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pp 518–529

300. Zhang Y, Huang G, Liu X, Zhang W, Mei H, Yang S (2012)

Refactoring android java code for on-demand computation offloading.

ACM Sigplan Notices 47(10):233–248

301. Zhang Y, Tan T, Li Y, Xue J (2017) Ripple: Reflection analysis for

android apps in incomplete information environments. In: Proceedings

of the Seventh ACM on Conference on Data and Application Security

and Privacy, ACM, pp 281–288

302. Zhang Y, Dai J, Zhang X, Huang S, Yang Z, Yang M, Chen H (2018)

Detecting third-party libraries in android applications with high

precision and recall. In: 2018 IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER), IEEE, pp

141–152

303. Zhang Y, Sui Y, Xue J (2018) Launch-mode-aware context-sensitive

activity transition analysis. In: Proceedings of the 40th International

Conference on Software Engineering, pp 598–608

304. Zhao J, Albarghouthi A, Rastogi V, Jha S, Octeau D (2018)

Neural-augmented static analysis of android communication. In:

Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, pp 342–353

305. Zhao Y, Laser MS, Lyu Y, Medvidovic N (2018) Leveraging program

analysis to reduce user-perceived latency in mobile applications. In:

Proceedings of the 40th International Conference on Software



Autili et al. Page 33 of 37

Engineering, pp 176–186

306. Zhauniarovich Y, Ahmad M, Gadyatskaya O, Crispo B, Massacci F

(2015) Stadyna: Addressing the problem of dynamic code updates in

the security analysis of android applications. In: Proceedings of the

5th ACM Conference on Data and Application Security and Privacy,

ACM, pp 37–48

307. Zheng C, Zhu S, Dai S, Gu G, Gong X, Han X, Zou W (2012)

Smartdroid: an automatic system for revealing ui-based trigger

conditions in android applications. In: Proceedings of the second

ACM workshop on Security and privacy in smartphones and mobile

devices, ACM, pp 93–104

308. Zhongyang Y, Xin Z, Mao B, Xie L (2013) Droidalarm: an all-sided

static analysis tool for android privilege-escalation malware. In:

Proceedings of the 8th ACM SIGSAC symposium on Information,

computer and communications security, pp 353–358

309. Zhou Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my

market: detecting malicious apps in official and alternative android

markets. In: NDSS, vol 25, pp 50–52

310. Zhou Y, Wu L, Wang Z, Jiang X (2015) Harvesting developer

credentials in android apps. In: Proceedings of the 8th ACM

conference on security & privacy in wireless and mobile networks, pp

1–12

311. Zimmeck S, Wang Z, Zou L, Iyengar R, Liu B, Schaub F, Wilson S,

Sadeh NM, Bellovin SM, Reidenberg JR (2017) Automated analysis

of privacy requirements for mobile apps. In: NDSS



Autili et al. Page 34 of 37

Appendix
A.1 Research Team

Four researchers were involved in this study, each of them with a specific role within the research team.

- Principal researcher : Gian Luca Scoccia, and Roberto Verdecchia, postdocs. They took part in all the activities, i.e., planning the study, conducting

it, and reporting;

- Research methodologist: Ivano Malavolta, assistant professor with expertise in empirical software engineering, software architecture, and systematic

literature reviews; he was mainly involved in (i) the planning phase of the study, and (ii) supporting the principal researchers during the whole study,

e.g., by reviewing the data extraction form, selected primary studies, extracted data, produced reports, etc.;

- Advisor : Marco Autili, associate professor with many-years expertise in software engineering methods applied to the modeling, verification, analysis

and automatic synthesis of complex distributed systems, and application of context-oriented programming and analysis techniques to the

development of (adaptable) mobile applications. He took final decisions on conflicts and methodological options, and supported the other researchers

during data and findings synthesis activities.

A.2 Primary Studies

Table 4 reports the full list of the 261 primary studies.

Table 4: Primary Studies
ID Title Authors Year

P1 NeSeDroid–Android Malware Detection Based on Network Traffic and Sensitive Resource
Accessing [45]

N.T. Cam, N.C.H. Phuoc 2017

P2 Analyzing Remote Server Locations for Personal Data Transfers in Mobile Apps [68] M. Eskandari, B. Kessler, M. Ahmad, A. Santana de Oliveira, B. Crispo 2017

P3 MaMaDroid: Detecting Android Malware by Building Markov Chains of Behavioral Mod-
els [179]

E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, G. Stringhini 2017

P4 Ripple: Reflection Analysis for Android Apps in Incomplete Information Environ-
ments [301]

Y Zhang, T Tan, Y Li, J Xue 2017

P5 AndroDialysis: Analysis of Android Intent Effectiveness in Malware Detection [75] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez, S. Furnell 2017

P6 Profiling the responsiveness of Android applications via automated resource amplifica-
tion [247]

Y. Wang, A. Rountev 2016

P7 Detecting Invalid Layer Combinations Using Control-Flow Analysis for Android [233] N. Suzuki, T. Kamina, K. Maruyama 2016

P8 Graph-aided directed testing of Android applications for checking runtime privacy be-
haviours [128]

J.C.J. Keng, L. Jiang, T.K. Wee, R.K. Balan 2016

P9 Dexteroid: Detecting malicious behaviors in Android apps using reverse-engineered life
cycle models [125]

M. Junaid, D. Liu, D. Kung 2016

P10 IacDroid: Preventing Inter-App Communication capability leaks in Android [290] D. Zhang, R. Wang, Z. Lin, D. Guo, X. Cao 2016

P11 Practical, formal synthesis and automatic enforcement of security policies for android [21] H. Bagheri, A. Sadeghi, R. Jabbarvand, S. Malek 2016

P12 CapaDroid: Detecting Capability Leak for Android Applications [266] T. Wu, Y. Yang 2016

P13 Asynchrony-aware static analysis of Android applications [184] A. Mishra, A. Kanade, Y.N. Srikant 2016

P14 Identifying Android inter app communication vulnerabilities using static and dynamic
analysis [61]

B.F. Demissie, D. Ghio, M. Ceccato, A. Avancini 2016

P15 Towards Automatically Generating Privacy Policy for Android Apps [288] L. Yu, T. Zhang, X. Luo, L. Xue, H. Chang 2016

P16 Revisiting the Description-to-Behavior Fidelity in Android Applications [286] L. Yu, X. Luo, C. Qian, S. Wang 2016

P17 Triggerscope: Towards detecting logic bombs in android applications [82] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, G. Vigna 2016

P18 Automated test generation for detection of leaks in Android applications [293] H. Zhang, H. Wu, A. Rountev 2016

P19 Automatic Construction of Callback Model for Android Application [99] C. Guo, Q. Ye, N. Dong, G. Bai, J.S. Dong, J. Xu 2016

P20 Automated energy optimization of HTTP requests for mobile applications [144] D. Li, Y. Lyu, J. Gui, W.G.J. Halfond 2016

P21 Understanding and detecting wake lock misuses for Android applications [169] Y. Liu, C. Xu, S.C. Cheung, V. Terragni 2016

P22 Taming Android fragmentation: characterizing and detecting compatibility issues for
Android apps [253]

L. Wei, Y. Liu, S.C. Cheung 2016

P23 Reflection-aware static analysis of Android apps [150] L. Li, T.F. Bissyandé, D. Octeau, J. Klein 2016

P24 Automated testing and notification of mobile app privacy leak-cause behaviours [127] J.C.J. Keng 2016

P25 Finding resume and restart errors in Android applications [221] Z. Shan, T. Azim, I. Neamtiu 2016

P26 DroidRA: Taming Reflection to Support Whole-ProgramAnalysis of Android Apps [149] L. Li, T.F. Bissyandé, D. Octeau, J. Klein 2016

P27 Empirical assessment of machine learning-based malware detectors for Android [8] K. Allix, T.F. Bissyandé, Q. Jérome, J. Klein, Y. Le Traon 2016

P28 Effective detection of android malware based on the usage of data flow APIs and machine
learning [265]

S. Wu, P. Wang, X. Li, Y. Zhang 2016

P29 On the Static Analysis of Hybrid Mobile Apps [38] A.D. Brucker, M. Herzberg 2016

P30 Towards a Generic Framework for Automating Extensive Analysis of Android Applica-
tions [151]

L. Li, D. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y. Le Traon 2016

P31 Static Program Analysis for Identifying Energy Bugs in Graphics-Intensive Mobile
Apps [130]

C.H.P. Kim, D. Kroening, M. Kwiatkowska 2016

P32 Combining static analysis with probabilistic models to enable market-scale android inter-
component analysis [195]

D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, Y. Le Traon 2016

P33 DroidNative: automating and optimizing detection of android native code malware vari-
ants [6]

S. Alam, Z. Qu, R. Riley, Y. Chen, V. Rastogi 2016

P34 Enabling Automatic Protocol Behavior Analysis for Android Applications [132] J. Kim, H. Choi, H. Namkung, W. Choi, B. Choi, H. Hong, D. Han 2016

P35 PERUIM: Understanding Mobile Application Privacy with permission-UI Mapping [157] Y. Li, Y. Guo, X. Chen 2016

P36 HybriDroid: Static analysis framework for Android hybrid applications [139] S. Lee, J. Dolby, S. Ryu 2016

P37 StubDroid: automatic inference of precise data-flow summaries for the android frame-
work [11]

S. Arzt, E. Bodden 2016

P38 FlowMine: Android app analysis via data flow [226] L. Sinha, S. Bhandari, P. Faruki, M.S. Gaur, V. Laxmi, M. Conti 2016

P39 Debugging energy-efficiency related field failures in mobile apps [25] A. Banerjee, H.F. Guo, A. Roychoudhury 2016

P40 State-Taint Analysis for Detecting Resource Bugs [273] Z. Xu, D. Fan, S. Qin 2016

P41 Fixing Resource Leaks in Android Apps with Light-Weight Static Analysis and Low-
Overhead Instrumentation [165]

J. Liu, T. Wu, J. Yan, J. Zhang 2016

P42 Relda2: an effective static analysis tool for resource leak detection in Android apps[267] T. Wu, J. Liu, X. Deng, J. Yan, J. Zhang 2016

P43 Detecting energy leaks in android app with poem [79] A. Ferrari, D. Gallucci, D. Puccinelli, S. Giordano 2016

P44 Lightweight measurement and estimation of mobile ad energy consumption [97] J. Gui, D. Li, M. Wan, W.G.J. Halfond 2016

P45 AppContext: Differentiating Malicious and Benign Mobile App Behaviors Using Con-
text [279]

W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, W. Enck 2015

P46 Mining Apps for Abnormal Usage of Sensitive Data [15] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, E. Bodden 2015

P47 CLAPP: characterizing loops in Android applications [81] Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel, G. Vigna 2015

P48 Study and Refactoring of Android Asynchronous Programming [162] Y. Lin, S. Okur, D. Dig 2015

P49 Tracking the Software Quality of Android Applications Along Their Evolution [108] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, L. Duchien 2015

P50 Covert Communication in Mobile Applications [212] J. Rubin, M.I. Gordon, N. Nguyen, M.C. Rinard 2015

P51 Static Window Transition Graphs for Android [277] S. Yang, H. Zhang, H. Wu, Y. Wang, A. Rountev 2015

P52 Static Analysis of Implicit Control Flow: Resolving Java Reflection and Android In-
tents [27]

P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. D’Amorim, M.D. Ernst 2015

P53 String Analysis of Android Applications [60] J. Del Vecchio, F. Shen, K.M. Yee, B. Wang, S.Y. Ko, L. Ziarek 2015

P54 Interactively verifying absence of explicit information flows in Android apps [31] O. Bastani, S. Anand, A. Aiken 2015

P55 ShamDroid: gracefully degrading functionality in the presence of limited resource ac-
cess [40]

L. Brutschy, P. Ferrara, O. Tripp, M. Pistoia 2015

P56 WuKong: a scalable and accurate two-phase approach to Android app clone detec-
tion [242]

H. Wang, Y. Guo, Z. Ma, X. Chen 2015



Autili et al. Page 35 of 37

P57 Reevaluating Android Permission Gaps with Static and Dynamic Analysis [243] H. Wang, Y. Guo, Z. Tang, G. Bai, X. Chen 2015

P58 Andro-autopsy: Anti-malware system based on similarity matching of malware and mal-
ware creator-centric information [117]

J. Jang, H. Kang, J. Woo, A. Mohaisen, H.K. Kim 2015

P59 EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through the An-
droid Framework [47]

Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, Y. Chen 2015

P60 What the app is that? deception and countermeasures in the android user interface [36] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, G. Vigna 2015

P61 Scalable and Precise Taint Analysis for Android [113] W. Huang, Y. Dong, A. Milanova, J. Dolby 2015

P62 AutoPPG: Towards Automatic Generation of Privacy Policy for Android Applica-
tions [285]

L. Yu, T. Zhang, X. Luo, L. Xue 2015

P63 Information-Flow Analysis of Android Applications in DroidSafe [92] M.I. Gordon, D.Kim, J.H. Perkins, L.Gilham, N.Nguyen, M.C. Rinard 2015

P64 StaDynA: Addressing the Problem of Dynamic Code Updates in the Security Analysis
of Android Applications [306]

Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, F. Massacci 2015

P65 Potential Component Leaks in Android Apps: An Investigation into a New Feature Set
for Malware Detection [146]

L. Li, K. Allix, D. Li, A. Bartel, T.F. Bissyandé, J. Klein 2015

P66 Static Control-Flow Analysis of User-Driven Callbacks in Android Applications [276] S.Yang, D.Yan, H.Wu, Y.Wang, A.Rountev 2015

P67 Composite Constant Propagation: Application to Android Inter-Component Communi-
cation Analysis [194]

D. Octeau, D. Luchaup, M. Dering, S. Jha, P.D. McDaniel 2015

P68 IccTA: Detecting Inter-Component Privacy Leaks in Android Apps [148] L. Li, A. Bartel, T.F. Bissyandé, J.Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, P.D. McDaniel

2015

P69 EcoDroid: An Approach for Energy-based Ranking of Android Apps [34] R.J. Behrouz, A. Sadeghi, J. Garcia, S. Malek, P. Ammann 2015

P70 Supor: Precise and scalable sensitive user input detection for android apps [112] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, G. Jiang 2015

P71 Uipicker: User-input privacy identification in mobile applications [187] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, X. Wang 2015

P72 Andro Lyze: A Distributed Framework for Efficient Android App Analysis [33] L. Baumgärtner, P. Graubner, N. Schmidt, B. Freisleben 2015

P73 Using text mining to infer the purpose of permission use in mobile apps [244] H. Wang, J. Hong, Y. Guo 2015

P74 Static reference analysis for GUI objects in Android software [211] A. Rountev, D. Yan 2014

P75 Static analysis for independent app developers [39] L. Brutschy, P. Ferrara, P. Müller 2014

P76 Cochecker: Detecting capability and sensitive data leaks from component chains in an-
droid [57]

X. Cui, D. Yu, P.P.F. Chan, L.C.K. Hui, S.M. Yiu, S. Qing 2014

P77 Android Taint Flow Analysis for App Sets [136] W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer 2014

P78 Amandroid: A precise and general inter-component data flow analysis framework for
security vetting of android apps [252]

F. Wei, S. Roy, X. Ou, Robby 2014

P79 AppSealer: Automatic Generation of Vulnerability-Specific Patches for Preventing Com-
ponent Hijacking Attacks in Android Applications [296]

M. Zhang, H. Yin 2014

P80 Semantics-aware android malware classification using weighted contextual api depen-
dency graphs [298]

M. Zhang, Y. Duan, H. Yin, Z. Zhao 2014

P81 DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket [10] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck 2014

P82 Retrofitting concurrency for android applications through refactoring [161] Y. Lin, C. Radoi, D. Dig 2014

P83 Checking app behavior against app descriptions [93] A. Gorla, I. Tavecchia, F. Gross, A. Zeller 2014

P84 Information Flows As a Permission Mechanism [225] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani, E.J. Lehner, S.Y. Ko,
L. Ziarek

2014

P85 Greendroid: Automated diagnosis of energy inefficiency for smartphone applications [168] Y. Liu, C. Xu, S.C. Cheung, J. Lu 2014

P86 FlowDroid: Precise context-,flow-,field-,object-sensitive and lifecycle-aware taint analysis
for android apps [12]

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
P.D. McDaniel

2014

P87 Cassandra: Towards a Certifying App Store for Android [170] S. Lortz, H. Mantel, A. Starostin, T. Bähr, D. Schneider, A. Weber 2014

P88 Code Injection Attacks on HTML5-based Mobile Apps:Characterization, Detection and
Mitigation [121]

X. Jin, X. Hu, K. Ying, W. Du, H. Yin, G. Nagesh Peri 2014

P89 Efficient, context-aware privacy leakage confinement for android applications without
firmware modding [297]

M. Zhang, H. Yin 2014

P90 Collaborative Verification of Information Flow for a High-Assurance App Store [67] M.D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner, K. Koscher, P.
Barros, R. Bhoraskar, S. Han, P. Vines, E.X. Wu

2014

P91 Multi-App Security Analysis with FUSE: Statically Detecting Android App Collusion [208] T. Ravitch, E.R. Creswick, A. Tomb, A. Foltzer, T. Elliott, L. Casburn 2014

P92 Characterizing and detecting performance bugs for smartphone applications [167] Y. Liu, C. Xu, S.C. Cheung 2014

P93 AsDroid: detecting stealthy behaviors in Android applications by user interface and pro-
gram behavior contradiction [111]

J. Huang, X. Zhang, L. Tan, P. Wang, B. Liang 2014

P94 Apposcopy: semantics-based detection of Android malware through static analysis [78] Y. Feng, S. Anand, I. Dillig, A. Aiken 2014

P95 Detecting energy bugs and hotspots in mobile apps [24] A. Banerjee, L.K. Chong, S. Chattopadhyay, A. Roychoudhury 2014

P96 Static Analysis for Extracting Permission Checks of a Large Scale Framework: The Chal-
lenges and Solutions for Analyzing Android [29]

A. Bartel, J. Klein, M. Monperrus, Y. Le Traon 2014

P97 Responsiveness analysis tool for android application [196] T. Ongkosit, S. Takada 2014

P98 Automatically exploiting potential component leaks in android applications [145] L. Li, A. Bartel, J. Klein, Y. Le Traon 2014

P99 Effective inter-component communication mapping in android: An essential step towards
holistic security analysis [193]

D. Octeau, P.D. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, Y. Le Traon 2013

P100 DroidAPIMiner: Mining API-level features for robust malware detection in android [1] Y. Aafer, W. Du, H. Yin 2013

P101 An empirical study of cryptographic misuse in android applications [64] M. Egele, D. Brumley, Y. Fratantonio, C. Kruegel 2013

P102 Targeted and depth-first exploration for systematic testing of android apps [16] T. Azim, I. Neamtiu 2013

P103 Sound and precise malware analysis for android via pushdown reachability and entry-point
saturation [160]

S. Liang, A.W. Keep, M. Might, S. Lyde, T. Gilray, Liang, S., Keep, A. W., Might, M.,
Lyde, S., Gilray, T., P. Aldous, D. Van Horn

2013

P104 AppIntent: analyzing sensitive data transmission in android for privacy leakage detec-
tion [283]

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, X.S. Wang 2013

P105 AppProfiler: a flexible method of exposing privacy-related behavior in android applica-
tions to end users [210]

S. Rosen, Z. Qian, Z.M. Mao 2013

P106 Flow permissions for android [110] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg, F. Shen, S.Y. Ko, L. Ziarek 2013

P107 Slicing Droids: Program Slicing for Smali Code [109] J. Hoffmann, M. Ussath, T. Holz, M. Spreitzenbarth 2013

P108 A grey-box approach for automated GUI-model generation of mobile applications [278] W. Yang, M.R. Prasad, T. Xie 2013

P109 Structural detection of android malware using embedded call graphs [88] H. Gascon, F. Yamaguchi, D. Arp, K. Rieck 2013

P110 Estimating mobile application energy consumption using program analysis [104] S. Hao, D. Li, W.G.J. Halfond, R. Govindan 2013

P111 Characterizing and detecting resource leaks in Android applications [98] C. Guo, J. Zhang, J. Yan, Z. Zhang, Y. Zhang 2013

P112 Calculating source line level energy information for Android applications [143] D. Li, S. Hao, W.G.J. Halfond, R. Govindan 2013

P113 Smartdroid: an automatic system for revealing ui-based trigger conditions in android
applications [307]

C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, W. Zou 2012

P114 Why Eve and Mallory love Android: An analysis of Android SSL (in) security [69] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, B. Freisleben 2012

P115 User-aware privacy control via extended static-information-flow analysis [270] X. Xiao, N. Tillmann, M. Fähndrich, J. De Halleux, M. Moskal 2012

P116 Dr. Android and Mr. Hide: fine-grained permissions in android applications [118] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster, T. D. Millstein 2012

P117 LeakMiner: Detect Information Leakage on Android with Static Taint Analysis [282] Z. Yang, M. Yang 2012

P118 SCANDAL: Static Analyzer for Detecting Privacy Leaks in Android Applications [131] J. Kim, Y. Yoon, K. Yi, J. Shin, S. Center 2012

P119 A framework for static detection of privacy leaks in android applications [177] C. Mann, A. Starostin 2012

P120 DroidChecker: analyzing android applications for capability leak [48] P.P.F. Chan, L. C. K. Hui, S. M. Yiu 2012

P121 DroidMat: Android Malware Detection through Manifest and API Calls Tracing [261] D.J. Wu, C.H. Mao, T.E. Wei, H.M. Lee, K.P. Wu 2012

P122 Static analysis of Android programs [201] E. Payet, F. Spoto 2012

P123 Estimating Android applications’ CPU energy usage via bytecode profiling [103] H. Hao, D. Li, W. G. J. Halfond, R. Govindan 2012

P124 What is keeping my phone awake?: characterizing and detecting no-sleep energy bugs in
smartphone apps [199]

A. Pathak, A. Jindal, Y. Charlie Hu, S. P. Midkiff 2012

P125 User-centric dependence analysis for identifying malicious mobile apps [66] K.O. Elish, D. Yao, B.G. Ryder 2012

P126 AndroidLeaks: automatically detecting potential privacy leaks in android applications on
a large scale [90]

C. Gibler, J. Crussell, J. Erickson, H. Chen 2012

P127 Hey, You, Get Off of My Market: Detecting Malicious Apps in Official and Alternative
Android Markets. [309]

Y. Zhou, Z. Wang, W. Zhou, X. Jiang 2012

P128 RiskRanker: Scalable and Accurate Zero-day Android Malware Detection [95] M.C. Grace, Y.Zhou, Q. Zhang, S. Zou, X. Jiang 2012

P129 Chex: statically vetting android apps for component hijacking vulnerabilities [171] L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang 2012

P130 Automatically securing permission-based software by reducing the attack surface: An
application to android [28]

A. Bartel, J. Klein, Y. Le Traon, M. Monperrus 2012



Autili et al. Page 36 of 37

P131 Android permissions demystified [76] A. Porter Felt, E. Chin, S. Hanna, D. Song, D. A. Wagner: 2011

P132 Using static analysis for automatic assessment and mitigation of unwanted and malicious
activities within Android applications [32]

L. Batyuk, M. Herpich, S. A. Çamtepe, K. Raddatz, A. D. Schmidt, S. Albayrak 2011

P133 Analyzing Inter-application Communication in Android [53] E. Chin, A. Porter Felt, K. Greenwood, D. A. Wagner 2011

P134 PiOS: Detecting Privacy Leaks in iOS Applications [63] M. Egele, C. Kruegel, E. Kirda, G. Vigna 2011

P135 Energypatch: Repairing resource leaks to improve energy-efficiency of android apps [26] A. Banerjee , L. K. Chong, C. Ballabriga, A. Roychoudhury 2018

P136 A multi-view context-aware approach to Android malware detection and malicious code
localization [188]

A. Narayanan, M. Chandramohan, L. Chen, Y. Liu 2018

P137 AndroidOff:Offloading android application based on cost estimation [51] X. Chen, J. Chen, B. Liu, Y. Ma, Y. Zhang, H. Zhong 2019

P138 A SEALANT for Inter-App Security Holes in Android [140] Y.K. Lee, J.Y. Bang, G. Safi, A. Shahbazian, Y. Zhao, N. Medvidovic 2017

P139 LibD: Scalable and Precise Third-party Library Detection in Android Markets [155] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, W. Huo 2017

P140 Self-Hiding Behavior in Android Apps: Detection and Characterization [222] Z. Shan, I.G. Neamtiu, S. Raina 2018

P141 Iconintent: automatic identification of sensitive ui widgets based on icon classification
for android apps [271]

X. Xiao, X. Wang, Z. Cao, H. Wang, P. Gao 2019

P142 Efficiently Manifesting Asynchronous Programming Errors in Android Apps [70] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu 2018

P143 Semi-automated Discovery of Server-Based Information Oversharing Vulnerabilities in
Android Applications [137]

W. Koch, A. Chaabane, M. Egele, W. Robertson, E. Kirda 2017

P144 LibID: Reliable Identification of Obfuscated Third-Party Android Libraries [295] J. Zhang, A.R. Beresford, S.A. Kollmann 2019

P145 ADS-SA: System for Automatically Detecting Sensitive Path of Android Applications
Based on Static Analysis [229]

H. Song, D. Lin, S. Zhu, W. Wanga, S. Zhang 2019

P146 CDGDroid: Android malware detection based on deep learning using CFG and DFG [274] Z Xu, K Ren, S Qin, F Craciun 2018

P147 Machine Learning for Android Malware Detection Using Permission and API Calls [202] N. Peiravian, X. Zhu 2013

P148 IIFA: modular inter-app intent information flow analysis of android applications [236] A. Tiwari, S. Groß, C. Hammer 2019

P149 Static Back-Stack Transition Analysis for Android [164] A. Liu, C. Guo, W. Wang, Y. Qiu, J. Xu 2019

P150 Android Malware Familial Classification and Representative Sample Selection via Fre-
quent Subgraph Analysis [72]

M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, T. Liu 2018

P151 StateDroid: Stateful Detection of Stealthy Attacks in Android Apps via Horn-Clause
Verification [126]

M. Junaid, J. Ming, D. Kung 2018

P152 Apkcombiner: Combining multiple android apps to support inter-app analysis [147] L. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y. Le Traon 2015

P153 Andarwin: Scalable detection of semantically similar android applications [56] J. Crussell, C. Gibler, H. Chen 2013

P154 Appx: an automated app acceleration framework for low latency mobile app [54] B. Choi, J. Kim, D. Cho, S. Kim, D. Han 2018

P155 Achieving Accuracy and Scalability Simultaneously in Detecting Application Clones on
Android Markets [49]

K. Chen, P. Liu, Y. Zhang 2014

P156 Search-Based Energy Testing of Android [56] R. Jabbarvand, J.W. Lin, S. Malek 2019

P157 TeICC: Targeted Execution of Inter-Component Communications in Android [4] M. Ahmad, V. Costamagna, B. Crispo, F. Bergadano 2017

P158 API compatibility issues in Android: Causes and effectiveness of data-driven detection
techniques [218]

S. Scalabrino, G. Bavota, M. Linares-Vásquez, V. Piantadosi, M. Lanza, R. Oliveto 2018

P159 Androlic: an extensible flow, context, object, field, and path-sensitive static analysis
framework for Android [197]

L. Pan, B. Cui, J. Yan, X. Ma, J. Yan, J. Zhang 2019

P160 EvoDroid: Segmented Evolutionary Testing of Android Apps [176] R. Mahmood, N. Mirzaei, S. Malek 2014

P161 LibRadar: Fast and Accurate Detection of Third-party Libraries in Android Apps [175] Z. Ma, H. Wang, Y. Guo, X. Chen 2016

P162 Open Doors for Bob and Mallory: Open Port Usage in Android Apps and Security Im-
plications [119]

Y.J. Jia; Q.A. Chen; Y. Lin; C. Kong; Z. Morley Mao 2017

P163 Finding flaws from password authentication code in Android apps [174] S. Ma, E. Bertino, S. Nepal, J. Li, D. Ostry, R.H. Deng, S. Jha 2019

P164 Detecting Third-Party Libraries in Android Applications with High Precision and Re-
call [302]

Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, H. Chen 2018

P165 EARMO: An Energy-Aware Refactoring Approach for Mobile Apps [185] R. Morales, R. Saborido, F. Khomh, F. Chicano, G. Antoniol 2018

P166 DelDroid : An automated approach for determination and enforcement of least-privilege
architecture in android [101]

M. Hammad, H. Bagheri, S. Malek 2019

P167 Lifting inter-app data-flow analysis to large app sets [216] F. Sattler, A. von Rhein, T. Berger, N.S. Johansson, M.M. Hardø, S. Apel 2018

P168 Leveraging Program Analysis to Reduce User-Perceived Latency in Mobile Applica-
tions [305]

Y. Zhao, M.S. Laser, Y. Lyu, N. Medvidovic 2018

P169 Graph Embedding based Familial Analysis of Android Malware using Unsupervised Learn-
ing [73]

M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, T. Liu 2019

P170 PATDroid: Permission-Aware GUI Testing of Android [213] A. Sadeghi, R. Jabbarvand, S. Malek 2017

P171 Together Strong: Cooperative Android App Analysis [200] F. Pauck, H. Wehrheim 2019

P172 Android testing via synthetic symbolic execution [84] X. Gao; S.H. Tan; Z. Dong, A. Roychoudhury 2018

P173 Self-Protection of Android Systems from Inter-component Communication Attacks [100] M. Hammad, J. Garcia, S. Malek 2018

P174 MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Centrality
Analysis [268]

W. Yueming, L. XiaoDi, Z. Deqing, Y. Wei, Z. Xin, J. Hai 2019

P175 Automated API-Usage Update for Android Apps [74] M. Fazzini, Q. Xin, A. Orso 2019

P176 Leila: formal tool for identifying mobile malicious behaviour [46] G. Canfora, F. Martinelli, F. Mercaldo, V. Nardone, A. Santone, C.A. Visaggio 2018

P177 Re-checking App Behavior against App Description in the Context of Third-party Li-
braries [289]

C. Zhang, H. Wang, R. Wang, Y. Guo, G. Xu 2018

P178 VAnDroid: A framework for vulnerability analysis of Android applications using a model-
driven reverse engineering technique [191]

A. Nirumand, B. Zamani, B.T. Ladani 2019

P179 AnFlo: Detecting Anomalous Sensitive Information Flows in Android Apps [62] B. Fisseha Demissie, M. Ceccato, L. Khin Shar 2018

P180 PaddyFrog: systematically detecting confused deputy vulnerability in Android applica-
tions [264]

J. Wu, T. Cui, T. Ban, S. Guo, L. Cui 2015

P181 Dalvik Opcode Graph Based Android Malware Variants Detection Using Global Topology
Features [294]

J. Zhang, Z. Qin, K. Zhang, H. Yin, J. Zou 2018

P182 Obfusifier: Obfuscation-resistant Android malware detection system 2019

P183 On automatically detecting similar Android apps [159] Z. Li, J. Sun, Q. Yan, W. Srisa-an, Y. Tsutano 2016

P184 Contextual policy enforcement in android applications with permission event graphs [50] K.Z. Chen, N.M. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. Magrino, E. Wu, M.
Rinard, D. Song

2013

P185 Toward a framework for detecting privacy policy violations in android application
code [227]

R. Slavin, X. Wang, M.B. Hosseini, J. Hester, R. Krishnan, J. Bhatia, T.D. Breaux, J.
Niu

2016

P186 LUDroid: A large scale analysis of Android–Web hybridization [237] A. Tiwari, J. Prakash, S. Groß, C. Hammer 2019

P187 COVERT: Compositional Analysis of Android Inter-App Permission Leakage [20] H. Bagheri, A. Sadeghi, J. Garcia, S. Malek 2015

P188 Data-Driven Solutions to Detect API Compatibility Issues in Android: An Empirical
Study [217]

S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, R. Oliveto 2019

P189 Harvesting Developer Credentials in Android Apps [310] Y. Zhou, L. Wu, Z. Wang, X. Jiang 2015

P190 Learning Performance Optimization from Code Changes for Android Apps [77] R. Feng, G. Meng, X. Xie, T. Su, Y. Liu, S. Lin 2019

P191 Guided, Stochastic Model-Based GUI Testing of Android Apps [232] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, Z. Su 2017

P192 Understanding the purpose of permission use in mobile apps [245] H. Wang, Y. Li, Y. Guo, Y. Agarwal, J.I. Hong 2017

P193 Smv-hunter: Large scale, automated detection of ssl/tls man-in-the-middle vulnerabilities
in android apps [231]

D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, L. Khan 2014

P194 Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detec-
tion [52]

X.Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, K. Ren 2019

P195 Lightweight, Obfuscation-Resilient Detection and Family Identification of Android Mal-
ware [86]

J. Garcia, M. Hammad, S. Malek 2018

P196 Who changed you? Obfuscator identification for Android [248] Y. Wang, A. Rountev 2017

P197 Enhancing the description-to-behavior fidelity in android apps with privacy policy [287] L. Yu, X. Luo, C. Qian, S. Wang, H.K.N. Leung 2018

P198 Static window transition graphs for Android [277] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, A. Rountev 2018

P199 An Efficient, Robust, and Scalable Approach for Analyzing Interacting Android
Apps [238]

Y. Tsutano, S. Bachala, W. Srisa-An, G. Rothermel, J. Dinh 2017

P200 A Temporal Permission Analysis and Enforcement Framework for Android [214] A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, S. Malek 2018

P201 GUILeak: Tracing Privacy Policy Claims on User Input Data for Android Applica-
tions [246]

X. Wang, X. Qin, M.B. Hosseini, R. Slavin, T. Breaux, J. Niu 2018

P202 Towards understanding and reasoning about android interoperations [18] S. Bae, S. Lee, S. Ryu 2019



Autili et al. Page 37 of 37

P203 OASIS: Prioritizing Static Analysis Warnings for Android Apps Based on App User Re-
views [254]

L. Wei, Y. Liu, S.C. Cheung 2017

P204 ServDroid: Detecting Service Usage Inefficiencies in Android Applications [230] W. Song, J. Zhang, J. Huang 2019

P205 TDroid: Exposing App Switching Attacks in Android with Control Flow Specializa-
tion [166]

J. Liu, D. Wu, J. Xue 2018

P206 Characterizing and identifying misexposed activities in android applications [275] J. Yan, X. Deng, P. Wang, T. Wu, J. Yan, J. Zhang 2018

P207 OAUTHLINT: An Empirical Study on OAuth Bugs in Android Applications [5] T. Al Rahat, Y. Feng, Y. Tian 2019

P208 Remove RATs from Your Code: Automated Optimization of Resource Inefficient
Database Writes for Mobile Applications [172]

Y. Lyu, D. Li, W.G.J. Halfond 2018

P209 Systematic detection of capability leaks in stock Android smartphones [96] M.C. Grace, Y. Zhou, Z. Wang, X. Jiang 2012

P210 Understanding the inconsistencies between text descriptions and the use of privacy-
sensitive resources of mobile apps [251]

T. Watanabe, M. Akiyama, T. Sakai, T. Mori 2015

P211 Refactoring Android Java Code for On-Demand Computation Offloading [300] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, S. Yang 2012

P212 Jitana: A modern hybrid program analysis framework for android platforms [166] Y. Tsutano, S. Bachala, W. Srisa-an, G. Rothermel, J. Dihn 2019

P213 DroidAlarm: an all-sided static analysis tool for Android privilege-escalation mal-
ware [308]

Y. Zhongyang, Z. Xin, B. Mao, L. Xie 2013

P214 Tackling runtime-based obfuscation in Android with TIRO [260] M.Y. Wong, D. Lie 2018

P215 Grandroid: Graph-based detection of malicious network behaviors in android applica-
tions [158]

Z. Li, J. Sun, Q. Yan, W. Srisa-an, S. Bachala 2018

P216 ViewDroid: Towards obfuscation-resilient mobile application repackaging detection [291] F. Zhang, H. Huang, S. Zhu, D. Wu, P. Liu 2014

P217 Towards automatic generation of security-centric descriptions for android apps [299] M. Zhang, Y. Duan, Q. Feng, H. Yin 2015

P218 DeepIntent: Deep icon-behavior learning for detecting intention-behavior discrepancy in
mobile apps [269]

S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao, Z. Liu, F. Xu, J. Lu 2019

P219 SENTINEL: generating GUI tests for sensor leaks in Android and Android wear apps [263] H. Wu, H. Zhang, Y. Wang, A. Rountev 2019

P220 LESDroid - A Tool for Detecting Exported Service Leaks of Android Applications [173] J. Ma, S. Liu, Y. Jiang, X. Tao, C .Xu, J. Lu 2018

P221 Static detection of energy defect patterns in Android applications [262] H.Wu, S. Yang, A. Rountev 2016

P222 Wechecker: efficient and precise detection of privilege escalation vulnerabilities in android
apps [58]

X. Cui, J. Wang, L.C.K. Hui, Z. Xie, T. Zeng, S. Yiu 2015

P223 Launch-Mode-Aware Context-Sensitive Activity Transition Analysis [303] Y. Zhang, Y. Sui, J. Xue 2018

P224 SIG-Droid: Automated System Input Generation for Android Applications [182] N. Mirzaei, H. Bagheri, R. Mahmood, S. Malek 2015

P225 Reducing Combinatorics in GUI Testing of Android Applications [183] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, S. Malek 2016

P226 Detection of Design Flaws in the Android Permission Protocol Through Bounded Veri-
fication [19]

H. Bagheri, E. Kang, S. Malek, D. Jackson 2015

P227 Reliable third-party library detection in android and its security applications [17] M. Backes, S. Bugiel, E. Derr 2016

P228 IntelliDroid: A Targeted Input Generator for the Dynamic Analysis of Android Mal-
ware [259]

M.Y. Wong, D. Lie 2016

P229 EnMobile: Entity-based Characterization and Analysis of Mobile Malware [280] W. Yang, M.R. Prasad, T. Xie 2018

P230 Ordol: Obfuscation-Resilient Detection of Libraries in Android Applications [235] D. Titze, M. Lux, J. Schuette 2017

P231 Towards model checking android applications [23] G. Bai, Q. Ye, Y. Wu, H. Botha, J. Sun, Y. Liu, J. Dong, W. Visser 2018

P232 Security code smells in Android ICC [83] P. Gadient, M. Ghafari, P. Frischknecht, O. Nierstrasz 2019

P233 Characterizing malicious Android apps by mining topic-specific data flow signatures [281] X. Yang, D. Lo, L. Li, X. Xia, T.F. Bissyandé, J. Klein 2017

P234 Making Malory Behave Maliciously: Targeted Fuzzing of Android Execution Environ-
ments [207]

S. Rasthofer, S. Arzt, S. Triller, M. Pradel 2017

P235 DroidStar: Callback Typestates for Android Classes [206] A. Radhakrishna, N.V. Lewchenko, S. Meier, S. Mover, K.C. Sripada, D. Zufferey, B.E.
Chang, P. Cherny

2018

P236 PIVOT: Learning API-Device Correlations to Facilitate Android Compatibility Issue De-
tection [255]

L. Wei, Y. Liu, S.C. Cheung 2019

P237 Automatic Generation of Inter-Component Communication Exploits for Android Appli-
cations [85]

J. Garcia, M. Hammad, N. Ghorbani, S. Malek 2017

P238 Neural-augmented static analysis of Android communication [304] J. Zhao, A. Albarghouthi, V. Rastogi, S. Jha, D. Octeau 2018

P239 Understanding and Detecting Evolution-Induced Compatibility Issues in Android
Apps [106]

D. He, L. Li, L. Wang, H. Zheng, G. Li, J. Xue 2018

P240 Goal-Driven Exploration for Android Applications [138] D. Lai, J. Rubin 2019

P241 CiD: Automating the Detection of API-related Compatibility Issues in Android Apps [153] L. Li, T.F. Bissyandé, H. Wang, J. Klein 2018

P242 QADroid: Regression Event Selection for Android Applications [224] A. Sharma, R. Nasre 2019

P243 Automated analysis of privacy requirements for mobile app [311] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, W. Shomir, N.M. Sadeh,
S.M. Bellovin, J.R. Reidenberg

2017

P244 apk2vec: Semi-supervised multi-view representation learning for profiling Android appli-
cations [189]

A. Narayanan, C. Soh, L. Chen, Y. Liu, L. Wang 2018

P245 Collusive Data Leak and More: Large-scale Threat Analysis of Inter-app Communica-
tions [37]

A. Bosu, F. Liu, D. Yao, G. Wang 2017

P246 Efficient, Evolutionary Security Analysis of Interacting Android Apps [22] H. Bagheri, J. Wang, J. Aerts, S. Malek 2018

P247 Detecting Passive Content Leaks and Pollution in Android Applications [120] Y.Z.X. Jiang, Z. Xuxian 2013

P248 Dapasa: detecting android piggybacked apps through sensitive subgraph analysis [71] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, T. Liu 2017

P249 Orlis: Obfuscation-resilient library detection for Android [249] Y. Wang, H. Wu, H. Zhang, A. Rountev 2018

P250 Juxtapp: A scalable system for detecting code reuse among android applications [102] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, D. Song 2012

P251 A new android malware detection approach using bayesian classification [284] S.Y. Yerima, S. Sezer, G. McWilliams, I. Muttik 2013

P252 Towards a Scalable Resource-driven Approach for Detecting Repackaged Android Appli-
cations [223]

Y. Shao, X. Luo, C. Qian, P. Zhu, L. Zhang 2014

P253 Efficiently Manifesting Asynchronous Programming Errors in Android Apps [70] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu 2018

P254 Automatically Discovering, Reporting and Reproducing Android Application
Crashes [186]

K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas; C. Vendome; D. Poshyvanyk 2016

P255 HornDroid: Practical and Sound Static Analysis of Android Applications by SMT Solv-
ing [44]

S. Calzavara, I. Grishchenko, M. Maffei 2016

P256 Android Multitasking Mechanism: Formal Semantics and Static Analysis of Apps [107] J. He, T. Chen, P. Wang, Z. Wu, J. Yan 2019

P257 Privacy Leakage through Exploitation of Vulnerable Inter-App Communication on An-
droid [178]

H.M.A. Maqsood, K.N. Qureshi, F. Bashir, N.U. Islam 2019

P258 Revisiting the impact of common libraries for android-related investigations [154] L. Li, T. Riom, T.F. Bissyandé, H. Wang, J. Klein 2019

P259 Authorship attribution of Android apps [91] H. Gonzalez, N. Stakhanova, A.A. Ghorbani 2018

P260 Improving accuracy of Android malware detection with lightweight contextual aware-
ness [7]

J. Allen, M. Landen, S. Chaba, Y. Ji, S.P.H. Chung, W. Lee 2018

P261 Characterizing and Detecting Inefficient Image Displaying Issues in Android Apps [156] W. Li, Y. Jiang, C. Xu, Y. Liu, X. Ma, J. Lù 2019


