
The Journal of Systems & Software 176 (2021) 110925

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Building and evaluating a theory of architectural technical debt in
software-intensive systemsI

Roberto Verdecchia a, Philippe Kruchten b, Patricia Lago a,c, Ivano Malavolta a,⇤
a Vrije Universiteit Amsterdam, The Netherlands
b University of British Columbia, Vancouver, Canada
c Chalmers University of Technology, Gothenburg, Sweden

a r t i c l e i n f o

Article history:
Received 22 December 2020
Accepted 8 February 2021
Available online 27 February 2021

Keywords:
Software engineering
Software architecture
Technical debt
Software evolution
Grounded theory
Focus group

a b s t r a c t

Architectural technical debt in software-intensive systems is a metaphor used to describe the ‘‘big’’
design decisions (e.g., choices regarding structure, frameworks, technologies, languages, etc.) that, while
being suitable or even optimal when made, significantly hinder progress in the future. While other
types of debt, such as code-level technical debt, can be readily detected by static analyzers, and often
be refactored with minimal or only incremental efforts, architectural debt is hard to be identified, of
wide-ranging remediation cost, daunting, and often avoided.

In this study, we aim at developing a better understanding of how software development organiza-
tions conceptualize architectural debt, and how they deal with it. In order to do so, in this investigation
we apply a mixed empirical method, constituted by a grounded theory study followed by focus groups.
With the grounded theory method we construct a theory on architectural technical debt by eliciting
qualitative data from software architects and senior technical staff from a wide range of heterogeneous
software development organizations. We applied the focus group method to evaluate the emerging
theory and refine it according to the new data collected.

The result of the study, i.e., a theory emerging from the gathered data, constitutes an encom-
passing conceptual model of architectural technical debt, identifying and relating concepts such as
its symptoms, causes, consequences, management strategies, and communication problems. From the
conducted focus groups, we assessed that the theory adheres to the four evaluation criteria of classic
grounded theory, i.e., the theory fits its underlying data, is able to work, has relevance, and is modifiable
as new data appears.

By grounding the findings in empirical evidence, the theory provides researchers and practi-
tioners with novel knowledge on the crucial factors of architectural technical debt experienced in
industrial contexts.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Technical Debt (TD) is a concept that has been with us for
a long time, at least since 1992 when Cunningham crafted the
phrase (Cunningham, 1992), but it only got some real attention
from researchers in the last 10 years (Brown et al., 2010). What
is technical debt? ‘‘In software-intensive systems, technical debt
consists of design or implementation constructs that are expe-
dient in the short term, but set up a technical context that can
make a future change more costly or impossible. Technical debt
is a contingent liability whose impact is limited to internal system

I Editor: [RAFFAELA MIRANDOLA].⇤ Corresponding author.
E-mail addresses: r.verdecchia@vu.nl (R. Verdecchia), pbk@ece.ubc.ca

(P. Kruchten), p.lago@vu.nl (P. Lago), i.malavolta@vu.nl (I. Malavolta).

qualities, primarily maintainability and evolvability’’ (Avgeriou
et al., 2016).

Technical debt can take many different forms in software de-
velopment, and can be found in many different places (Kruchten
et al., 2012). While much of the literature and tooling avail-
able today address code-level technical debt, our focus is on
Architectural Technical Debt (ATD). This is the technical debt
incurred at the architectural level of software design, that is, in
the decisions related to the choice of structure (e.g., layering, de-
composition in subsystems, interfaces), the choice of technologies
(e.g., frameworks, packages, libraries, deployment approach), or
even languages, development process, and platform. As software
systems grow in size and their lifespan extends to many years,
many of these original design choices become constraints, and
limit future evolution or even prevents it. To evolve the system,
developers do find workarounds and often complicated solutions,
which introduce quality issues and delays. Large and long-lived

https://doi.org/10.1016/j.jss.2021.110925
0164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.110925
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110925&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:r.verdecchia@vu.nl
mailto:pbk@ece.ubc.ca
mailto:p.lago@vu.nl
mailto:i.malavolta@vu.nl
https://doi.org/10.1016/j.jss.2021.110925
http://creativecommons.org/licenses/by/4.0/

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

systems are suffering from architectural debt, while the small and
short-lived ones die before ATD becomes a real problem. For ex-
ample, a research prototype may work well for its intended goal,
but if used as brittle architectural foundation for a commercial
product, it can lead to the failure of a company after years and
years of strenuously accumulating workaround on workaround.

However, despite its importance and widespread presence, as
of today our knowledge of ATD is still incomplete. Indeed, how
to accurately identify, monitor, and manage ATD is to date still
an open question. The goal of this paper is to fill this gap by
providing novel insights of the crucial factors which characterize
ATD in industry. In order to achieve this goal, in this study
we applied a mixed-method empirical strategy based on the
grounded theory method and focus groups. This strategy allows
us to (i) systematically organize and report in a cohesive theory
the knowledge acquired by experienced practitioners on the topic
and (ii) evaluate and refine the emerging theory according to the
new data collected via the focus groups.

The main contribution of this study is the development and
evaluation of an ATD theory, which provides an empirically-
extracted conceptualization of the architectural technical debt
phenomenon. For example, we identified architectural issues,
their symptoms, and managements strategies, which not only
shed light on the state of the practice on ATD, but also provide
means for researchers and practitioners to further understand
and monitor ATD phenomena. While the focus of our theory is
on the architecture of software-intensive systems, the emerging
results can be utilized to create specializations of the theory by
considering a different abstraction level, e.g., code-level technical
debt.

In a previous study (Verdecchia et al., 2020a) we reported
a preliminary version of our theory for ATD. In this paper we
extended our previous work in multiple ways:

• we expanded the theory by including a total of 9 categories
and 63 concepts (2 and 24 additional ones with respect
to Verdecchia et al., 2020a), and introduced a new inter-
level abstraction of concepts, referred to as Type. These new
results emerged thanks to a further in-depth theoretical
coding process, by analyzing the relations between substan-
tive codes, and how these were represented in terms of
concepts, categories, and relations between them;

• we conducted an evaluation of the theory by adopting the
focus group method, which led to the assessment of the
theory according to a set of predefined criteria, and the
introduction of 12 additional concepts in the theory;

• we added an in-depth discussion of the related work by
analysing how the emerging ATD theory complements the
findings and visions of existing studies on architectural tech-
nical debt.

The target audience of this study includes practitioners and
researchers. Our theory provides a solid foundation which bene-
fits (i) practitioners aiming at a better management and mitigation
of the ATD they experience, and (ii) researchers looking for precise
and evidence-based definitions of ATD-related concepts, which
may in turn help exploring new research directions towards a
better characterization of ATD and its effective management.

The paper is structured as follows. The next section focuses on
providing background on the grounded theory method, followed
by specifics of our study design and execution. Section 3 reports
the results of our investigation, with each of the Sections 3.1-
3.10 dedicated to the description of a specific category of our
theory. Related work and theory evaluation results are reported
in Section 4 and Section 5, respectively. Threats to validity to our
study are reported in Section 6. Section 7 concludes the paper.

2. Research method

The research strategy followed in this study consists of two
separate parts, carried out subsequently. Specifically, in the first
part of the investigation, in order to formulate a theory on ATD,
we adopted a grounded theory method (see steps A - H of
Fig. 1). Afterwards, once the theory on ATD was established,
we applied focus groups in order to evaluate and refine our
theory (see step I of Fig. 1). The remainder of this section gives
an overview of the complete research process utilized in this
investigation. We structure this section as follows: Section 2.1
summarizes the grounded theory method, Section 2.2 documents
the grounded theory design and execution, including the details
about data collection and data analysis, and Section 2.3 details
the focus group method adopted to evaluate and complement the
emerging theory.

2.1. Grounded theory

To build a theory on Architectural Technical Debt we adopted
Grounded Theory (GT), a qualitative research method enabling us
to establish a theory by grounding our findings in the experience
of software practitioners. GT is used to systematically explain
an observed phenomenon by studying how people conceptualize
and deal with it in practice. As summarized by Schreiber and
Stern (2001), the goal of grounded theory is to answer the ques-
tion ‘‘What is going on here?’’. To do so, incidents (i.e., bits of
gathered data related to the studied phenomenon) are analyzed
to identify emerging concepts. As the research progresses, the
growing number of concepts are aggregated semantically into
different categories, which constitute the basic building blocks of
the emerging theory. Categories are further developed by gather-
ing additional data and comparing the new incoming incidents
against the old ones, which were already categorized. This in-
ductive process leads to the identification of abstract categories,
which are theoretically shaped by letting their definition fit all
of the underlying data. The iterative data collection and analysis
process stops once the identified categories become saturated,
i.e., when new data is no longer triggering their revision or
reinterpretation. In addition to the identification of the cate-
gories constituting a theory, GT requires to analyze incidents to
identify the conceptual relationships existing between the differ-
ent categories. In fact, a theory established by using GT is not
mere taxonomy or ‘‘set of themes’’, but rather a cohesive set of
constructs and relationships describing the studied phenomenon.

An overview of the GT research process followed in this study
is depicted in Fig. 1. It starts with a bootstrap question which
drives the whole study and reads as follows.

Which architectural design decision do you regret the most to-
day?

Then, the method is based on the following concepts:

A Theoretical Sampling. New data is collected iteratively by
purposely identifying current gaps and/or unsaturated cate-
gories of the theory. Theoretical sampling guides the selec-
tion of new data sources (e.g., participants), and the data to
be collected (e.g., by generating iteratively interview ques-
tions).

B Coding. Incoming data is processed by subdividing it into
incidents (e.g., single lines of text, or paragraphs), and sub-
sequently labeling the incidents with analytical codes sum-
marily expressing their semantic meaning. Codes are then
compared and further analyzed by considering their prop-
erties in order to infer theoretical concepts and categories
of the emerging theory.

2

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Fig. 1. Overview of the grounded theory research method (A - H), evaluated via focus groups (I).

C Theoretical Sensitivity. The data gathering and analysis
processes are guided by theoretical sensitivity. This concept
refers to the creative ability of the researcher, and guides
the theoretical sampling, conceptualization of incidents, and
identification of relations between concepts.

D Memoing. Throughout the entirety of a grounded theory
study, memos (e.g., textual notes, sketches, diagrams) are
taken. Memos are used to keep track of emerging con-
cepts/categories, the relations between them, and poten-
tial gaps in the theory. Memos are constantly compared to
the emerging theory and new incidents, in order to ensure
that the categories best fit the underlying data. This latter
process is referred to as memo sorting (or theoretical sorting).

E Constant comparison. Throughout the entirety of the study,
all artifacts (incidents, codes, concepts, categories, and
memos) are constantly compared and updated. This process
is executed to ensure that the emerging theory is cohesive,
and is coherent with the underlying data in which it is
grounded.

F Theoretical Saturation. The data collection and analysis
process terminates once the categories become saturated,
i.e., when adding new data does no longer result in an
update of the established theory.

G Literature Review. In GT studies, a comprehensive review
of the literature is commonly postponed till after the estab-
lishment of the theory. Limiting the researcher’s exposure
to the literature is crucial to ensure that the emerging the-
ory is grounded in the collected data, and is influenced as
little as possible by preconceptions and already established
concepts.

To date, three prevailing versions of GT can be found in the lit-
erature, namely Classic (or Glaserian) GT, Straussian GT, and Con-
structivist GT. They mainly differ in three aspects, namely philo-
sophical point of view (objectivism, pragmatism, and social con-
structionism, respectively), coding procedures (open-selective-
theoretical coding, open-axial-selective coding, and initial
-focused-theoretical coding), and role of the literature (while all
stances acknowledge the general guideline presented in G , they
differ in other related details, as further discussed in Kenny and
Fourie, 2015).

2.2. Grounded theory design and execution

For this study, we adopted the classic ‘‘Glaserian’’ method
(Glaser and Strauss, 1967), and we conformed to it throughout
the whole study, from data collection, to data analysis and syn-
thesis, with the exception of our adoption of a different ‘‘coding

family’’ than the ones suggested by Glaser (2005), as explained
in Section 2.2.2. In divergence to the other GT stances, during
the analysis process of the method described by Glaser (2005),
a ‘‘core category’’ is established. The core category captures the
most variation in the data (Glaser, 1978b) while addressing the
main concern of the study participants (see item H of Fig. 1 to
position the discovery of the core category within the research
method of this study.) The ‘‘Glaserian’’ GT method provided us
with the ability to gain a fresh and independent viewpoint on
ATD, by letting concepts emerge from the experience of our
participants, rather than from preconceived views of researchers.
The first author was not too immersed in the technical debt world
prior to this study, and avoided doing an extensive review of
the literature on ATD prior to the data analysis, thus minimizing
possible confirmation biases, and improving his ‘‘theoretical sen-
sitivity’’ (Glaser, 1978a). As prescribed by Glaser (Glaser, 1992),
we delayed this review of the literature after our theory emerged,
in order to avoid the influence of existing concepts on the theory.
Prior to starting our investigation, we studied the fallacies and
guidelines for grounded theory in software engineering research
presented by Stol et al. (2016), in order to avoid common pitfalls,
and ensuring the soundness of our methodology throughout the
study. The investigation, including data collection, data analysis,
and reporting, lasted approximately 6 months.

2.2.1. Grounded theory data collection
To collect data, we conducted semi-structured interviews with

industrial practitioners. Participants were recruited first by con-
venience and then by following theoretical sampling: we con-
tacted initial participants within our personal network, and then
selected further based on gaps in the emerging theory, or to
investigate unsaturated concepts. This lead us to interview 18
experienced practitioners, with a mean industrial experience of
17.5 years, from 14 distinct companies in different industrial
domains. We identified via theoretical sampling senior technical
leaders as best fitted participants for data collection, given their
hands-on experience on a vast range of ongoing (and concluded)
long-lived software projects. Table 1 presents an overview of the
participant demographics. Interviews lasted approximately 1 h
and were conducted face-to-face at the practitioner’s workplace,
or for a few via Skype video-calls when it was not possible to
meet in person due to geographic distance.

As the emerging theory should guide the sampling process,
we solved the ‘‘bootstrap problem’’ (Adolph et al., 2011) of GT
by starting our first interview with the bootstrapping question
described in Section 2.1. Then, the other interview questions
emerged iteratively by following theoretical sampling, in order

3

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Table 1
Grounded theory participant demographics.
Id Role Ex Domain CS CId
P1 Senior Vice-President of SE 21 Banking S C1
P2 Software Staff Engineer 17 Telecom M C2
P3 Senior Director of SE 20 Enterprise software XXL C3
P4 Chief Technology Officer 14 Financial services M C4
P5 Senior Software Engineer 22 Health L C5
P6 Senior Software Engineer 8 Software tooling M C6
P7 Senior Software Engineer 18 Software tooling M C6
P8 Senior Software Engineer 23 Software tooling M C6
P9 Vice-President of Product 15 Data analysis M C7
P10 Senior Software Engineer 12 Software tooling M C6
P11 Senior Director of Technology 26 Data technologies M C8
P12 R&D Director 27 Enterprise software L C9
P13 Senior Software Engineer 14 Software tooling M C10
P14 Senior R&D Manager 16 Enterprise software L C9
P15 Chief Software Architect 11 Cloud services M C11
P16 Chief Technology Officer 12 Consultancy S C12
P17 Co-Founder 33 Consultancy XS C13
P18 Founder 22 Mobile applications XS C14

Id: Participant identifier; Role: current role of participant; Ex: industrial experience (in years);
CS: company size (XS < 20; S < 100; M < 500; L < 5K; XL < 10K; XXL > 10K); CId: Company identifier.

to let participants express their main concerns on ATD in their
own words. Specifically, the data collection was conducted in
the form of ‘‘guided conversations’’ (Rubin and Rubin, 2011), i.e.,
in the form of unstructured questions, formulated to investigate
unsaturated concepts emerging in our theory, or gain further
details on concepts described by the participants during the in-
terview. As advised by Rose (1994), during the interviews we
refrained to influence the scope or depth of the responses, as
doing so could have influenced the data collected, and lead to the
inclusion into the theory of preconceptions of the researchers on
the topic of ATD. We deemed the use of unstructured interviews
to collect data as best fitted for our GT investigation. In fact,
unstructured interviews allowed respondents to use their own
way of defining the world, by assuming that no fixed sequence
of questions is suitable for all respondents, enabling participants
to raise considerations the interviewer did not consider (Morse,
1994).

In addition to the unstructured questions, we also utilized a
predefined set of demographic questions to collect data on the
professional background of participants, such as current role, and
years of industrial experience (see Table 1).

Interviews were audio-recorded and transcribed manually by
following the denaturalism approach, that is, grammar is cor-
rected, interview noise (e.g., stutters) is removed and nonstandard
accents (i.e., non-majority) are standardized, while ensuring a full
and faithful transcription (Oliver et al., 2005).1

The data collection terminated once we reached theoretical
saturation, that is, when components of our theory are well sup-
ported and new data is no longer triggering theory revisions or
reinterpretations (Glaser, 1978a). Fig. 2, which displays the slow
increase of cumulative codes w.r.t. the number of participants,
shows that we have achieved this theoretical saturation around
participant number 16.

2.2.2. Grounded theory data analysis
We followed Glaser’s grounded theory data analysis and syn-

thesis processes to create our theory: open coding, selective
coding, and theoretical coding (Glaser and Strauss, 1967; Glaser,
1978a). Specifically, we examined the whole body of text tran-
scripts, subdivided them into separate incidents

1 An initial ad-hoc automated solution resulted to be too literal, e.g., by
including repeated portions of sentences, inconclusive sentences, etc., leading
to lengthy transcripts, which would have impacted negatively the subsequent
data analysis.

Fig. 2. Cumulative unique number of codes per participant, showing theoretical
saturation.

(Glaser and Strauss, 1967), and labeled them with codes to let
the theory concepts emerge. When possible, codes are generated
by directly quoting the incident (e.g., see [S-Q1]). Otherwise, ‘‘syn-
thetic’’ codes summarizing the semantic meaning and emerging
concept of the incidents were created by the authors. Subse-
quently, concepts were clustered into fundamental descriptive
categories, which guided the future data collection. Finally, we
established the conceptual relations between the different emerg-
ing categories, leading to the formulation of our theory. We
express the relationships between codes as hypotheses via a
UML model to precisely describe the relations of different nature
emerging between the categories of our theory (see Fig. 6).

Differently from Glaser, who used ‘‘concept’’ and ‘‘category’’
as synonyms, we associate to such terms two distinct levels of
theoretical granularity, as also done in numerous studies utilizing
GT, e.g., Adolph et al. (2011) and Hoda and Noble (2017). When
required, we use an additional abstraction level, referred to as
Type, which aggregates distinct concepts of similar nature in a
mid-ranged level of abstraction. The identification of types was
conducted during the theoretical coding phase, when concepts
were taken into account. Specifically, when similar characteristics
shared among concepts of the theory emerged in the memos, a
new type was instantiated, according to the identifying charac-
teristic shared among the underlying concepts. In summary, our
theory entails four different levels of abstraction, ranked from
lower to higher abstraction level: code, concept, type, and category.
An example of such abstraction hierarchy, regarding the concept
of symptom is reported in Fig. 3.

During the entirety of the coding procedures, we made use of
memoing (Glaser and Strauss, 1967). We created textual memos
to elaborate concepts (i) related to single incidents (e.g., ‘‘This

4

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Fig. 3. Example of Abstraction Levels of the ATD Theory.

Fig. 4. Example of memo used to gain a summary overview of the codes
emerging from a single interview.

incident exemplifies the impossibility to implement new functional-
ity due to ATD’’) and (ii) orthogonal to multiple incidents (e.g.,
relations between concepts or categories, such as ‘‘Developer’s
intuition can lead both to ATD identification and prioritization’’). In
addition, we adopted word clouds to gain a concise overview of
the codes emerging from each interview. An example of these
type of memos is shown in Fig. 4.

As described in Section 2.2.1, we analyzed our data immedi-
ately and continuously, using simultaneous data collection and
analysis, guided by theoretical sampling. Additionally, during data
analysis, we constantly compared our data, memos, codes, and
categories, in order to identify and keep track of common notions,
topics, and patterns, as they emerged. Similarly, we continu-
ously sorted our memos to evolve the emerging concepts and
categories to best fit our codes, leading to the formulation of
a substantive, cohesive theory. We performed continuous com-
parison until additional data being collected did not add new

knowledge about the categories, i.e., until we reached the state
of saturation (see Section 2.2.1).

It should be noted that numerous concepts included in our
theory possess a multifaceted nature. For instance, by considering
the concept of ‘‘technical debt’’ itself, we can observe how it can
be both a cause, leading to the introduction of additional debt,
and a consequence, e.g., of pre-existing debt which is accumulat-
ing. By following GT principles, we coded multifaceted concepts
according to the facet which was deemed most important by
participants. This process was adopted in order to ensure the
emergence of concepts from the data gathered, rather than from
preconceived knowledge of the authors. Coding incidents via
this strategy allowed the emergence of issues of importance to
the participants to be exposed from their own point of view,
systematically uncovering patterns of which participants might
even not be aware of Engward (2013).

Four researchers were involved in both the data collection and
analysis phases, where the first author carried out the coding,
memoing, and analysis processes, while the others collabora-
tively analyzed and reviewed the obtained results through several
iterations.

2.3. Theory evaluation via focus groups: Design and execution

In order to evaluate and refine our theory after its emergence,
we applied the focus group method (Kontio et al., 2008) (item
I in Fig. 1). This step of our research consisted of presenting
the theory to groups of industrial practitioners, and gathering
feedback based on their discussion to evaluate and complement
the theory. Specifically, the evaluation of the theory was con-
ducted by following the criteria characteristic of the Glaserian
GT method (Glaser, 1978a), as we employed such stance of GT
to construct our ATD theory, namely:

C1: the categories of the theory fit the underlying data;
C2: the theory is able to work (i.e., explain and reason about ATD

related phenomena);
C3: the theory has relevance to the domain (i.e., development

and management practices of large and long-lived systems);
C4: the theory is modifiable as new data appears.

We adopted the focus group method to evaluate the theory
as it enabled us to effectively and efficiently gain feedback on
the theory by allowing participants to compare their experiences,
jointly discuss opinions on it, and release potential inhibitions
with respect to the discussed phenomenon.

As shown in Fig. 5, each focus group session was organized in
five distinct steps. During Step 1, the purpose of the focus group
was presented, and some background knowledge on architectural
technical debt was given, to set a general common ground on
the topic guiding the subsequent discussion. Additionally, during
this first step, a round of introduction among the participants
and moderators was conducted, to give participants confidence
to speak up, provide context for the experiences described by
them in the subsequent steps, and foster group dynamics. In the
second step, a high-level overview of the theory, presenting the
categories of the theory and their relations (see Fig. 6), was in-
troduced. Then, a deep dive into each category of the theory was
conducted. This process consisted in comprehensively presenting
each category, its related types, and concepts (Fig. 5, Step 3a),
followed by a discussion among the participants about the topic
presented (Fig. 5, Step 3b). During the discussion of each category
(Step 3b), the conversation was guided by the moderator to assess
if (i) the theory reflected the experience of the practitioners, (ii)
any prominent information was missing in the theory, and (iii)
the theory contained new or unexpected categories, types, or
concepts. Step 3a and Step 3b were repeated for each category of

5

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Fig. 5. Main steps of the focus group sessions.

Table 2
Focus group participant demographics.
FG Id Role Ex Domain CS CId
FG1 P19 IT Architect 15 Banking XL C15
FG1 P20 Principal Architect 26 Consulting L C16
FG1 P21 Director Enterprise Architecture 27 Airline industry XXL C17
FG1 P22 Vice-President 34 Consulting XXL C18
FG2 P23 ICT Business Manager 25 Finance L C19
FG2 P24 Product Owner, Integration Architect 13 Airline industry L C20
FG2 P25 Enterprise Architect 31 Banking XL C15
FG2 P26 Enterprise Architect 36 Finance M C21
FG2 P27 Director 25 Consulting XS C22

FG: focus group identifier; Id: Participant identifier; Role: current role of participant; Ex: industrial experience (in years); CS: company size
(XS < 20; S < 100; M < 500; L < 5K; XL < 10K; XXL > 10K); CId: Company identifier.

the theory. After all categories were covered, i.e., the theory was
discussed in its entirety, participants were given the possibility to
express further remarks on the complete theory (Fig. 5, Step 4).
While Steps 3-4 focused primarily on assessing the GT evaluation
criteria C2 and C4 (i.e., the theory works in practice, and is mod-
ifiable according to new data), the last step of the focus group
(Fig. 5, Step 5) was designed to assess the GT evaluation criterion
C3, i.e., if the theory is relevant to action in the area of ATD, by
focusing on the emerged core categories and concepts (Lomborg
and Kirkevold, 2003). Specifically, this last step consisted in a
discussion among participants about the relevance of the theory
they perceived, as well as the potential usage scenarios of the
theory they envisioned. In order to prepare participants, and
ensure that they were well informed of the focus group goal and
content, a document describing the theory and the structure of
the focus group was provided to them two weeks prior their
session.

Table 2 gives an overview of the focus group participant de-
mographics. The participants of each focus group session were
selected by ensuring a balance of commonalities and differences
in their expertise, to ensure a range of variegated opinions, while
sharing the common background knowledge required to discuss
and compare experiences and opinions. Like for the grounded
theory participants, we selected for the focus groups practitioners
expert in the area of software architecture, as a deep knowledge
of the ATD phenomenon is a crucial characteristic, especially
in order to get insightful feedback on the ATD theory. In total,
9 participants were identified and assigned to one of the two
separate focus group sessions used for this study. We opted
to conduct two separate sessions, as this allowed us to avoid
flat group dynamics, while ensuring that each participant had
sufficient time to express their opinion (Bryman, 2001). Focus
group sessions lasted approximately 1.5 h, and were conducted
virtually.

In the following section, we document the theory resulting
from the execution of the GT method, refined with the feedback
from the focus groups. Further considerations on the focus group
evaluation are reported in Section 5.

The emerging theory is the product of both grounded theory
and focus groups methods. For the sake of traceability, concepts
included in the theory due to discussions emerging in a focus
group session are denoted with a characterizing icon ().

3. A theory of architectural technical debt

Fig. 6 gives an overview of our grounded theory on Architec-
tural technical Debt (ATD). In this section we describe the cate-
gories emerging from our data, which constitute the foundation
of our grounded theory on architectural technical debt.

The system category represents the system being developed.
In this research we follow the definition of ‘‘software-intensive
system’’ as defined in the ISO/IEC Standard 42010, i.e., ‘‘any sys-
tem where software contributes essential influences to the de-
sign, construction, deployment, and evolution of the system as a
whole’’ (ISO/IEC/IEEE, 2011). A system possesses a certain amount
of architectural technical debt.

The ATD category embodies the entirety of the technical debt
incurred at the architectural level in a software-intensive system.
Regarding the definition of technical debt, in this research we
follow the 16162 definition, i.e., ‘‘a collection of design or imple-
mentation constructs that are expedient in the short term, but set
up a technical context that can make future changes more costly
or impossible’’ (Avgeriou et al., 2016).

In addition to reporting the categories of our theory, in this
section we also discuss the relations emerged between the dif-
ferent categories. In line with the grounded theory approach,
this enables us to both present comprehensively the emerging
theory, and offer explanations underlying ATD related phenom-
ena (Glaser, 1978a; Strauss and Corbin, 1998).

At the core of our theory lies ATD item, i.e., the category that
embodies the instances of ATD residing in a software-intensive
system (for an in-depth description of this category, see Sec-
tion 3.1). The identification of the ATD item as the core category of
our theory can be observed from the numerous relations between
this category and the other ones reported in Fig. 6.

At the root of each ATD item lies one or more cause. Each
cause can generate one or more items (see Section 3.2. From our
data time pressure and business drive are the main causes leading
to the generation of ATD items:
‘‘The plan is one thing, but it’s not working now, we have to adapt
quickly. Whether or not we meet the coding rules, I proceed. I don’t
care. Something is broken, nobody cares how nicely something fits
the architecture, I care if it’s gonna break our product. That is not a
computer science issue, it’s a business one’’. - P8, Senior Software
Engineer [R-Q1]

6

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Fig. 6. Core categories of the ATD theory and their relations (Verdecchia et al., 2020a).

As causes can generate one or more ATD items, so ATD items
can lead to one or more consequences, e.g., reduced development
velocity, higher maintenance cost, impossibility to implement
new functionality (see Section 3.3). Additionally, in contrast to
the relation between Cause and ATD item, ATD items can also be
‘‘dormant’’, i.e., the items are present in the system, but do not
lead to any immediate consequence:
‘‘There was a developer who wrote a component that nobody knows
how it works, and so we are all afraid of touching it. It works well
for now, but if something stops working, or we have to touch that,
for example to implement some new functionality, we could have a
problem’’. P12, R&D Director [R-Q2]

Consequences can display one or even multiple symptoms, e.g.,
recurrent customer, performance, and/or development issues. In
this case, a consequence could also not display any symptom,
either because the related ATD item is ‘‘dormant’’, or because the
observed symptoms are not sufficiently distinct to establish the
relation:
‘‘To be honest? I have a bit of a vibe. As a product manager, I’m
pretty like face-to-face and hands on, and I kind of just gauge the
winds on the face of developers’’ P9, Vice-President of Product
[R-Q3]

Symptoms point to one or more ATD items, i.e., observing
symptoms displayed by a consequence can lead to the identifica-
tion of one or more ATD items. Often, a multitude of symptoms
point to a single, widespread, ATD item:
‘‘You do things like: ‘‘How are your bugs?’’, ‘‘How is your perfor-
mance?’’. All of those things tell you something. They are indicators.
Like code coverage, it tells you something, but does it really tell
you anything? But it’s just one big underlying problem!’’ P3, Senior
Director of Software Engineering [R-Q4]

Nevertheless, as reported in quote [R-Q3], consequences of
ATD items can also not display any clear symptom, making the
discovery of related ATD items harder.

Each ATD item can affect one or more artifacts, e.g., soft-
ware components, test suites, software development tools, and/or
documentation:
‘‘We reached the point where it [architecture] became quite brittle,
and it was also quite difficult to change the test suite, because the
architecture was so complex...so many connectors...and the variance
of those connectors!’’ P7, Senior Software Engineer [R-Q5]

Similarly, an ATD item can reside in one or more artifacts, i.e.,
it can be present simultaneously in various artifacts of different
nature, or even occur in the relation established between two or
more artifacts.

ATD items can be addressed via one or more ATD manage-
ment strategies, e.g., via systematic time allocation, large-scale
rewrites, and/or carry out opportunistic patching (see Section 3.5).
Additionally, it is also possible to address multiple ATD items with
a single management strategy (typically via rewrites):

‘‘Usually, I just do a gut evaluation: if there is a large disconnect
between what the system does and what it is supposed to achieve,
usually it is a big indicator that there are many problems, and we
need a rewrite.’’ P1, Senior Vice-President of Engineering [R-Q6]

ATD management strategies can be guided by a prioritization
strategy, i.e., a strategy with which ATD management tasks are
prioritized along with other development tasks, such as bug fixes,
and implementation of new functionality (Kruchten, 2008) (see
Section 3.8). Often, prioritization processes are not carried out
systematically, and can consider one or multiple management
strategies depending on the addressed ATD item(s):
‘‘Given three weeks of development time, which architectural debt
should we pay down? I would say, we’re not doing it system-
atically, but we’re probably not coming out with two very dif-
ferent answers. If something is really painful, we would know’’.
P9, Vice-President of Product [R-Q7]

ATD management strategies can also be supported by tools,
e.g., static analyzers and linters, such as Clang Tidy2 and Sonar-
Qube.3 Nevertheless, only in unique instances practitioners used
tools to detect architectural debt issues, such as component de-
pendency anti-patterns via NDepend.4 In most of the cases, ATD
management strategies are not supported by any tools, possibly
due to their perceived immaturity or usefulness:
‘‘The really expensive type of debt [ATD], I have not seen a tool which
is able to detect that. . . ’’ P10, Staff Software Engineer [R-Q8]

An emerging category which is directly related to the ATD
item category is person. The relation between person and ATD
items is of a multifaceted nature, as people’s personal drive, skill
set, and awareness (among other concepts, see Section 3.9) can
highly influence ATD items, from their establishment to their
prioritization, and resolution.

ATD can lead to the communication of concepts related to
it among people working on a software-intensive system where
ATD is present. This constitutes another emerging category of our
theory, it is reported in Section 3.10.

Numerous relations of secondary nature between categories
were also identified in our theory. To maintain the documenta-
tion of our theory compact, such complementary relations are
discussed through the support of cross-references in Sections 3.1–
3.10, further relating concepts and categories via exemplifying
incidents (e.g., [S-Q3] not only discusses an ATD symptom, but
also hints to the inability of solving complex ATD issues via
the described ATD management strategy, namely opportunistic
patching).

2 https://clang.llvm.org/extra/clang-tidy.
3 https://www.sonarqube.org.
4 https://www.ndepend.com/.

7

https://clang.llvm.org/extra/clang-tidy
https://www.sonarqube.org
https://www.ndepend.com/

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

3.1. ATD items

An overview of the ATD items residing in software-intensive
systems which emerged in our theory is depicted in Fig. 7. The
relation between elements of Fig. 7 has to be interpreted as a ‘‘is
a type of’’ relation (same applies for Figs. 8–11, and Fig. 14). The
identified items belong to one of three mutually exclusive types,
namely framework ATD, process ATD, and implementation ATD.5
Framework ATD items are specific to the adoption and adaptation
of software frameworks in software projects. Process ATD items,
instead, regard the high-level processes of architecting and man-
aging software-systems, with particular emphasis on their evo-
lution. Finally, implementation ATD items focus on lower-level
implementation details which, due to their widespread impact on
the maintenance and evolution of a software-system, become of
architectural relevance. The reminder of this section is dedicated
to the description of each concept belonging to the ATD Item
category.

Fig. 7. Overview of emerging ATD items.

3.1.1. Framework ATD items

Unfitted Framework. One of the most prominent ATD items
related to software frameworks regards the adoption of a frame-
work which is misaligned with either the currently implemented
architecture or its requirements. This ATD item is often caused by
a lack of comprehensive trade-off analysis of alternative frame-
works. As P14 described:
‘‘We had a discussion on how to build the new front-end in React.
At the time there were reasons that supported our decision, but later
on we saw that we didn’t evaluate all the options’’. P14, Senior R&D
Manage [ATDI-Q1]

This type of item is often incurred inadvertently. Addition-
ally, its consequences mostly manifests themselves only over
a prolonged period of time, increasing the effort required to

5 In the next figures, categories are shown in bold, types in italics, and
concepts as plain text.

maintain and evolve an architecture containing an inadequate
framework, potentially embedding the framework deeper into
the architecture. As pointed out by P1:

‘‘The technology decision sounded great in theory, but in practice
it was a real pain. At the time it felt like a good idea, but in the
long run, the cognitive overhead to deal with that solution led to
a lot of pain, bad code, bugs, and additional effort’’. P1, Senior
Vice-President of SE [ATDI-Q2]

Re-inventing the Wheel. This ATD item refers to ad-hoc compo-
nents developed in-house, which are chosen over already avail-
able components with similar functionalities (e.g., components
available as open source software):
‘‘We basically built our own thing . . .why would we build our own
persistence library? That doesn’t make sense! It’s just silly!’’ P11,
Senior Director of Technology [ATDI-Q3]

As noticeable in the previous quote, re-inventing the wheel
ATD items are particularly evident when generic functionalities,
widely available as open-source software, e.g., the mentioned
persistence library, are re-implemented in-house.

In addition to the resources required to implement already
available components, drawbacks include lower implementation
quality, additional maintenance cost, and lack of documentation:
‘‘We built our own thing . . . and now it’s hard to maintain. And now
that we have got to build on top of it, people are getting tired’’ P8,
Senior Software Engineer [ATDI-Q4]

Ad-hoc components are often chosen due to the perceived
velocity of developing a new component instead of getting ac-
customed to, and adapting, an existing one. Additionally, as fur-
ther discussed in Section 3.9, personal drive of developers can
influence this decision:
‘‘I thought to be smarter, but I was not . . . in the long run, off-the-shelf
solutions make people faster in ramping up, even if you [just] have
to adapt them’’. P3, Senior Director of SE [ATDI-Q5]
‘‘People had NIH-Syndrome, not-invented-here [laughs]’’. P10, Se-
nior Software Engineer [ATDI-Q6]

Framework Lock-in. Related to the previous debt item, ATD
can arise due to software frameworks which, due to their deep
embedding into the architecture of a software-intensive system,
become very costly or even impossible to replace. This debt item
is often referenced as harmful if co-occurring with ‘‘dormant’’
ATD items [R-Q2], or if the lock-in is of technological nature
and unreliable (e.g., a third party has complete ownership of a
component and releases a breaking change). As described by P1:
‘‘Sometimes you make something overly-specific, lock in completely
into a specific library or technology. It’s about how able your system
is to change without crystallizing in design choices dictated by the
need of adaptation’’. P1, Senior Vice President of SE [ATDI-Q7]

An example of framework lock-in was provided by P11, re-
garding the data layer of a software-intensive system they worked
on. Specifically, during the evolution of their architecture, SQL
became deeply embedded throughout their system. As the system
grew in size, due to scalability concerns, the passage to a NoSQL
database was required. Nevertheless, as the architecture was
completely locked-in on SQL, the system had in the end to be
deprecated.

Superfluous framework. Due to its uncertainty, the process of
building up technical credit (see Section 3.9) can lead to the
achievement of the opposite of its goal, namely the introduction
of new ATD items. In relation to frameworks, efforts spent in
gaining technical credit can lead to the adoption of superflu-
ous frameworks. Superfluous frameworks are characterized by
often complex and hard to embed technology solutions, which
implement numerous functionalities that will never be used. P12
described one of such occurrences, referring to the adoption of
Apache Tomcat as web server environment:

8

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

‘‘In hindsight we didn’t need it. There was a lot of functionality we
could have used, but it was not useful, and in the end and we didn’t
use it. Wait till you need it, then worry about it. Thinking about it
now it was just overkill . . . there is no need to go for the moon when
you need to go into the sky’’. P12, R&D Director [ATDI-Q8]

The adoption of superfluous frameworks can be due to the in-
herent optimism bias characterizing developers (cfr. Section 3.9),
and the often misplaced assumption that more complex and
expressive solutions are generally better than simple ones. P1
recalled:
‘‘We thought the solution we chose was more expressive, so it should
be better. We assumed we could be able to deal with a more complex
thing at the time. We thought that more complexity and cognitive
load was something we could deal with’’. P12, Senior Vice-President
of SE [ATDI-Q9]

By considering the prior framework ATD items, we can ob-
serve how the adoption of a certain framework, the choice of
utilizing a (potentially unfamiliar) framework over one developed
in-house, and the level of embedment of a framework within a
software-intensive system constitute an act of balance. In fact, the
design decision behind the introduction of such items are not per
se suboptimal, but can nevertheless lead to ATD if the context of
a software-intensive system is not correctly interpreted, or if the
trade-off analysis such decisions entail are not analyzed with the
required care.

Framework not Up to Date. As emerging from discussions in
both focus groups, ATD can manifest itself in the form of frame-
works present in a software-intensive system which are not up
to date. This type of ATD item, referred in academic literature
as ‘‘technical lag’’ (Zerouali et al., 2018), arises when new ver-
sions of the used framework are released, but its update in the
system is delayed while continuing development activities on
an outdated version. The repayment of this ATD item is often
delayed until the framework inevitably needs to be updated, or
it is changed in its entirety (e.g., due to the deprecation of a
certain version/framework). As noted by P19, this ATD item is
often incurred deliberately, as its consequences are only seldom
understood in their entirety.
‘‘You see it [ATD] coming. You could change it [framework version]
before. But ‘‘it’s still working. . .why should I update my dependen-
cies?’’’’ P19, IT Architect [ATDI-10]

As noted in the second focus group, a prominent example of
not-updated frameworks are user interface frameworks, which
can lead to serious and widespread consequences if their update
is consistently neglected in time.

3.1.2. Process ATD items

Complex Problem, Simplistic Solution. Underestimating the
problem at hand, and adopting a simplistic solution to address
it, can lead to the implementation of architectural components
which not only are inadequate to support future requirements,
but are in some cases even unfitted to properly satisfy the current
ones. Such solutions, often caused by time pressure, are in many
cases swiftly replaced, making the initial investment required to
implement them almost vain. P7 described the presence of this
item as follows:
‘‘Changing the new component can be quite challenging, we always
have to make sure we don’t end up breaking all the edge cases which
are not considered. It can be quite brittle and so like I said, we can
end up kind of fighting with it. It might be difficult to evolve it to
suit our needs’’. P7, Senior Software Engineer [ATDI-Q11]

In a way, the forces leading to this ATD item can be considered
as opposite to those leading to the Superfluous framework ATD
item. Indeed, the former is rooted in the underestimation of the
problem at hand, whereas the latter is rooted in the anticipation
of a degree of complexity which is never needed.

An example of complex problem, simplistic solution was pro-
vided by P7, while describing the integration of a test suite into
a software development kit. The test suite was intended to test
the interface specifications of all new components of a certain
type, referred to as ‘‘connectors’’. Nevertheless, as this connectors
varied greatly in terms of functionality, the test suite developers
had to adhere to resulted to be a futile exercise. In fact, a large
number of corner cases were not considered in the test suite,
and developers discovered to ‘‘actively fighting it [test suite]’’,
trying to adhere to the generic test suite specifications, while
implementing the functionalities characterizing the components.

New Context, Old Architecture. Another ATD item that emerged
in our theory regards not paying continuous effort in keeping
the architecture of a software-intensive system aligned with its
context, leading to an outdated architecture. P12 argued:
‘‘If you do not adapt your architecture over time, that’s when you
end up with a big lump of problems. That’s were maybe we took
too long, 3-4 years passed before we decided that we had to take
the time to fix it [architecture]. And that’s a huge undertaking’’. P12,
R&D Director [ATDI-Q12]

Participants mostly reported to incur in this ATD item inad-
vertently. Nevertheless, this item can also be established deliber-
ately, e.g., if driven by a business strategy:
‘‘The business was to keep the costs down and make as much profit as
possible, and after 8-10 years, the architecture was seriously showing
its age . . . ’’ P11, Senior Director of Technology [ATDI-Q13]

By considering the example regarding SQL provided for the
framework lock-in ATD item, we can notice how locking-in a spe-
cific framework can make a software-intensive system difficult
to evolve, leading to an architecture which cannot keep the pace
with its evolving context.

In this study, we noticed that the time required for an ar-
chitecture to become misaligned with its context varies greatly
according to the specific case considered, as it depends on the
pace at which the context of a software-intensive system evolves.
For example, a software-intensive system developed for the bank-
ing domain (Almonaies et al., 2010), may need to evolve at a
much lower pace than mobile apps, which are generally char-
acterized by a rapidly changing ecosystem (Verdecchia et al.,
2019).

The Minimum Viable Product (MVP) that Stuck. A particular in-
stance of new context, old architecture emerging in our theory is an
MVP that, while intended as a temporary ‘‘bare-bones’’ solution,
evolved into the architectural foundation of a system, without
properly considering the architectural implications of adopting
an immature artifact as architectural basis. This ATD item often
happens in start-up environments, or during the implementa-
tion of a new architectural component, and is often related to
time pressure, lack of architectural awareness, and uncontrolled
software evolution:
‘‘It was an MVP solution that is still in place. And we were con-
stantly broadening the scope of the problem. So there was no longer
time to pay attention to the MVP, because not only the customers
had their defects, but we had also to constantly implement new
functionality. So for quite a long time, we just kept adding new func-
tionality, and this problem was never solved’’. P6, Senior Software
Engineer [ATDI-Q14]

Examples of MVP that stuck provided by participants were
prototypes of a new architecture, immature R&D components,
and experimental development branches, which were adopted
(deliberately or inadvertently) as architectural foundations of a
software-intensive system.

9

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

3.1.3. Implementation ATD items

Segment of code affected by TD. Rather than originating from
a single, important, architectural design decision, ATD can arise
from small details regarding the implementation of architectural
components, and the relations between them which, by accumu-
lating and worsening over time, deteriorate the architecture of
a software-intensive systems. This type of item often manifests
itself as dependency issues, such as architectural tangles, poor
separation of concerns, and/or tightly coupled architectural com-
ponents. As described by P13, due to the reach of this type of
items, it might be difficult to locate their exact root cause:
‘‘You would say: ‘‘Oh, we know what is wrong with this functionality,
it’s in this one place’’, but then there is also this other five places that
you have to touch, and you end up not really knowing where the
problem is’’ P13, Senior Software Engineer [ATDI-Q15]

Relating to this ATD item, numerous participants mentioned
an ‘‘architectural debt halo’’, i.e. a portion of the architecture with
hard to define boundaries, where hard to locate debt resides. In
P2 words:
‘‘It takes some awareness to understand you are going down a rabbit
hole. But when you realize it, you can just change a bit in the
periphery, what you can see, you fix a bit of the halo of badness’’.
P2, Software Staff Engineer [ATDI-Q16]

Prominent examples of this ATD item mentioned by partic-
ipants were architectural components implemented under par,
e.g., characterized by unsound use of access modifiers, ambigu-
ous naming conventions, high cyclomatic complexity, and high
cognitive complexity.

The Workaround that Stayed. ATD can be introduced in a
software-intensive system as a temporary workaround, imple-
mented to bypass some architectural constraints, which over time
becomes deeply embedded into the architecture. As described by
P8 in [R-Q1], such workarounds can be brought in deliberately,
for the sake of development velocity, or triggered by unexpected
context changes. Nevertheless, the awareness of the progressive
consolidation of the workaround into the architecture can be
inadvertent:
‘‘somehow we ended up with three pathways through the code, first
we had one, then two, and so on . . . there was duplication among the
three, but also separate pieces to each one, that stuff was not isolated
nicely . . . ’’ P13, Senior Software Engineer [ATDI-Q17]

Consolidated workarounds can become so embedded into an
architecture that, while their consequences can be evident, it is
no more worthwhile fixing them:
‘‘. . . at this point . . . I think it’s been deemed too expensive at best to
change that [workaround], relative to the other business priorities
we have’’. P7, Senior Software Engineer [ATDI-Q18]

Trial-and-error Design. If an insufficient amount of resources is
invested in carefully designing a component, an implementation
of it can be established by iteratively fixing a suboptimal version
of it. This type of ATD item manifests itself as a component (or
a set thereof) which has to be continuously adapted in order to
satisfy the current and new requirements. P2 describes:
‘‘Trying out and then looking back at the component, you can imme-
diately see if something isn’t right, for example if you have a lot of
code to do something that should be simple. And then we can say,
we passed the bad, I understand now what I have to do in version
2. But then the process repeats itself’’. P2, Software Staff Engineer
[ATDI-Q19]

The example considered in the previous quote regarded an
interface of an embedded system, enabling a software component
to communicate with its underlying hardware. While similar
interfaces were developed in the past, in order to discard legacy
implementations, a new interface was developed from scratch.
Such interface, retouched multiple times as old requirements

were rediscovered, resulted in a trial-and-error design, accom-
modating requirements incrementally, without any structured
upfront design.

3.2. Causes

In this section we present the root causes of ATD items emerg-
ing from our data. Specifically, we identified two separate type of
causes mentioned by the participants, namely external and inter-
nal causes. External causes regard the influence of the context of
software-intensive systems on their ATD. Internal causes instead
embody factors inherent to the development and maintenance of
the system. As noted during both focus groups, an external cause
often leads to one or more internal causes, i.e., a stimulus pro-
vided to a software-intensive system in the form of an external
cause, may trigger one or more causes internally. An overview of
the ATD causes emerging in our theory is depicted in Fig. 8.

Fig. 8. Overview of ATD causes.

3.2.1. External causes

Time Pressure. 16 of the 18 participants acknowledged time
pressure as the main cause of ATD. P11 summarized the concept
of time pressure of software development, which most of the
participants reported, as follows:
‘‘In a product you need to hit quarterly targets and what not, always
be on the treadmill, getting things done’’. P11, Senior Director of
Technology [CA-Q1]

P10 further details this concept by talking explicitly about the
relation between ATD and time pressure:
‘‘The cause [of ATD] is the same as usual, save time!’’ P10, Senior
Software Engineer [CA-Q2]

As can be evinced also from [R-Q1], under time pressure,
architectural quality is often sacrificed. This is a recurrent theme
across all participants. As P2 noted:
‘‘When time becomes tight, the first thing that will fall out is cleaning
up the architecture’’. P2, Software Staff Engineer [CA-Q3]

The rationale behind the sacrifice of architectural quality for
the sake of velocity, has to be attributed to the large amount of

10

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

resources often involved in architectural changes. This concept is
described by P13 as follows:
‘‘One thing is always time, it’s quicker to do feature development
instead of doing architectural changes’’, P13 - Senior Software
Engineer [CA-Q4]

From our data we observe that developers often take archi-
tectural shortcuts and accumulate ATD when the time pressure
is high, under the (often incorrect) assumption that these short-
comings will be dealt with at a later stage, as further detailed in
Sections 3.8 and 3.9.

Misalignment Context-Decision. If the context of a software-
intensive system is not clearly understood, suboptimal architec-
tural decisions can be taken inadvertently. Such decisions might
lead to the evolution of architectures, not by considering their
real context, but a hypothetical, building on the existing debt. P8
recalled one of such instances:
‘‘The abstractions we used didn’t really match reality. We thought to
know how things had to be done, but thinking back at it. . .we were
completely off!’’, P8 - Senior Software Engineer [CA-Q5]

Clearly understanding the context of a software-intensive sys-
tems results to be one of the paramount factors to mitigate the
establishment of architectural debt items:
‘‘It’s about the semantics: only if you really know what your concepts
are you can create a good architecture. That’s why I think the
architecture should deeply reflect the requirements, the semantics,
the domain that your software system supports’’., P17 - Co-Founder
[CA-Q6]

Passing of time. Even if the context of a software-intensive
system is well understood and all correct architectural decisions
are made, passing of time will naturally and unavoidably build
up ATD. As noted in both focus groups, ‘‘aging technologies’’ is the
most common, and inevitable, manifestation of passing of time as
a cause of ATD. A participant of the second focus group explained:
‘‘Regardless of the effort spent in maintenance, systems are aging.
Even if you consider all potential concerns, the environment changes,
and some of the correct architectural decisions you took in the past
are just not valid anymore’’. P25 - Enterprise Architect [CA-Q7]

The passing of time cause is related in our theory to specific
types of ATD items, namely new context, old architecture, and
not updated framework: as components of a software-intensive
system slowly become outdated, the architecture further and
further gets misaligned with its context, till a maintenance ef-
fort is required to pay back the ‘‘naturally’’ accumulated debt,
e.g., by changing a certain architectural component, or upgrading
a framework to its latest version.

Business pressure. In order to meet requirements of stakehold-
ers, or fulfill commitments taken with them, architectural de-
cisions can be taken, even if the decisions entail undertaking
a considerable amount of ATD. Such type of tactical decisions,
often taken by business departments, prioritize the achievement
of a goal over the potential consequences in a software-intensive
system, either because the consequences are not well understood,
or no other option is available. P23 described:
‘‘Business owners do not know how to develop software properly,
they push certain decisions because they have made promises and
committed on a result, they want to get there, even by making
compromise because the route to do it nicely is not possible. . . and
this choices create lots of debt, as they do not mind how it is
designed’’. P23 - ICT Business Manager [CA-Q8]

3.2.2. Internal causes

Lack of Knowledge. In the presence of an unclear architecture,
developers often introduce ATD (either inadvertently or delib-
erately), in order to save the time that should be invested in
understanding comprehensively the architectural details.

This situation, often embodied as a lack of, or disorganized, ar-
chitectural documentation, was described by many participants,
including P12, who explained:
‘‘When you are working on an older system, you have lots of con-
straints that you have to know about, and they are often not well
documented, and so you don’t know what things will come in your
way, things that you have to work around. You are constantly
extinguishing little fires to figure out what is going on, it takes a
while . . . ’’ P12, R&D Director [CA-Q9]

In addition to the introduction of ATD, lack of architectural
knowledge can also lead to the obfuscation of ATD items, hence
hindering the awareness of the ATD present in a software-
intensive system. P2 describes:
‘‘There was no documentation or tests. You never really under-
stood if the code was intended like that, if it was intended that
way, or if it was just ‘‘I will get to this later’’’’. P2, Staff Software
Engineer [CA-Q10]

In both focus groups, participants highlighted that the lack of
knowledge leading to ATD does not have to be strictly architec-
tural: lack of context knowledge, standards, technology availabil-
ity, and company-wide progress awareness, are all instances of
lack of knowledge that may cause ATD.

Unsuitable Architectural Decision. ATD can arise by making in-
advertently an inappropriate, sub-optimal architectural decision.
Often, inadvertent design decisions leading to ATD are associated
to the lack of context awareness, which result in approximate
and/or ill-calibrated trade-off analyses. P14 described one of such
instances:
‘‘At the time there were reasons that supported our decision, but later
on. . .when we think back at it, we see that we didn’t evaluate all
options’’. P14, Senior R&D Manager [CA-Q11]

The magnitude of the ATD associated to unfitted decisions
varied greatly across participants, with some notable cases where
the impact on the success of a software product was enormous:
‘‘Making that decision didn’t seem important at the time, but we
should have considered the debt associated to it early on. For me,
it was a lack in understanding properly the context. . . the project
eventually got killed’’. P14, Senior Software Architect [CA-Q12]

Human Influence. A recurrent cause of ATD is the influence of
human factors on ATD. Under this category fall aspects related to
personal drive, such as the example reported in [ATDI-Q6] (in-
cluding lack of developer expertise) and cognitive biases (notably
the Dunning–Kruger effect Kruger and Dunning, 1999). Due to the
importance of this topic in our theory, we further discuss findings
related to human factors in Section 3.9.

Incorrect Implementation of Correct Architecture. From both
focus groups emerged that, when an architectural design decision
is not per se a direct cause of ATD, it is still possible to incur in
ATD if such design decision is not implemented correctly. The
consequences associated to this type of cause are often of severe
nature, as the divergence between designed and implemented
architecture leads to an unforeseen state of the system, under-
mining the tradeoffs considered when the design decision was
made. P25 concisely stated:
‘‘You can have a brilliant idea, but if it is not implemented
correctly, it can be just debt’’. P23, Enterprise Architect [CA-Q13]

Lack of Anticipation. Software-intensive systems need to con-
tinuously evolve in order to be aligned with their ever-changing
contexts. If an insufficient amount of effort is spent in under-
standing how a software system may need to be adapted in the
future, even an architecture which is well-fitted for its current
context, may lead to steep ATD as the architecture is required to
evolve. As discussed in the first focus group, characterizing, exam-
ining, and documenting anticipation can be an exceptionally hard

11

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

problem, as understanding the amount of required anticipation is
not possible. In P22 words:

‘‘This one [decision] is hard to take. How much anticipa-
tion? How much in the future you want to try to look?’’ P22,
Vice-President [CA-Q14]

According to the participants of both focus groups, ATD in-
troduced due to the lack of anticipation is often more evident in
organization where Agile development practices are in place, as
not many architectural design choices appear to be thoroughly
discussed and analyzed with the required depth.

Complex Business Processes. In some cases, complex business
processes in place at a company are translated into an architec-
tural complexity of their software-intensive systems, leading to
ATD. This instantiation of Conway’s law (Conway, 1968) can usu-
ally be addressed, rather than by software refactoring activities,
only by reviewing the business processes in place in a company,
in order to mitigate the potential port of business complexity into
the software-intensive system. As noted by the participants of the
second focus group, complex business processes can also slow
down the maintainability and evolvability of a software-intensive
system, by burdening development activities with ‘‘bureaucratic’’
procedures of unclear added value.

3.3. Consequences

In this section we document the consequences of ATD emerg-
ing from our data. Specifically, we identified consequences of
3 different types, namely business-, functionality-, and product-
development-related. In Fig. 9 an overview of the emerging ATD
consequences, and their associated type, is depicted. As discussed
by the participants of both focus groups, ATD consequences may
take a long time before they become tangible, incrementally
worsening till they become visible.

Fig. 9. Overview of ATD consequences.

3.3.1. Business-related consequences

Carrying Cost. Often, the consequences of ATD are not imme-
diate, but rather manifest themselves over time. Specifically, a
recurrent consequence of ATD is an incremental amount of re-
sources which have to be dedicated over time in maintaining and
evolving software-intensive systems. As P1 described:

‘‘We did not think hard enough of the [architectural] design, its
cognitive overload, the associated carrying costs, how much will take
us on a continuous basis to work on the system designed this way’’.
P1, Senior Vice President of SE [CO-Q1]

The carrying cost associated to ATD afflicts a software product
by requiring an increasing amount of resources for development
activities, often imperceptible to end-users, that could be allo-
cated to other tasks. In order to mitigate the negative impact that
the carrying cost can have on customer perception, some partic-
ipants reported to actively invest resources to make refactoring
efforts tangible to their end-users:
‘‘While doing the refactoring, we also enhanced the front-end, just
to let the customer feel that the product is getting better’’. P4, Chief
Technology Officer [CO-Q2]

Reduced Development Velocity. Related to the first two emerg-
ing consequences, most participants described one of the main
consequences of ATD as a distinct loss of development velocity.
This loss is in most cases associated to additional time required to
understand the architecture, modify multiple components when
carrying out small changes, and fixing bugs which, due to ATD,
are hard to locate. P13 explained:
‘‘Development takes much more time than expected, sometimes be-
cause you run into an unknown issue, and other times you just
cannot properly size the thing that you are working on, because the
architecture is much more complex then what you expected’’. P13,
Senior Software Engineer [CO-Q3]

Opportunity Loss. Due to ATD, opportunities to follow new busi-
ness avenues can be lost due to the inability the system in order
to accommodate them. P3 described:
‘‘You have to go overtime, make changes, and that’s where the real
cost is, because you spend the time trying to fix those architectural
problems, and spending less time in innovation. People pay for
something, and they expect it to work’’. P3, Senior Director of SE
[CO-Q4]

The loss of opportunity is proportional to the effort required
for ATD management (see Section 3.5). While in the previous
incident only part of the resources available were dedicated to
manage ATD, more drastic strategies, such as a major refactoring,
can lead to more severe opportunity losses. P17 recalled one of
such instances:
‘‘We lost many months on this [ATD], because there was not added
value from a functional point of view. We sacrificed implementing
new functionality for refactoring. We did not lose customers, but it
took more than 6 months to refactor everything’’. P17, Co-Founder
[CO-Q5]

In order to avoid opportunity loss, it is even possible to de-
liberately postpone the repayment of debt, and continue to ac-
cumulate it till a reactive management strategy is required. P11
explained:
‘‘We had architectural issues, but we had customers, sales, com-
mitments that we had to meet. If we stepped away from that,
dedicating half of the team to refactoring, we would not be able to
take the new opportunities that came through’’. P11, Senior Director
of Technology [CO-Q6]

Risk Exposure. From both focus groups emerged that a promi-
nent consequence of ATD is exposure to risk. Rather than an
ATD consequence which is currently present and impacting a
software-intensive system, risk exposure is a potential conse-
quence, which may or may not lead to other consequences ac-
cording to the future evolution of the software-intensive system
and its context. Incurring ATD, and the passing of time cause, en-
tail a higher exposure to risk, i.e., a higher probability that conse-
quences may occur. The exposure to risk cause can be subdivided
into two separate variables, namely probability of consequence,
and impact of consequence, both of which are heavily influenced

12

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

by ATD and the passing of time. As explained by P22 in the first
focus group:
‘‘Risk exposure is a mathematical formula: it [the risk] is the proba-
bility of something failing, multiplied by the impact when it fails. ’’
P22, Vice-President [CO-Q7]
As observed in the first focus group, while risk exposure is
strongly related to business-related consequences, such conse-
quence can be also seen as crosscutting, i.e., as an intermediate
level between the consequence category and its three associated
types. While this consideration stands true in our theory, for
the sake of readability, we opted to relate risk exposure to its
closest type, namely business-related consequence, rather than
introducing an additional abstraction level in the theory.

3.3.2. Functionality-related consequences

Implementing new functionality becomes challenging. Associ-
ated to the carrying cost, ATD also can affect the effort required
to implement new functionalities. This is often associated with
‘‘blurred’’ responsibilities among architectural components. P13
describes:
‘‘Adding new functionality was more difficult, because we had all
these little pieces: it was difficult to figure out what they did, and
what needed to be done to add a new feature’’. P13, Senior Software
Engineer [CO-Q8]

Difficulties related to the implementation of new functional-
ities can make it harder to meet the requirements of the stake-
holders, leading to more severe consequences, such as the post-
ponement of planned releases. As described by P15:
‘‘We never met a release plan, we often postponed releases. Few days
before releasing, I asked stakeholders if we wanted to go live. And it
was a bad idea to do so, we were still bug fixing. But I did not speak
out. The stakeholders had to see it as well, that the debt was hurting
them’’. P15, Chief Software Architect [CO-Q9]

Discarding New Functionality Implementation. ATD can se-
riously affect the ability to implement a new functionality, to
the point that it becomes necessary to completely discard the
related implementation. Especially telling are instances in which
participants recalled the need to implement a trivial functionality,
which was discarded due to ATD. One of such instances was
described by P6, who recalled:
‘‘The new functionality, if you talked about it, was so reasonable to
do. . . but in reality. . . it was so difficult to implement in the current
architecture that we ended up scooping it out’’. P6, Senior Software
Engineer [CO-Q10]

Crystallized Architecture. In the most severe cases, the archi-
tecture can become ‘‘crystallized’’, i.e., the ATD of a software-
intensive system hinders almost completely the ability to im-
plement new functionalities. One of this rare occurrences was
described by P4:
‘‘They [software developers] could not even build new features, be-
cause of the architectural debt they were facing. They put
workaround on workaround, and then they couldn’t implement new
features, because of this pile of garbage that they built. . . ’’ P4, Chief
Technology Officer [CO-Q11]

3.3.3. Product-development-related consequences

Difficulties in Carrying Out Parallel Work. Due to poor sepa-
ration of concerns and tight coupling among architectural com-
ponents, ATD can impact also the ability to carry out parallel
development across different teams. This is often occurring in the
presence of architectural anti-patterns such as blob components,
i.e., components encapsulating a big portion of the business logic
or data of a software intensive-system (Wert et al., 2014). P14
describes one of such incidents as follows:

‘‘The module became so popular that we just kept building more
features on it . . . and now it starts to become a bottleneck, because
we have so many teams working on the same code at the same
time, that people start to step on one another toes’’. P14, Senior R&D
Manager [CO-Q12]

P1, P14, P5, and P7 recognized that this is due to the cross-
cutting nature of software architecture, especially if the concerns
are poorly separated among architectural components. P1 argued:
‘‘If you cross the boundary and have to touch the architecture, a lot
of what is built on it will change. If the modules are not well isolated,
who’s working on them will be hold at bay. You have to say: ‘‘No,
you’re locked!’’’’ P1, Senior Vice-President of SE [CO-Q13]

Persistent Flaky Behavior. Software-intensive systems afflicted
by a severe amount of ATD can become unpredictable in terms
of expected behavior. This dreadful state of a system is in most
of the cases co-occurrent with a crystallized architecture. Since in
those cases the ATD item causing the issue is often impossible to
pinpoint, a rewrite from scratch of the whole system is often the
only viable solution (see Section 3.5). P8 recalled:
‘‘We had to rewrite an entire server side application for a capital
market trading app, it was just randomly crashing. JVM out of
memory, synchronized deadlocks, like every Java nightmare sce-
nario possible. It was a nightmare’’. P8, Senior Software Engineer
[CO-Q14]

3.4. Symptoms

An overview of the ATD symptoms is presented in Fig. 10.
All participants described symptoms which point to ATD items.
This led to the emergence of four different types of ATD symp-
toms in our theory, namely symptoms related to issues, resources,
performance, and development practices. Similar to the medical
domain, symptoms can point to the potential presence of ATD in
a software-intensive system, especially if multiple symptoms co-
occur at the same time. Symptoms are linked to consequences,
specifically, they are consequences that are observable. In con-
trast, not all consequences are visible, and they may have differ-
ent granularity: some could manifest themselves at the level of an
individual ATD item, while some other at the level of the whole
system.

Fig. 10. Overview of ATD symptoms.

3.4.1. Issue-related symptom

Recurrent Customer Issues. Among all symptoms of ATD, recur-
ring customer issues is the most apparent one. As P3 explains:

13

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

‘‘The best indicator of all are customer issues: if you have an area
with lots of recurring customer issues, either the team is garbage, or
you have architectural issues’’. P3, Senior Director of SE [S-Q1].

In addition to helping to localize ATD problems in software-
intensive systems, recurrent customer issues also guide the tim-
ing to start refactoring activities. P4 recalled:
‘‘When we decided to refactor the architecture? It was just the
number of customer issues. Who does not have them? But when we
started seeing that the spike in customer issues was going to affect
our growth, it became something that we had to address’’. P4, Chief
technology Officer [S-Q2]

Recurrent Patches. Linked to the previous symptom, the pres-
ence of an ATD can be identified by observing which portions of
a software architecture are patched frequently. As the recurrence
of patches in an area of code is often not kept track of, numerous
iterations may be necessary before an ATD item is uncovered. In
P9 words:
‘‘There’s this kind of hard to pin down feeling, when in order to
meet some new need you are like ‘‘okay, it feels weird but I’ll patch
it, and I’ll patch it again, and again, and again. And after a while,
you realize that you’re kind of like, always applying kind of. . . you’re
playing whack-a-mole! It can’t be that everything is an edge case!’’’’
P9, Vice President of Product [S-Q3]

High Number of Defects. As reported by many participants, a
high number of defects localized in a certain area of the code can
indicate the presence of an ATD item. In this context, we refer to
defect as a generic problem in the source code of the system, such
as a bug, a security vulnerability, etc. As P13 explained:
‘‘When you have a lot of bugs in an area of code, that means: either
that area is complex by itself, or there is some unmanaged archi-
tectural complexity leading to that’’. S10, Senior Software Engineer
[S-Q4]

As for the previous symptom, data regarding defect density
and recurrence is not often systematically stored and analyzed to
optimize software architecting and development processes. This
leads to rely on the experience of senior practitioners, in order to
intuitively detect the emergence of ATD items by considering this
symptom. As described by P10:
‘‘Where to fix the architecture is usually decided by experienced
people observing that this area creates a lot of defects over the last
couple of months, and we need to look at it sooner or later’’. P10,
Senior Software Engineer [S-Q5]

Security Breaches. Security breaches are a recurrent symptom
of ATD. Due to the complexity caused by the ATD present in
a software-intensive system, inadvertent security flaws can be
introduced, leading to the unintentional disclosure of private
information to unauthorized parties. Such data leaks can be a
strong signal of ATD, that has to be tackled with a reactive man-
agement strategy (see Section 3.5) as soon as the symptom arises.
Due to the sensible nature of the subject, participants could not
provide concrete examples of the occurrence of security breaches;
nevertheless, it was recognized as a prominent symptom of ATD
in both focus groups.

3.4.2. Resources-related symptoms

Growing Maintenance Activities. The presence of prominent
ATD items can be noticed by the need to allocate a growing
amount of resources without observing a noticeable increase in
productivity. P3 summarily described:
‘‘As we added more and more developers, we were not adding many
features, why? Productivity, usability, all those things were not in
the architecture’’. P3, Senior Director of SE [S-Q6]

In addition to the growing effort needed to implement new
features, concerning amounts of ATD can be noticed by the need

of allocating dedicated teams to maintenance and refactoring
activities. This results to be a common practice which, due to
the severity highlighted by this symptom, is often followed by a
major refactoring or a rewrite from scratch (cfr. Section 3.5.2). An
occurrence of this ATD symptom was described by P9 as follows:
‘‘We basically had to subdivide our hub team into two, one team
dealing only with bugs, and one dealing with features. It was brutal’’.
P9, Vice-President of Product [S-Q7]

Need of Senior or Specialized Staff. Due to the complexity that
ATD items entail, their presence can be noticed by the grow-
ing need to on-board senior staff into development teams. As
discussed by P11: ‘‘You notice it [ATD] by the increasing need to
bring in senior people. Because that means that there is something
that requires deep, profound understanding. And if there is a major
shortcoming, you may have to know something very very deep in
order to see it. That usually hints at an emergent area that you will
need to tackle’’. P11, Senior Director of Technology [S-Q8]

Related to the person and communication categories of our
theory (see Sections 3.9 and 3.10), seniority is also required in
order to effectively expose the presence of ATD items. In most of
the incidents recalled by practitioners, only senior staff possessed
the knowledge and confidence necessary to openly discuss and
address ATD. P2 shared his personal experience on this:
‘‘As long as I was junior, I could not say ‘‘Hey, this architectural
pattern sucks, let’s do something about it’’. I was more quiet. When
I was able to have a louder voice. . . it all started with being noisy
and seeing what senior people did to clean up’’. P2, Software Staff
Engineer [S-Q9]

As noted in both focus groups, in addition to senior staff, this
symptom may manifest itself also in the need to on-board staff
with a particular set of skills. Such specialized staff, often possess-
ing ‘‘outdated’’ skills, may point to the need of modernization of
a software-intensive system, and constitute a contingent liability
due to the scarce availability of such skill in the current job
market. Participants of the first focus group agreed on the need
of programmers familiar with COBOL, a language first appeared
in 1959 and still widely adopted in the business sector (Mateos
et al., 2019), as a prominent example of the need of specialized
staff symptom.

Growing Resources Needed to Keep the System Running. As
noted in the second focus group, a symptom of the presence of
ATD is a growing number of resources required to keep the sys-
tem running. Rather than resources needed to evolve or maintain
a software-intensive system, this symptom embodies a contin-
uous amount of resources that have to be allocated to sustain
the system. Resources associated to this symptom can be both
of monetary nature (e.g., cloud provider commissions), or manual
effort (e.g.,manual interventions required to handle corner cases).
An example of this type of symptom was described by P19, who
recalled:
‘‘Due to our design, we needed to use a hybrid cloud model. And this
[decision] caused a lot of network traffic. And, as you need to pay
for network traffic, accounting started to tell us ’Hey, how come you
are spending so much money now?’ ’’ P19, IT Architect [S-Q10]

3.4.3. Performance-related symptoms
Performance issues which are hard to address can also be

a symptom of ATD. From our data, two types of performance
issues emerged, namely inability to scale and performance stalls.
P3 illustrated this symptom as follows:
‘‘You can feel it [debt] around performance, you can feel that the
architecture is not good enough, because you can feel the perfor-
mance problems that you fix, a lot of those exist because they are
not architected well’’ P3, Senior Director of SE [S-Q11]

Inability to Scale. Inability to scale refer to the presence of scal-
ability issues in software-intensive systems due to ATD-related

14

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

problems. This is a recurrent symptom among our participants,
and is often characterized by a swift increase of data to be
processed. P14 recalls:
‘‘One of the biggest architectural problems we had related to archi-
tectural debt was dealing with scale. The system could not cope with
the new amount of data, it couldn’t work with the current state of
the architecture’’. P14, Senior R&D Manager [S-Q12]

Architectural shortcomings that are identified by considering
scalability issues often point to debt items which require a con-
siderable effort in order to be fixed, such as the re-implementation
of various portions of an architecture. P14 describes:
‘‘We thought ‘‘the system is built that way’’, but at the time we did
not think that we had to scale up that much, and we had to rethink
stuff, we had to update things to the newer standards’’. P14, Senior
R&D Manager [S-Q13]

Performance stall. Performance stalls indicate performance bot-
tlenecks present in software-intensive systems which cannot be
solved without architectural refactoring. P3 described this symp-
tom as follows:
‘‘With performance, if you can really just move it around but not
solve it, that is an indicator that you are doing something architec-
turally wrong’’. P3, Senior Director of SE [S-Q14]

Performance stalls can lead to the investment of a conspic-
uous amount resources to carry out small optimization of an
architectural deficiency, which in reality can only be with a
proper, structural, architectural refactoring. As P14 states:
‘‘Even if you put in a lot of hack to make it faster, you cannot
fundamentally make a change, it is an unsolvable problem. If you
have unsolvable problems, that’s because of an architectural decision
which is just not right’’. P14, Senior R&D Manager [S-Q15]

3.4.4. Development-related symptom

‘‘I don’t want to touch it’’. This symptom of our theory deals with
human intuition and sensitivity. Rather than deriving from a sys-
tematic analysis, this symptom represents the instinctual refrain
of software developers to modify a certain component in which
ATD resides. R12 describes one of such instances, associated with
a ‘‘dormant’’ ATD item:
‘‘Developers will often tell you if something stinks, right? There is
always something which is hard to work with, maybe it’s a piece of
code that no-one wants to touch, that’s a symptom! Why does no-
one want to touch it? Because it’s [bad]! It might do its job well,
but no one wants to touch it! [. . .] Developers: they are the best
source of truth when it comes to how healthy your code is’’. P12,
R&D Director [S-Q16]

Functionality Implemented in other Component. From both
focus groups emerged that the presence of ATD in a component
can be noticed if functionalities, which should be implemented in
that component, start to appear in other components instead. This
may indicate that evolving the component where ATD resides
results to be too cumbersome, and hence the implementation of
that functionality has to be delegated to one of its surrounding
components. As P21 illustrated:
‘‘You see it [ATD] in the compensation by other components. You
have a component which is not good enough anymore, and you see
functionality appearing in the surrounding components, which are
interfaced with that component, but those functionalities just don’t
belong there’’. P21, Director Enterprise Architecture [S-Q17]

Data Inconsistencies. As discussed in the first focus group, data
inconsistencies is another symptom which can point to the pres-
ence of ATD. Specifically, this symptom manifest itself as mul-
tiple instances of the same data, stored in different portions of
software-intensive system, which are not consistent with one
another. Prominently, this symptom arises when organizations

merge different software-intensive systems, but do not have the
time to carefully design and implement the integration. This leads
to the adoption of architectural shortcuts, disregarding to avoid
the storage of the redundant yet divergent data, often represented
in multiple formats (e.g., dates), in different portions of the sys-
tem. As an example provided by a P22, when booking an airline
ticket upgrade by utilizing reward miles, the loyalty program
website may indicate that the upgrade is confirmed, while the
official airline site shows the upgrade status as pending, and it is
impossible for the user to find out which status is correct until
they board the plane.

3.5. Management strategies

Six managements strategies to cope with ATD emerged from
our data. Interestingly, such strategies focus on the management
of ATD items, rather than resolving their root causes. By in-
specting the ATD causes, we can conjecture that this is due to
the generic nature of the causes (with special emphasis on the
external ones), leading management strategies to address them
to fall out of scope of the theory investigation topic. We identified
three types of management strategies, namely active, reactive, and
passive. An overview of the strategies is depicted in Fig. 11, and
further described in the reminder of this section.

Fig. 11. Overview of ATD management strategies.

3.5.1. Active management strategies
Active strategies are based on the acknowledgment of the

presence of ATD in a software-intensive system, and the devel-
opment of a plan to actively manage it. In the following we
present the three active management strategies emerging from
our grounded theory.

Boy Scout Rule. This management strategy is often referred to by
our participants as ‘‘The Boy Scout Rule’’, which borrows from the
‘‘Always leave the campground cleaner than you found it’’ camp-
ing rule. Based on this metaphor, developers acknowledge the
presence of ATD, and pay back the debt in small incremental steps
while carrying out other development activities on a software
component, such as the implementation of a new functionality
or bug fixes. As P1 described:
‘‘I generally advocate in ‘‘stealing time’’, when a component has
bothered you enough, I would just say: fix it, and do not tell anyone.
If you are already working on that area of code, just take some extra
time to refactor it’’. P1, Senior Vice-President of SE [MS-Q1]

However, it is important to stress that this strategy can be
difficult to apply in practice since ATD items are hard to fix in

15

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

small increments, unlike other forms of TD. For example, the
switching towards a different programming language, substitut-
ing a third-party component or platform, or refactoring a deeply
tangled subsystem can have a pervasive and costly impact on
the architecture of the system, potentially requiring considerable
effort.

Systematically Dedicate Time This management strategy entails
systematically allocating time in order to repay the accumulated
ATD. Most participants described allocating a fixed percentage
of development time per-sprint to refactor ATD items. The most
recurrent percentage of time dedicated to ATD refactoring results
to be between 20% and 30%, with the exception of P1 and P9, who
reported 10% and 50% respectively. In a singular instance, P12
jokingly described allocating an entire day per-sprint exclusively
to ATD refactoring activities:
‘‘We have a Lannister day, you know, because Lannisters always pay
their debts [laughs]’’. P12, R&D Director [MS-Q2]

Technical Credit. This management strategy regards the invest-
ment of resources to improve the architectural maintainability
and evolvability of a software-intensive system prior to the emer-
gence of ATD items. This strategy aims to mitigate the future
establishment of ATD by estimating and proactively addressing
portions of the architecture which could slow down future de-
velopment. While some participants described this strategy from
a theoretical standpoint, the common agreement among partici-
pants is that, due to time pressure and the uncertain outcome of
this strategy, it is hardly ever adopted. P3 explained:
‘‘You are spending time in trying to make something perfect. When
do you have that time for that? Where do you take the investment?
You do not get paid by ‘‘I’ll make it evolvable’’, you spend days or
weeks in something that might not pay off, who can afford that?’’
P3, Senior Director of SE [MS-Q3]

3.5.2. Reactive management strategies
Reactive strategies entail that, while the presence of ATD in

a software-intensive system is acknowledged, its management is
postponed until the repayment becomes unavoidable (e.g., an ATD
item prevents the development of a new feature). The following
reports on the three main reactive strategies emerging from our
data.

Opportunistic Patching. This strategy, rather than aiming at
resolving the ATD present in a software-intensive system, deals
with its occurrence by investing the minimum resources neces-
sary to bypass the limitations imposed by the ATD. This often
results in small patches, or temporary architectural workarounds,
which build upon the existing ATD. As described in [S-Q3], oppor-
tunistic patching rarely achieves the resolution of the root cause
of an ATD item, but can rather point to the underlying problem.
A similar situation was described by P11:
‘‘It was architectural debt, but we were able to squeeze around it
by doing little incremental changes here and there, which did not
touch the architecture much, but slightly improved things. . .we were
just kicking the can down the road. . . in retrospective we were just
patching, patching all the way’’. P11, Senior Director of Technol-
ogy [MS-Q4]

Major Refactoring. Due to the severity of the ATD present in a
software-intensive system, it can become necessary to methodi-
cally eradicate it, even at the cost of sacrificing other development
activities. This constitutes a major undertaking, which can cause
the loss of competitive advantage of a software-intensive sys-
tem, and is characterized by investing a conspicuous amount of
resources. Many participants referred to this strategy as ‘‘biting
the bullet’’, to express the severe influence of this strategy on
other development activities. Under this category fall architec-
tural refactoring activities carried out by entire developer teams.

Due to the major implication of carrying out major architec-
tural refactoring and the uncertainty of its outcome, timing this
strategy can be a complex problem. P11 explains:
‘‘There is always some inertia, you always have to overcome this
lump of ‘‘when is the right time?’’, because there is never a right
time. You have to decide when it is the right time. Usually it would
be based on how painful it is. It has to reach some sort of crest before
you realize: ‘‘OK this is enough now’’, you bite the bullet, and try
to do something about it . . . ’’ P11, Senior Director of Technology
[MS-Q5]

Rewrite from Scratch. In the most severe cases, the only way to
cope with the crippling ATD accumulated in a software-intensive
system is declare ‘‘technical debt bankruptcy’’, and conduct a tab-
ula rasa re-engineering of a software intensive-system. This pro-
cess, often referred to by practitioners simply as ‘‘rewrite’’, con-
sists in re-implementing large portions of a software-intensive
system without re-using source code, and is conducted by ex-
tracting from the old system its functional- and non-functional
requirements, and subsequently re-implementing the require-
ments in a new system. P13 recalls:
‘‘At some point we had to refactor the product, it had architectural
issues. There were some big things that we had to fix, and so we
had to rewrite the product entirely. . .we had no other choice!’’ P13,
Senior Software Engineer [MS-Q6]

Rewriting a software product from scratch provides the oppor-
tunity not only to pay off in one go all the accumulated ATD, but
also to gain technical credit by associating to the rewrite a soft-
ware modernization process (Chiang and Bayrak, 2006), i.e., up-
grading the architecture by adopting newer architectural styles,
stacks, technological frameworks, etc. In addition, the green-field
nature of the rewriting process provides the possibility to get rid
of old bad development practices, which potentially led to the
establishment of ATD in the first place. As P9 describes:
‘‘I really wanted the product to go faster. And so I said, please choose
a different stack, use a different repo, use a different team, so that
we don’t inherit all that legacy stuff. And so we basically had to stop
development in the old way, port all the features over, and build
it [the product] on the most new shiny tech that people like’’. P9,
Vice-President of Product [MS-Q7]

While software rewrites can provide exceptional benefits, they
also entail a very high risk, as they are characterized by an
uncertain outcome, potentially leading to the complete loss of the
resources invested in them. P1 clearly explained:
‘‘I really like the rewrite pattern. . . people are scared by it, but I did
seven. You just develop them on the side. They are hard to pull off,
but they work great’’. P1, Senior Vice-President of SE [MS-Q8]

As hinted to in the previous incident, software rewrites are
often carried out in parallel to daily development activities, e.g.,
via a dedicated team. This resulted to be a common practice
in the experience of the participants. Nevertheless, in the most
extreme cases, product rewrites can require most of the resources
available. One of such instances was recalled by P8 as follows:
‘‘It was a six month effort non-stop rewrite. No new features. I saw
the entire department go under . . . it was just a nightmare’’. P8,
Senior Software Engineer [MS-Q9]

3.5.3. Passive management strategy
The passive management strategy, rather than aiming to ac-

tively pay back ATD, attempts to cope with it by avoiding to
address ATD items.

Neglect. Participants described strategies in which, while the
negative impact of the ATD residing in their system might be
evident, the cost involved in fixing it was not worth addressing it.
In such cases, development activities are carried out at a slower
pace, embracing the ATD, and building upon existing debt.

16

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

‘‘Sometimes you have a lot of edge cases but you just, you know the
cost of. . . you know it’s bad, you know you don’t want to do it, you
know there’s a better way, but the better way isn’t worth it’’. P9,
Vice-President of Product [MS-Q10]

As noted by the participants of the second focus group, in
specific instances neglect may be a sound strategy to adopt, as
the interest of ATD might have to be never paid back, or might be
completely amortized by other necessary development activities,
e.g., the substitution of an architectural component, that has to be
changed for motivations other than the ATD it accumulated.

3.6. Tool

In this study, the adoption of tools to explicitly identify and
manage ATD did not emerge as an established industrial practice.
As described by P10 in [R-Q8], such tools are either unknown by
practitioners, or simply unutilized. This resulted to be a recurrent
theme across participants. We conjecture that this finding could
be caused by either (i) the perceived immaturity of ATD tools, (ii)
the perceived usefulness of ATD tools, or (iii) a current knowledge
gap between research advancements and industrial practices.

While no ATD tool appears to be actively used, participants
mentioned the use of source code quality analyzers and col-
laborative code review tools, which are often embedded in the
development workflows (e.g., via Git pre-commit hooks6). Specif-
ically, SonarQube resulted to be the most established tool, while
other prominent ones were Clang Tidy, Git Gerrit,7 FindBugs,8
and PyCharm.9 Associated to such tools are the concepts of:
quality gates, which are often customized by developer to fit
their needs; warnings, used to enforce software quality stan-
dards of committed code; and, automated refactorings, used to
automatically fix small software quality shortcomings.

3.7. Artifact

ATD items can affect and reside in one or more artifacts.
Commonly, given the widespread nature of such architectural
debt items, numerous artifacts are simultaneously affected by a
single item. An overview of the concepts constituting the artifact
category of our theory is reported in Fig. 12 and described below.

Fig. 12. Overview of ATD concepts related to artifact.

Architectural component. The ever-present artifacts in which
ATD items manifests themselves are architectural components.
Such portions of the codebase, encapsulating one or more func-
tionalities of a software-intensive system, are in most cases the
root location where ATD items are originating. In rare instances,
ATD items can also spawn from the relations established between
components, e.g., due to debt accumulated in an Application Pro-
gramming Interface (API), or due to over-complex dependencies.
P13 describes:

6 https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks.
7 https://www.gerritcodereview.com/.
8 http://findbugs.sourceforge.net/.
9 https://www.jetbrains.com/pycharm/.

‘‘We don’t even understand the whole code. If some data gets cor-
rupted in that connector, it is hard to tell where the data came
from. And that component is very connected to the other ones, and
some portions of the code do not follow any pattern. ’’ P13, Senior
Software Engineer [A-Q1]

Test Suite. Test suites result to be often affected by debt items
residing in architectural components. In fact, the increasing com-
plexity and design issues residing in the architecture of a
software-intensive system is frequently reflected in its test suite,
which also grows in complexity, loses effectiveness, and becomes
harder to maintain (cfr. [R-Q5]).

Documentation. Architectural debt items can be reflected in a
partial, absent, or even erroneous documentation of the archi-
tecture of a software intensive-system. Remarkably, this is often
due to the growing complexity of an architecture, and/or a loss of
overview over the architectural structure of a software-intensive
system. Documentation artifact affected by ATD can lead to vi-
cious cycles, in which the resulting documentation debt is both
the consequence and the cause of new debt. P17 described:
‘‘There is no documentation. . .when someone new comes on the team
we have to explain the whole architecture, but are we always doing
it right?’’ P17, Co-Founder [A-Q2]

In a peculiar case recalled by P9, the documentation of a
software product itself, which reached further away than control-
lable, hindered the evolvability of a software architecture.
We are kind of fighting against our own success. There are hundreds
of tutorials, which would now be wrong. And so we have this sort
of like mass of backwards compatibility that allows some changes to
be made and other that don’t. P9, Vice-President of Product [A-Q3]

3.8. Prioritization strategies

The following discusses our findings related to how the refac-
toring of ATD items is prioritized with respect to other devel-
opment activities, such as feature development and bug fixes.
Prioritization strategies can guide management strategies of ac-
tive nature, as reactive and passive strategies respectively manage
ATD only when strictly necessary and not at all.

From our results emerged that often ATD is kept track of, e.g.,
by characterizing backlog items according to the classification of
Kruchten (2008), who makes the distinction between functional
features, bug fixes, architectural features, and technical debt.
Nevertheless, while ATD items are often traced, prioritizing their
refactoring with respect to other development activities does not
follow an established methodology. As P10 states:
‘‘We fear we do not have a scientific method here. . . it is basically gut
feeling. We do not have any research around what needs to have the
highest priority’’. P10, Senior Software Engineering [PR-Q1]

This ‘‘gut feeling’’ is a recurrent theme among participants on
how ATD items are prioritized. Due to the difficulties associated
with quantifying the impact of ATD, practitioners do not adopt
systematic prioritization approaches; rather, they adopt informal
ones, to balance their ATD refactoring activities with other devel-
opment activities, as reported also in [R-Q7]. P3 further clarifies
this concept:
‘‘I would say, find your balance, do the minimum necessary. It is not a
science, I think it’s an art. And why do large companies fail? Because
at some point that balance is tilted’’. P3, Senior Director of Software
Engineering [PR-Q2]

3.9. Person

This category deals with concepts related to the human nature
of software professionals. As can be deduced from Sections 3.4
and 3.8 , people can support the discovery and prioritization of

17

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://www.gerritcodereview.com/
http://findbugs.sourceforge.net/
https://www.jetbrains.com/pycharm/

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Fig. 13. Overview of ATD concepts related to person.

ATD items, and are ultimately at the origin and resolution of many
of them. An overview of the concepts constituting the person
category of our theory is reported in Fig. 13 and described below.

Awareness. To be able to manage ATD one must first be aware of
its presence in a software-intensive system. Sharing knowledge
about ATD items, their magnitude, causes, and consequences,
enables gaining a common understanding of the ATD presence,
leading to finer-grained strategies to cope with it. P4 describes:
‘‘What important is the culture of knowing about the debt. We have
to be extremely conscious about it. Every developer has to be aware
about ‘‘I am incurring debt now, I will have to pay this at some
point’’. And this is a very good example of a developer who is aware
of it’’. P4, Chief Technology Officer [PE-Q1]

Personal Drive. Participants often reported ‘‘the personal drive of
individuals’’ being at the origin of the identification, management,
and resolution of ATD items. People championing for a certain
ATD item are usually the ones who are affected by it on a
daily basis, and actively advocate for its resolution. One of such
occurrences is described by P6:
‘‘It comes down to socializing it [ATD item]. You have to be [an]
advocate for it. Bring it up in group meetings and one-on-one with
certain people. Make sure that they absorb it, and hold it in the same
kind of severity that you do’’. P6, Senior Software Engineer [PE-Q2]

Low Morale. ATD can have a deep negative effect on developer
morale. Due to the encompassing and complex nature which ATD
entails, the debt caused by ATD items can affect development
activities over a prolonged period of time, leading to severe
consequences on the morale of developers. P2 describes:
‘‘From a human perspective, if you wake up every day and you walk
around in mud, are you motivated in doing it? You don’t put much
effort in it. Which then spirals in not getting much done. . . and then
ends up with people leaving. . . ’’ P2, Software Staff Engineer [PE-Q3]

The detachment between personal drive and a software inten-
sive system due to ATD described in [PE-Q3] is further detailed by
P15:
‘‘The people that left before, were just able to cope with the debt,
clock out after work, and dealt with the problems the next day
without much thought’’. P15, Chief Software Architect [PE-Q4]

Seniority and Skill Set. Seniority and skill set can play a decisive
role in ATD related phenomena. On one side, lack of necessary
skill sets can lead to the introduction of ATD, due to a lack of fitted
resources to address properly an instance at hand. P14 recalls:
‘‘We had experience in monolithic applications, and that’s the key
reasons why we stayed with this gigantic code base. I wish we could
have evaluated other options, but back then nobody in our team
had the experience...it’s a bit of a pain right now. P14, Senior R&D
Manager [PE-Q5]

On the other hand, seniority and adequate skill sets are crucial
in order to solve complex ATD items. Participants often described
seniority as a decisive factor to address ATD for two main reasons:
(i) senior developer are able to gain a better ‘‘holistic’’ view of
software-intensive systems, and (ii) junior developer refrain from
addressing ATD, due to the magnitude and resonance of changes
carried out at the architectural level. P5 explains:
‘‘Junior people don’t want to change the architecture. Few people are
confident enough to do so, there is a difference between imagining
a change and pulling it off, a lot of people shy away from it’’. P5,
Senior Software Engineer [PE-Q6]

Intuition. As described in [S-Q3], [S-Q16] and [PR-Q1], intuition
and ‘‘gut feelings’’ can affect ATD by enabling to identify and
prioritize ATD items. Additionally, personal intuition is also refer-
enced by our participants as playing a role during the evaluation
of the root causes, consequences, and magnitude of ATD items.
P7 describes:
‘‘It’s a discussion about the gut feeling of how big something is.
We don’t have any story points associated with them, any well-
defined number, it’s just based on what each of us knows, what the
problems entail, and how we can solve them’’. P7, Senior Software
Engineer [PE-Q7]

Optimism Bias. From our data emerged that inherent optimism
of software developers and alike can deeply influence ATD. While
optimism is crucial for the success of a software product, it
can also constitute a cognitive bias which hinders development
activities. P3 explains: ‘‘Everything seems possible! It’s just ego.
This is always the problem. Think of software development, it’s the
art of making things possible, right? We can do it, of course we can!
How long it will take is a different question. . . developers have to be
optimist, otherwise they don’t even start’’. P3, Senior Director of SE
[PE-Q8]

Our participants reported a wide range of cognitive biases
associated to the optimism one, such as wishful thinking, self-
serving bias (Myers and Smith, 2015), and the Dunning–Kruger
effect (Kruger and Dunning, 1999). Such biases notably lead to the
emergence of the planning fallacy phenomenon (Kahneman and
Tversky, 1977), as described in [PE-Q8]. In addition to planning
fallacies, the optimism bias and other related ones can lead also to
the introduction of ATD. P6 reports: ‘‘When we made this decision
we assumed that, as our interactions were simple, they will continue
to be simple. Plus, as they’re all SQL databases, we assumed that
they’re probably pretty similar. So it’s very easy to say that, as they
are similar, ‘‘let’s just pretend that they’re all the same’’. And that
was just a bit of optimism, but it resulted in many problems’’. P6,
Senior Software Engineer [PE-Q9]

Responsibility and Ownership. People working on a software-
intensive system can be mapped to specific ATD items residing
in the system. This type of mapping has a twofold nature. On
one side, ATD items can be traced back to the people who in-
tentionally or inadvertently introduced it. On the other side, ATD
items can be assigned to specific people who take ownership of
those items, and are in charge of managing them. As discussed
by the participants of the first focus group, a systematic mapping
of ATD items to people can support the management of ATD by
distributing responsibilities across development teams.
‘‘If you don’t have clear responsibilities and accountabilities, who
feels responsible for the ATD?’’ ‘‘. . . only the seniors . . . ’’ P21, Director
Enterprise Architecture, and P22, Vice President [PE-Q10]

3.10. Communication

We identified 4 main concepts related to the communication
category, namely exposition, impediments, blame, and communica-
tion with stakeholders, as depicted in Fig. 14 and described in the
following.

18

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Fig. 14. Overview of ATD concepts related to communication.

Exposition. Rising awareness among developers, managers, and
the like, of the presence of ATD items results to be an important
aspect steering ATD management and prioritization strategies.
As described in [PE-Q2], pointing out the rise and establishment
of ATD items can build a common knowledge among developer
teams, leading to a comprehensive and shared viewpoint of the
ATD present in a software-intensive system, which could not
be established individually. P10 describes: ‘‘Engineers get frus-
trated that they can’t implement functionalities fast enough, so they
complain and get vocal about it. This creates a situation where
the architectural debt gets more awareness’’. P10, Senior Software
Engineer [COM-Q1]

Impediments. Related to the communication of ATD, data showed
that creating awareness on the severeness of the ATD present
in a software-intensive system is not always an easy task. This
problem often lies in the communication between developers
and management teams, potentially due to unclear consequences
and symptoms associated to ATD items. Sometimes this leads
to the negation of existing ATD, which can be detrimental to
personal drive, and morale of developers. In this regard P8 stated:
‘‘It resembles a Dr. Phil Show intervention. To fix a problem, you
have to acknowledge that there is one’’. P8, Senior Software En-
gineer [COM-Q2]

Blame. Incurring ATD inadvertently, or leaving undocumented
the rationale behind deliberately incurring it, can lead to friction
among people working on a software-intensive system. In fact,
without a proper knowledge of the circumstances in which the
debt occurred, undesirable discussions can arise, often finger-
pointing individuals who incurred in the debt. P4 describes:

’’People know when they are incurring architectural debt. And
if the people leave, afterwards it’s a blame game on who is the
culprit. Developers blame the old ones for taking bad architectural
technical decisions, because they were not in their position’’. P4,
Chief Technology Officer [COM-Q3]

Communication with Stakeholders. Related to communication
of ATD, in our theory emerged difficulties in communicating the
presence of ATD to the stakeholders of a software product. As
simply expressed by P4:
‘‘People pay for something, they bought it and expect it to work, and
then time passes and the product evolves, and course they expect it
to work, always, forever!’’ P4, Chief Technology Officer [COM-Q4]

As ATD accumulates, implementing new functionality becomes
more challenging. Similarly, also the issues related to develop-
ment impediments become more difficult to be discussed with
the stakeholders. P3 describes:
‘‘It [the product] should have been maintained without adding new
functionalities. . . hard to communicate that to customers, because
they demand ‘‘why don’t you add more features to it?’’, but don’t
know that adding more features takes longer, is harder, causes more
problems in an old stack’’. P3, Senior Director of SE [COM-Q5]

In order to mitigate potential issues related to stakeholder
communication, a common strategy adopted is to deliberately

spend efforts in making maintenance efforts tangible to stake-
holders, giving the impression that the product is still evolving,
even when almost exclusively refactoring activities are carried
out (cfr. [CO-Q2]).

In extreme cases, the impediments related to communicat-
ing ATD to stakeholders can become so prominent, that it may
be necessary to deliberately highlight the issues present in a
software intensive-system, in order to convince that a major
refactoring activity is necessary (cfr. [CO-Q9]).

4. Related work

As recommended by Glaserian GT principles
(Glaser and Strauss, 1967), to mitigate confirmation bias, we
reviewed the related literature after building our theory. From
the inspection of the ATD corpus, we identified four studies
related the closest to ours (Martini and Bosch, 2017; Martini
et al., 2015; Besker et al., 2018; Li et al., 2016). In particular, in
these researches we identified a set of concepts that complement
ours and, as such, can be used as further enrich our theory. An
overview of the identified concepts is documented in Table 3.

Note that concepts identified in the literature which emerge
in our theory under a different category (e.g., in Martini et al.,
2015 ‘‘parallel development’’ is categorized as a cause, rather than
a consequence), are not considered as complementary concepts
to our theory. In fact, such divergence is exclusively due to the
perception of our participants and the applied coding strategy
(see Section 2.2.2), rather than a concrete difference of content.
The remaining of this section is dedicated to a further discussion
of the literature review findings.

Martini and Bosch (2017) present a multi-case study adopt-
ing some GT techniques, while our investigation systematically
applies the GT methodology. Accordingly, the two works use dif-
ferent techniques for data collection, incident coding, and results
synthesis (cf. Section 2 of this study and Section 2 of Martini
and Bosch, 2017). Regarding the results, Martini and Bosch (2017)
presents a taxonomy of ATD items and a model of their effects:
the specific ATD items reported in Table 3 are complementary
to the ones emerging in our theory; the effects are categorized
into causes, phenomena, and extra activities and the specific con-
cepts resemble the categories cause and ATD management strategy
emerging in our theory, which in turn resulted in a richer number
of categories e.g., tool.

A previous work of the same authors (Martini et al., 2015)
zooms into the evolutionary nature of ATD and its accumulation
and refactoring over time, e.g., the causes specific to accumula-
tion. Our work is complementary by emphasizing the theoretical
structure underlying ATD instead. Overall, similarities and com-
plementarities are promising for a future comparative analysis
between the results of Martini and Bosch (2017) and Martini
et al. (2015) and our substantive theory, with the ultimate goal of
formulating a formal theory. A formal theory is the widest form
of GT, constructed by using formal concepts. Such theoretical
construct applies to the conceptual area it has been developed for,
and commonly spans over a set or family of several substantive
areas (Urquhart et al., 2010). In our case, a formal theory could
potentially regard the role that architectural technical debt plays
in the implementation and maintenance of software-intensive
systems.

Besker et al. (2018) conducted a systematic literature review
to define a descriptive model of ATD. By comparing the findings
of such study with our theory, we can observe a noticeable
gap between the results of the two studies. In fact, numerous
aspects reported in the model of Besker et al. (2018), such as ATD
detection, ATD identification, ATD measurement, ATD monitoring
and related concepts, did not emerge in our theory. Rather than

19

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Table 3
Complementary concepts to our theory identified in the literature.
Source Concept Type Category Definition
Martini and Bosch (2017) Suboptimal reuse Implementation ATD ATD item Very similar code (if not identical) in

different parts of the system, which is
managed separately and not grouped into a
reused component.

Martini and Bosch (2017) Suboptimal APIs Implementation ATD ATD item Suboptimal design of APIs or the misuse of
them, e.g., methods that contain too many
parameters, or components calling private
APIs instead of public ones.

Martini and Bosch (2017) Non-uniformity of patterns Process ATD ATD item Patterns and policies that are not kept
consistent throughout the system. e.g.,
different name conventions applied, or
different design / architectural patterns used
to implement similar functionalities.

Martini and Bosch (2017) Superfluous testing Product development Consequence Unnecessary tests performed due to ATD.
Martini et al. (2015) Dependency violation Implementation ATD ATD item The presence of architectural dependencies

(for example at different component levels)
which are considered forbidden in the
(context-specific) architecture.

Martini et al. (2015) Uncertainty of use cases in
early stages

External Cause Difficulty in defining a design and
architecture that has to take in consideration
a lot of unknown upcoming variability.

Martini et al. (2015) Spit budget for project and
maintenance

Internal Cause Separation of available budget into two
distinct budgets, one dedicated to
development, and one to refactoring
activities.

Martini et al. (2015) Non-completed refactoring Internal Cause Non-completed refactoring activity,
introducing new ATD.

Besker et al. (2018) Incapability to address quality
requirements

ATD item Process ATD Lack of mechanisms for addressing
non-functional requirements, i.e., lack of an
implementation assuring quality
requirements and the lack of mechanisms to
test them.

Besker et al. (2018) ATD Detection, Identification,
Measurement, and Monitoring

Active Management strategy Tool-supported processes aimed at the
identification and management of technical
debt specific to the architecture of
software-intensive systems.

attributing the absence of such concepts to unsaturation, we
conjecture that such divergence in results is due to the research
methodology followed. In fact, we can observe that the missing
concepts are related to ATD aspects which, while actively dis-
cussed in academic settings (e.g. ATD identification Verdecchia
et al., 2018), did not yet get traction in industry (e.g., see [R-Q8]).
From this finding we can conclude that more action research is
needed to bridge the gap between studying ATD and dealing with
it in practice.

A broader review of the literature shows that the most stud-
ied type of technical debt is source-code ATD (Verdecchia et al.,
2018; Li et al., 2015), such as ATD related to component depen-
dency (Roveda et al., 2018) or modularity (Li et al., 2014). This
typology of ATD emerged in our theory as a specific concept of
the ATD Item category, namely implementation ATD. This category
is also mentioned in Brooks’ popular book ‘‘The Mythical Man
Month’’ (Brooks, 1995), where a recurrent theme is to ‘‘plan
to throw one away’’, i.e., designing a system (and organization)
by envisioning change, as it will eventually happen. Moreover,
the workaround that stayed ATD item is extensively discussed
in Fowler’s book titled ‘‘Refactoring: improving the design of
existing code’’ (Fowler, 2018), again with a primary focus on
TD at the source code level. The ‘‘re-inventing the wheel’’ ATD
item is instead discussed in Szyperski’s book (Szyperski et al.,
2002), where design reuse is advocated as the practice of shar-
ing certain aspects of an approach across various projects, thus
avoiding to re-invent the wheel across projects and organiza-
tions. The book also presents various techniques for addressing
this ATD item, e.g. using software libraries for sharing solution

fragments, interaction and subsystem architectures. Other kinds
of ATD items, such as segments of code affected by TD have been
studied exclusively in narrower pockets of research (Verdecchia
et al., 2018; Li et al., 2015; Martini and Bosch, 2015a), and are
mapped to our category new context, old architecture. In Mar-
tini and Bosch (2015b), Martini et al. identified the information
required to prioritize ATD. By comparing their findings to our
theory emerges again the current lack of awareness of research
findings in industrial contexts, as in our theory prioritization
emerged as a mere ‘‘gut feeling’’ (see Section 3.8). The literature
further investigates other emerging categories, such as TD man-
agement strategies (Alves et al., 2016), and the impact of TD on
morale (Ghanbari et al., 2017), but does not systematically focus
on the architectural level as we do.

5. Theory evaluation results

In this section, we document the evaluation results of our
theory, carried out by leveraging the focus group method pre-
sented in Section 2.3. Specifically, we base the evaluation of our
theory on the four criteria presented by Glaser (1978a), as we
followed such GT stance to construct our theory. In the following,
the assessment results of each evaluation criterion is discussed
separately.

5.1. C1: Theory fit to underlying data

This first criterion evaluates if the categories of the theory are
a good representation of the underlying data, i.e., if the categories

20

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

are able to suitably characterize the incidents collected for this
study. By inspecting the incidents collected via the grounded
theory method, we observed that, while minor facets and details
of the incidents were seldom missing in the theory documen-
tation, all data points resulted to be represented in the theory.
Additionally, via the focus group method, we observed that the
theory is also well-suited to fit new data related to the elements
of the theory, as recurrently participants not only recognized all
the theory elements, but also provided additional examples of
them according to their personal experience.

5.2. C2: Theory workability

This criterion assesses if the theory is able to work, i.e., to
explain and support reasoning on the phenomenon under study.
In the focus group sessions, participants recognized from their
experience the elements reported in the theory, and only in a few
cases further clarifications were required to detail the meaning
of a concept, which was afterwards acknowledged (e.g., in the
case of the ‘‘TD Halo’’ ATD Item). Recurrent sentences expressed
by participants such as ‘‘I recognize them [theory elements] a lot’’,
and ‘‘I have examples of this [theory element]’’ provided us confi-
dence that the theory provides a faithful representation of the
phenomenon, is relatable by practitioners, and is able to work
in practice. Strengthening the achievement of theory workability,
during the focus group sessions, we noted that participants recur-
rently adopted elements of the theory, such as category, types,
and relations, to frame their own examples, reason about their
experiences, and discuss about potentially missing elements.

5.3. C3: Theory relevance

The third criterion of Glaserian GT evaluation entails the as-
sessment of the relevance to action a theory possesses in the area
it purported to explain. In order to analyze this criterion, during
the focus groups, a dedicated discussion was conducted on how
the practitioners would use the theory in their current practice.
According to participants, the theory eases the communication
and sharing of knowledge related to ATD in practice, by providing
a common terminology to use, and a methodical view of how the
phenomenon is structured, which is often lacking in industrial
contexts. This enables practitioner to adopt a shared lexicon of
ATD, rather than adopting an individual one, and leveraging an
encompassing overview on how such concepts are related, in
order to collectively reason on ATD instances.

Secondly, practitioners detailed how the theory provides the
ability of gaining awareness of ATD in practice, enabling them to
understand in a systematic way the ATD they are facing, put it
into perspective, and gain further insights into what is happening.

Another element pointing to the relevance of the theory is
its use for training. Participants described that, while the notions
present in the theory may be familiar to senior software archi-
tects, these are not well known by junior colleagues. By utilizing
the theory as the basis for training, it is possible to provide less
experienced practitioners with knowledge on ATD, to gain further
understanding on the phenomenon, and manage it collectively
with deeper familiarity in present and future occurrences.

Finally, participants expressed interest in adopting the theory
for analysis and documentation purposes, either to (i) assess the
current state of ATD and analyze situations (e.g., via a checklist
representing the elements of the theory), (ii) include the theory
in their of documentation practices, or (iii) detect ATD instances
based on the symptoms documented in the theory.

5.4. C4: Theory modifiability

The last criterion entails the evaluation of the modifiability of
the theory as new data appears. In order to evaluate this criterion,
we assessed if our theory on ATD was modifiable according to the
new concepts that emerged during the focus group discussions.
This led to the modification of the theory by including 12 new
concepts discussed by the focus group participants (depicted with
the icon in Figs. 7–13), and additional insights in other already
present concepts (e.g., the relation between external and internal
causes). We note that, while new concepts were introduced in
the theory, and other concepts were modified, the ‘‘kernel’’ of the
theory, i.e., its categories, types, and relations, remained unvaried.
This further confirms the attainment of theoretical saturation in
the GT study, while proving the modifiability of the theory as new
data appears.

6. Verifiability and threats to validity

We ensure the anonymity of our participants, their companies,
and their collaborators. Hence, we keep confidential their identi-
fying details, under the human ethics guidelines governing this
study.

Accordingly, and as customary in grounded theory (e.g., Hoda
and Noble, 2017), the verifiability of our results should derive
from the soundness of the research method followed. We there-
fore provide in Section 2 an in-depth description of the research
method we followed throughout our investigation, and (within
space constraints) reference as much as possible to direct quotes
from our participants (albeit excerpted).

A potential threat to validity is the theoretical sensitivity of the
principal investigator (cfr. Section 2.1). In fact, the author resulted
to be already exposed to the ATD research body of knowledge
for one year prior the study execution. Nevertheless, we do not
deem this as a major threat to our investigation, as the relatively
limited exposure provided the researcher sufficient knowledge to
improve his sensitivity, while limiting the possibility to introduce
preconceptions and concepts consolidated during multiple years
of experience in the field. In order to mitigate this threat, all the
authors of this study refrained from investigating the literature
till after the establishment of our theory.

A threat to generalizability of our results is entailed by the
sample of participants that took part in this study. As detailed
below, the presented theory has not to be considered as absolute
or final, as it emerged from the experiences and knowledge of
the involved participants, with additional considerations extrap-
olated from the state-of-the-art academic literature. To mitigate
this threat, we interviewed practitioners from 22 distinct com-
panies of different sizes and working in different domains. By
conducting focus groups, we assessed that this threat did not
appear to significantly affect the version of the theory established
before the focus groups were conducted. Hence, we remark that
this threat may potentially affect with a higher probability the
results of the focus group method.

As any grounded theory study, our investigation establishes a
mid-range substantive theory, that is, a theory where elements
belonging to the studied context can be transferred to other
contexts with similar characteristics (Glaser and Strauss, 1967).
We hence do not claim our theory to be absolute or final, and
we highly welcome its extension, e.g., by adding detail to emerg-
ing concepts of our theory, or even unveil new concepts and
categories that did not emerge in this investigation.

21

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

7. Conclusion

Our investigation provides empirical insights into the chal-
lenges faced by practitioners when dealing with ATD. From our
study emerge eleven interrelated categories regarding ATD, lead-
ing to a cohesive theory of ATD that connects its causes, con-
sequences, symptoms, management strategies, etc. We made a
deep-dive into those categories by grounding our findings in the
knowledge of experienced software practitioners. Notably, among
other results, from our investigation emerge sets of symptoms,
consequences, and management strategies on which future re-
search, methodologies, and tooling, can be based. By carrying out
an evaluation of the theory via focus groups, we confirmed that
the theory fits its underlying data, is able to work, has relevance,
and is modifiable.

A research avenue we find particularly interesting exploring
is the further study of ATD symptoms, with particular emphasis
on quantifiable ones, in order to determine which symptoms are
best suited as foundation for novel ATD identification and man-
agement techniques, e.g., by leveraging the method presented
in Verdecchia et al. (2020b). Another interesting research di-
rection is about the definition of methods and techniques to
(i) automatically identify the components of the system which
require immediate attention from the ATD perspective (we call
them ATD hotspots) and (ii) recommend developers which actions
should be taken for paying off the ATD accumulated in those com-
ponents. Additionally, we are interested in studying the use of the
theory in practice, e.g., by conducting case studies with industrial
partners and ad-hoc assessments of ATD instances via our theory.
Finally, as discussed in Section 4, we are interested in combining
the theory built in this paper with other complementary theories
in order to build a unified formal theory of architectural technical
debt.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We express our sincere gratitude to the 27 participants who
took part in this study, for their time, support, and passion, which
made this investigation possible. Additionally, we would like to
thank Eltjo Poort, for his support. This research was conducted
under the approval of the University of British Columbia Research
Ethics Board, application number: H19-01125.

References

Adolph, S., Hall, W., Kruchten, P., 2011. Using grounded theory to study the
experience of software development. Empir. Softw. Eng. 16 (4), 487–513.
http://dx.doi.org/10.1007/s10664-010-9152-6.

Almonaies, A.A., Cordy, J.R., Dean, T.R., 2010. Legacy system evolution towards
service-oriented architecture. In: International Workshop on SOA Migra-
tion and Evolution. pp. 53–62. http://dx.doi.org/10.4018/978-1-4666-2488-
7.ch003.

Alves, N., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Seaman, C.,
2016. Identification and management of technical debt: A systematic map-
ping study. Inf. Softw. Technol. 70, 100–121. http://dx.doi.org/10.1016/j.
infsof.2015.10.008.

Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C., 2016. Managing Technical Debt
in Software Engineering. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
http://dx.doi.org/10.4230/DagRep.6.4.110,

Besker, T., Martini, A., Bosch, J., 2018. Managing architectural technical debt:
A unified model and systematic literature review. J. Syst. Softw. 135, http:
//dx.doi.org/10.1016/j.jss.2017.09.025.

Brooks, Jr., F.P., 1995. The Mythical Man-Month (Anniversary Edition). Addison
Wesley, Boston.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., Mac-
Cormack, A., Nord, R., Ozkaya, I., Sangwan, R., Seaman, C.B., Sullivan, K.,
Zazworka, N., 2010. Managing technical debt in software-reliant systems.
In: Future of Software Engineering Research. pp. 47–52. http://dx.doi.org/10.
1145/1882362.1882373.

Bryman, A., 2001. Social Research Methods. Oxford University Press, ISBN:
9780199689453, pp. 365–399.

Chiang, C.-C., Bayrak, C., 2006. Legacy software modernization. In: 2006 IEEE
International Conference on Systems, Man and Cybernetics. 2, IEEE, pp.
1304–1309. http://dx.doi.org/10.1109/ICSMC.2006.384895.

Conway, M.E., 1968. How do committees invent. Datamation 14 (4), 28–31.
Cunningham, W., 1992. The wycash portfolio management system. In: OOPSLA

Proceedings. http://dx.doi.org/10.1145/157710.157715.
Engward, H., 2013. Understanding grounded theory. Nurs. Stand. 28 (7), http:

//dx.doi.org/10.7748/ns2013.10.28.7.37.e7806.
Fowler, M., 2018. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional.
Ghanbari, H., Besker, T., Martini, A., Bosch, J., 2017. Looking for peace of mind?:

manage your (technical) debt: an exploratory field study. In: ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement.
http://dx.doi.org/10.1109/ESEM.2017.53.

Glaser, B., 1978a. Theoretical Sensitivity. Sociology Press.
Glaser, B., 1978b. Theoretical sensitivity. In: Advances in the Methodology of

Grounded Theory.
Glaser, B., 1992. Basics of Grounded Theory Analysis: Emergence Vs Forcing.

Sociology press.
Glaser, B., 2005. The Grounded Theory Perspective III: Theoretical Coding.

Sociology Press.
Glaser, B., Strauss, A., 1967. Discovery of Grounded Theory: Strategies for

Qualitative Research. Aldine.
Hoda, R., Noble, J., 2017. Becoming agile: a grounded theory of agile transitions

in practice. In: International Conference on Software Engineering. IEEE Press,
http://dx.doi.org/10.1109/ICSE.2017.21.

ISO/IEC/IEEE, 2011. Systems and software engineering – architecture description.
In: ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000). pp. 1–46. http://dx.doi.org/10.1109/IEEESTD.2011.6129467.

Kahneman, D., Tversky, A., 1977. Intuitive Prediction: Biases and Corrective
Procedures. Technical Report, Cambridge University Press, http://dx.doi.org/
10.1017/CBO9780511809477.031.

Kenny, M., Fourie, R., 2015. Contrasting classic, straussian, and constructivist
grounded theory: methodological and philosophical conflicts. Qual. Rep. 20
(8), 1270–1289.

Kontio, J., Bragge, J., Lehtola, L., 2008. The focus group method as an empirical
tool in software engineering. In: Guide to Advanced Empirical Software
Engineering. Springer, pp. 93–116. http://dx.doi.org/10.1007/978-1-84800-
044-5.

Kruchten, P., 2008. What colour is your backlog? Available Online: https://
tinyurl.com/y6f7vhpx (Accessed 10th May 2020).

Kruchten, P., Nord, R., Ozkaya, I., 2012. Technical debt: from metaphor to theory
and practice. IEEE Softw. 29 (6), 18–21. http://dx.doi.org/10.1109/MS.2012.
167.

Kruger, J., Dunning, D., 1999. Unskilled and unaware of it: how difficulties in
recognizing one’s own incompetence lead to inflated self-assessments.. J.
Pers. Soc. Psychol. 77 (6), 1121. http://dx.doi.org/10.1037//0022-3514.77.6.
1121.

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt
and its management. J. Syst. Softw. 101, 193–220. http://dx.doi.org/10.1016/
j.jss.2014.12.027.

Li, Z., Liang, P., Avgeriou, P., 2016. Architecture viewpoints for documenting
architectural technical debt. In: Software Quality Assurance. Elsevier, pp.
85–132. http://dx.doi.org/10.1016/B978-0-12-802301-3.00005-3.

Li, Z., Liang, P., Avgeriou, P., Guelfi, N., Ampatzoglou, A., 2014. An empirical
investigation of modularity metrics for indicating architectural technical
debt. In: International ACM Conference on Quality of Software Architectures.
http://dx.doi.org/10.1145/2602576.2602581.

Lomborg, K., Kirkevold, M., 2003. Truth and validity in grounded theory–a
reconsidered realist interpretation of the criteria: fit, work, relevance and
modifiability. Nurs. Phil. 4 (3), 189–200. http://dx.doi.org/10.1046/j.1466-
769x.2003.00139.x.

Martini, A., Bosch, J., 2015a. The danger of architectural technical debt: Conta-
gious debt and vicious circles. In: Working IEEE/IFIP Conference on Software
Architecture. IEEE, pp. 1–10. http://dx.doi.org/10.1109/WICSA.2015.31.

Martini, A., Bosch, J., 2015b. Towards prioritizing architecture technical debt:
information needs of architects and product owners. In: Euromicro Confer-
ence on Software Engineering and Advanced Applications. IEEE, pp. 422–429.
http://dx.doi.org/10.1109/SEAA.2015.78.

Martini, A., Bosch, J., 2017. On the interest of architectural technical debt:
uncovering the contagious debt phenomenon. J. Softw. Evol. Process http:
//dx.doi.org/10.1002/smr.1877.

22

http://dx.doi.org/10.1007/s10664-010-9152-6
http://dx.doi.org/10.4018/978-1-4666-2488-7.ch003
http://dx.doi.org/10.4018/978-1-4666-2488-7.ch003
http://dx.doi.org/10.4018/978-1-4666-2488-7.ch003
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.4230/DagRep.6.4.110
http://dx.doi.org/10.1016/j.jss.2017.09.025
http://dx.doi.org/10.1016/j.jss.2017.09.025
http://dx.doi.org/10.1016/j.jss.2017.09.025
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb6
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb6
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb6
http://dx.doi.org/10.1145/1882362.1882373
http://dx.doi.org/10.1145/1882362.1882373
http://dx.doi.org/10.1145/1882362.1882373
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb8
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb8
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb8
http://dx.doi.org/10.1109/ICSMC.2006.384895
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb10
http://dx.doi.org/10.1145/157710.157715
http://dx.doi.org/10.7748/ns2013.10.28.7.37.e7806
http://dx.doi.org/10.7748/ns2013.10.28.7.37.e7806
http://dx.doi.org/10.7748/ns2013.10.28.7.37.e7806
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb13
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb13
http://dx.doi.org/10.1109/ESEM.2017.53
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb15
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb16
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb17
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb17
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb17
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb18
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb18
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb18
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb19
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb19
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb19
http://dx.doi.org/10.1109/ICSE.2017.21
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1017/CBO9780511809477.031
http://dx.doi.org/10.1017/CBO9780511809477.031
http://dx.doi.org/10.1017/CBO9780511809477.031
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb23
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb23
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb23
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb23
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb23
http://dx.doi.org/10.1007/978-1-84800-044-5
http://dx.doi.org/10.1007/978-1-84800-044-5
http://dx.doi.org/10.1007/978-1-84800-044-5
https://tinyurl.com/y6f7vhpx
https://tinyurl.com/y6f7vhpx
https://tinyurl.com/y6f7vhpx
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1037//0022-3514.77.6.1121
http://dx.doi.org/10.1037//0022-3514.77.6.1121
http://dx.doi.org/10.1037//0022-3514.77.6.1121
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/B978-0-12-802301-3.00005-3
http://dx.doi.org/10.1145/2602576.2602581
http://dx.doi.org/10.1046/j.1466-769x.2003.00139.x
http://dx.doi.org/10.1046/j.1466-769x.2003.00139.x
http://dx.doi.org/10.1046/j.1466-769x.2003.00139.x
http://dx.doi.org/10.1109/WICSA.2015.31
http://dx.doi.org/10.1109/SEAA.2015.78
http://dx.doi.org/10.1002/smr.1877
http://dx.doi.org/10.1002/smr.1877
http://dx.doi.org/10.1002/smr.1877

R. Verdecchia, P. Kruchten, P. Lago et al. The Journal of Systems & Software 176 (2021) 110925

Martini, A., Bosch, J., Chaudron, M., 2015. Investigating architectural technical
debt accumulation and refactoring over time: A multiple-case study. Inf.
Softw. Technol. 67, 237–253. http://dx.doi.org/10.1016/j.infsof.2015.07.005.

Mateos, C., Zunino, A., Flores, A., Misra, S., 2019. COBOL systems migration to
SOA: assessing antipatterns and complexity. Inform. Technol. Control 48 (1),
71–89. http://dx.doi.org/10.5755/j01.itc.48.1.21566.

Morse, J.M., 1994. ‘‘Emerging from the data’’: The cognitive processes of analysis
in qualitative inquiry. Crit. Issues Qqual. Res. Methods 23–46.

Myers, D., Smith, S., 2015. Exploring Social Psychology. McGraw-Hill.
Oliver, D., Serovich, J., Mason, T., 2005. Constraints and opportunities with

interview transcription: Towards reflection in qualitative research. Soc.
Forces 1273. http://dx.doi.org/10.1353/sof.2006.0023.

Rose, K., 1994. Unstructured and semi-structured interviewing. Nurse Res. 1 (3),
23–32. http://dx.doi.org/10.7748/nr.1.3.23.s4.

Roveda, R., Fontana, F.A., Pigazzini, I., Zanoni, M., 2018. Towards an architectural
debt index. In: Euromicro Conference on Software Engineering and Advanced
Applications. IEEE, http://dx.doi.org/10.1109/SEAA.2018.00073.

Rubin, H.J., Rubin, I.S., 2011. Qualitative Interviewing: The Art of Hearing Data.
Sage Publications, pp. 58–59.

Schreiber, R.S., Stern, P.N., 2001. Using Grounded Theory in Nursing. Springer
Publishing Company.

Stol, K.-J., Ralph, P., Fitzgerald, B., 2016. Grounded theory in software engineer-
ing research: a critical review and guidelines. In: IEEE/ACM International
Conference on Software Engineering. http://dx.doi.org/10.1145/2884781.
2884833.

Strauss, A., Corbin, J., 1998. Basics of Qualitative Research Techniques. Sage
publications Thousand Oaks.

Szyperski, C., Gruntz, D., Murer, S., 2002. Component Software: Beyond
Object-Oriented Programming. Pearson Education.

Urquhart, C., Lehmann, H., Myers, M.D., 2010. Putting the ‘theory’ back into
grounded theory: guidelines for grounded theory studies in information
systems. Inform. Syst. J. 20 (4), 357–381. http://dx.doi.org/10.1111/j.1365-
2575.2009.00328.x.

Verdecchia, R., Kruchten, P., Lago, P., 2020a. Architectural technical debt:
A grounded theory. In: European Conference on Software Architecture.
Springer, pp. 202–219. http://dx.doi.org/10.1007/978-3-030-58923-3_14.

Verdecchia, R., Lago, P., Malavolta, I., Ozkaya, I., 2020b. ATDx: Building an
architectural technical debt index.. In: International Conference on Eval-
uation of Novel Approaches to Software Engineering. pp. 531–539. http:
//dx.doi.org/10.5220/0009577805310539.

Verdecchia, R., Malavolta, I., Lago, P., 2018. Architectural technical debt identi-
fication: The research landscape. In: IEEE/ACM International Conference on
Technical Debt. IEEE, pp. 11–20. http://dx.doi.org/10.1145/3194164.3194176.

Verdecchia, R., Malavolta, I., Lago, P., 2019. Guidelines for architecting android
apps: A mixed-method empirical study. In: 2019 IEEE International Confer-
ence on Software Architecture (ICSA). IEEE, pp. 141–150. http://dx.doi.org/
10.1109/ICSA.2019.00023.

Wert, A., Oehler, M., Heger, C., Farahbod, R., 2014. Automatic detection of perfor-
mance anti-patterns in inter-component communications. In: International
ACM Conference on Quality of Software Architectures. http://dx.doi.org/10.
1145/2602576.2602579.

Zerouali, A., Constantinou, E., Mens, T., Robles, G., González-Barahona, J., 2018.
An empirical analysis of technical lag in npm package dependencies. In:
International Conference on Software Reuse. Springer, pp. 95–110. http:
//dx.doi.org/10.1007/978-3-319-90421-4_6.

23

View publication statsView publication stats

http://dx.doi.org/10.1016/j.infsof.2015.07.005
http://dx.doi.org/10.5755/j01.itc.48.1.21566
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb37
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb37
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb37
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb38
http://dx.doi.org/10.1353/sof.2006.0023
http://dx.doi.org/10.7748/nr.1.3.23.s4
http://dx.doi.org/10.1109/SEAA.2018.00073
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb42
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb42
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb42
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb43
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb43
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb43
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1145/2884781.2884833
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb45
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb45
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb45
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb46
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb46
http://refhub.elsevier.com/S0164-1212(21)00022-4/sb46
http://dx.doi.org/10.1111/j.1365-2575.2009.00328.x
http://dx.doi.org/10.1111/j.1365-2575.2009.00328.x
http://dx.doi.org/10.1111/j.1365-2575.2009.00328.x
http://dx.doi.org/10.1007/978-3-030-58923-3_14
http://dx.doi.org/10.5220/0009577805310539
http://dx.doi.org/10.5220/0009577805310539
http://dx.doi.org/10.5220/0009577805310539
http://dx.doi.org/10.1145/3194164.3194176
http://dx.doi.org/10.1109/ICSA.2019.00023
http://dx.doi.org/10.1109/ICSA.2019.00023
http://dx.doi.org/10.1109/ICSA.2019.00023
http://dx.doi.org/10.1145/2602576.2602579
http://dx.doi.org/10.1145/2602576.2602579
http://dx.doi.org/10.1145/2602576.2602579
http://dx.doi.org/10.1007/978-3-319-90421-4_6
http://dx.doi.org/10.1007/978-3-319-90421-4_6
http://dx.doi.org/10.1007/978-3-319-90421-4_6
https://www.researchgate.net/publication/349676758

	Building and evaluating a theory of architectural technical debt in software-intensive systems
	Introduction
	Research method
	Grounded theory
	Grounded theory design and execution
	Grounded theory data collection
	Grounded theory data analysis

	Theory evaluation via focus groups: Design and execution

	A theory of architectural technical debt
	ATD items
	Framework ATD items
	Process ATD items
	Implementation ATD items

	Causes
	External causes
	Internal causes

	Consequences
	Business-related consequences
	Functionality-related consequences
	Product-development-related consequences

	Symptoms
	Issue-related symptom
	Resources-related symptoms
	Performance-related symptoms
	Development-related symptom

	Management strategies
	Active management strategies
	Reactive management strategies
	Passive management strategy

	Tool
	Artifact
	Prioritization strategies
	Person
	Communication

	Related work
	Theory evaluation results
	C1: Theory fit to underlying data
	C2: Theory workability
	C3: Theory relevance
	C4: Theory modifiability

	Verifiability and threats to validity
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

