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A B S T R A C T

Context. When testing three-tiered architectures, strategies often rely on superficial information,
e.g., black-box input. However, the correct behavior of software-intensive systems based on such
architectural pattern also depends on the logic hidden behind the interface. Verifying the response
process is thus often complex and requires ad-hoc strategies.

Objective. We propose an approach to identify faults hidden behind the presentation layer. The
model-based approach uses an architectural abstraction called managed component Data Flow Graph
(mcDFG). The mcDFG is aware of the interactions between all layers of the architecture and guides
the generation of tests based on di�erent mcDFG coverage criteria to identify faults in the business
logic.

Method. To evaluate the approach viability, we consider a three-tiered web application and 32
faults. The fault detection capability is assessed by comparing a set of test suites created by following
our method and a set of test suites developed by utilizing traditional testing strategies.

Results. The collected data show that the proposed model-based approach is a viable option to
identify faults hidden in the logic layer, as it can outperform standard strategies based solely on the
presentation layer while keeping the number of test cases and number of interactions per test case low.

1. Introduction10

Software architectures, particularly web applications, are11

pervasive and used to support even complex and intricate12

processes. Ensuring the correctness of such applications13

represents a challenge. Such programs are event-centric and14

interact with complex and only partially predictable environ-15

ments (e.g., users or other applications) through presentation16

interfaces that can range from simple command line inter-17

faces to rich graphical user interfaces (GUIs). Moreover,18

software systems are often developed under the pressure19

of meeting tight deadlines, resulting often in inadequate20

testing before the software is released. Due to the multitude21

of features and limited time available, testers often tend22

to verify the main functionalities or execute the primary23

usage scenarios they deem important. However, this strategy24

prevents the identification of faults that would be exposed by25

executing secondary paths of the application.26

To face this challenge, various strategies have been27

proposed throughout the years. For instance, fuzzy test-28

ing [31, 26] exercises the system under test by subjecting29

it to a series of external events. Other approaches produce30

test cases following the principles of evolutionary algo-31

rithms [4, 30].32

On the other hand, exploratory testing [23, 22], unlike33

automated testing, requires testers to manually select and34

execute tests by leveraging their knowledge of the internal35

details of the system.36
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Among the plethora of strategies, model-based test- 37

ing [48] emerges as one of the most popular techniques. The 38

tertiary study by Garousi et al. [18] serves as a testament to 39

this popularity. When compared to other methods, model- 40

based testing ranks first in terms of Google hits, with the 41

second most popular method garnering only half as many 42

search results. In addition, from a more academic point 43

of view, model-based testing holds the second position in 44

terms of number of software engineering secondary studies 45

conducted on the topic [18]. 46

Model-based testing utilizes models to guide the cre- 47

ation of test cases and the execution of tests. Specifically, 48

model-based testing techniques aim to identify a model of 49

the system that represents the relevant specifications and 50

mechanisms of the system under test while disregarding 51

unnecessary information. 52

By using the model of the system, test cases can be 53

derived systematically, covering various scenarios and en- 54

suring thorough test coverage [48]. Since the model is an 55

abstraction of the real system, the information it carries 56

directly influences the type of test cases that will be gen- 57

erated and the type of faults that can be detected. A fine- 58

grained model will indicate test cases that focus on low-level 59

mechanisms, ignoring the overall functioning of software- 60

intensive systems. On the other hand, a coarser-grained 61

model will indicate test cases that focus on high-level fea- 62

tures, abstracting away the internal structure of the system. 63

Software architectures are often divided into three layers 64

characterized by specific functionalities: the presentation 65

layer, the business logic layer, and the persistence layer [16]. 66

The presentation layer manages the external interface of 67

the system. The presentation layer is also responsible for 68

forwarding a request to the business logic layer each time an 69

external event is experienced on the interface. The business 70
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logic layer is responsible for (i) leading the response process71

in reaction to specific requests, (i) implementing navigation72

logic, and finally (iii) managing transient data related to ses-73

sions (commonly known as session state [16]). In the context74

of this study, we focus our research endeavors on three-75

tier layered architectures, i.e., sotware-intensive systems76

architected by adopting the classic multitier architectural77

pattern, composed of a presentation tier, a logic tier, and a78

data tier [6]. During the response phase, if it is necessary to79

persist data, the business logic interacts with the persistence80

layer.81

The functional and technological di�erences between82

the architectural layers require specific testing techniques.83

For example, database testing [35] focuses on ensuring84

that data persistency occurs as expected, while front-end85

testing [27, 25] verifies the functionality of the interface.86

However, testing the correctness of individual layers in87

isolation is not enough to verify the overall correctness of88

the system and it is often necessary to verify the e�ects of89

component collaboration. In particular, the response process90

and the business logic layer interactions with the other layers91

are crucial for the overall functioning of the system and have92

not been appropriately investigated in the literature. In fact,93

the response procedure involves multiple actors and aspects94

that usually remain partially-hidden also to the developers.95

More in-depth, the response procedure is managed through96

internal components of the business logic, sometimes re-97

ferred to as software components, which live in memory for98

a number of consecutive requests that cannot be predicted99

in advance. Software components are stateful since they100

maintain the session state and during the response process101

they behave and interact with each other depending on their102

state. The stateful nature of business logic and the variable103

composition of software components outline an evolution of104

the business logic among multiple requests. The evolution105

of the business logic, in turn, implies that the response106

procedure to a request may depend not only on the current107

request but also on the history of previous requests. An108

interdependence is then outlined between the business logic109

and the sequence of external stimuli to which the system110

is subjected. Given the tight coupling with external events,111

predicting the evolution of the internal state is di�cult and112

often unfeasible. The problem is further amplified by the fact113

that the software components are not managed manually but114

orchestrated by Inversion of Control containers (IoC con-115

tainers) [15], which handle their lifecycle and dependencies116

(dependency injection) [32].117

In this work, we provide a model-based testing strategy118

aimed at verifying the correct functioning of the business119

logic of a software architecture. To achieve this, we formal-120

ize a model that exploits proper coverage criteria sometimes121

termed model-flow criteria [45]. This model is capable of122

identifying sequences of external events that induce specific123

evolutions and behaviors among the software components.124

We then show how this abstraction can be obtained au-125

tomatically by exploiting a generation toolchain that we126

have developed specifically for the purposes of this paper.127

Finally, we conduct an experimental proof of concept of 128

the proposed approach on a web application, named Flight 129

Manager. We generated a set of test suites for Flight Man- 130

ager following di�erent coverage criteria. Subsequently, we 131

evaluated whether the generated test suites are able to detect 132

business logic-related faults through a process of mutation 133

testing where we manually injected 32 non-trivial faults into 134

the application and we assessed the fault detection capability 135

of each test suite. To evaluate the viability of our approach, 136

we apply it in the context of a widespread application of 137

three-layered architectures, namely web applications. In this 138

context, to compare our approach, we consider the baseline 139

presentation layer-centric approach that either utilizes as 140

the coverage criterion visiting all pages (page testing) or 141

visiting all navigation (hyperlink testing) of the navigation 142

diagram [40], also referred to in this work as “Page Naviga- 143

tion Diagram” (PND) [24]. 144

This navigational model is often used in literature to 145

identify feasible navigational paths in system testing. For 146

example, Biagiola et al. [7], use a navigational model to 147

identify feasible sequences of interactions in the system that 148

will then constitute the tests. Zheng et al. [51] propose an 149

end-to-end testing framework based on reinforcement learn- 150

ing to identify high-quality interaction sequences, basing 151

the algorithm’s choices on a navigational model. Similarly, 152

Mesbah et al. [34], propose a crawler that works with a page 153

navigation diagram for user interface validation. 154

The main contributions of this research can be summa- 155

rized as follows: 156

1. A catalog of faults (i.e., a fault model) that may be 157

introduced at coding time while configuring the IoC 158

container, particularly when specifying dependency 159

injection and lifecycle management of software com- 160

ponents; 161

2. A system abstraction called managed component data 162

flow graph (mcDFG) that takes into account the dy- 163

namic evolution of software architecture; 164

3. The identification of a toolchain that allows the ab- 165

straction of the system to be obtained with minimal ef- 166

fort; 167

4. An implementation of the mcDFG Generation for 168

Java-based systems; 169

5. A complete replication package of the study1, includ- 170

ing, (i) the implementation of the experimental proof 171

of concept, (ii) a reusable experimental subject for 172

model-based testing containing 32 non-trivial faults, 173

(iii) the complete material required to replicate the 174

study, and (iv) the results of the experimental proof 175

of concept reported in the study. 176

The remainder of the paper is structured as follows: 177

Section 2 outlines the background information on which 178

the study is based. Section 3 discusses the related work. 179

Section 4 presents the set of chain of threats fault types and 180

failure modes considered in this research. Section 5 presents 181

1https://doi.org/10.5281/zenodo.10727674 Accessed 29th February,
2024
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the model-based approach introduced with this paper. An ex-182

perimental poof of concept of the approach is documented in183

Section 6, accompanied by the presentation of the collected184

results and their discussion. Finally, conclusions, implica-185

tions, and research outlook are reported in Section 7.186

2. Background187

We describe how transient data are managed through188

software components that live in memory (Section 2.1) while189

software architectures run. We outline the responsibilities190

and the operations of IoC containers (Section 2.2). We then191

propose a visual representation that makes explicit compo-192

nents dependencies hidden by this practice (Section 2.3).193

We finally outline pitfalls entailed by these mechanisms194

(Section 2.4).195

2.1. Software Components196

Software architectures often deal with big amounts of197

data. Di�erent natures of information require di�erent man-198

agement strategies. Long-term and consolidated data are199

persisted in a database and identified as record state [16, 9].200

Conversely, transient data are conveniently stored in mem-201

ory improving access performance and avoiding burdening202

the database with volatile information. While the record state203

is visible among multiple sessions, in-memory information204

is often identified as session state since it is usually related to205

a single business transaction, i.e., session, and it is not shared206

among other parallel sessions.207

Concretely, the session state is managed by typed soft-208

ware objects that live in memory. In the rest of the paper,209

we will identify all the objects that live in memory with210

the term components. Components live in memory for a211

bounded timespan and individually maintain a portion of212

the session state. Part of living components is also respon-213

sible for reacting to external events and possibly providing214

the proper response. Components that are involved in the215

response process are usually identified as components be-216

longing to the business logic layer [16, 8]. Usually, events217

consist of external stimuli, e.g., interactions, executed on218

the interface of an application. The stimulus is forwarded by219

the presentation layer, the module responsible for interface220

management, to the business logic layer in the form of a221

request. Once arrived at the business logic layer, a specific222

component called controller, will intercept the request and223

conduct the response process. The number of controllers and224

the criterion of request interception may vary. For instance,225

in web applications [9, 44], the page controller pattern [16]226

is frequently used. For each page of the web application, the227

page controller pattern requires the definition of a controller228

often referred to as page controller. A page controller of229

a specific page is responsible to intercept all the requests230

arriving from the related page.231

Controllers are rarely independent: during the response232

process, they need to be supported by other components. In233

case of the necessity of specific business logic functionalities234

or to simply maintain information in memory, the controller235

will interact with other business logic components, here236

identified as helper components. Conversely, when read- 237

/write operations to the database are required, components 238

belonging to the underlying data layer will be used. Data 239

layer components, therefore, are responsible to implement 240

the functions and provide the entry points to interact with 241

the persistence medium usually identified by databases. Re- 242

gardless of the types of components, an interaction stipulates 243

a relationship between the involved components that can 244

influence and tie their states. An interaction then establishes 245

a dependency between the embroiled components. 246

Maintaining the session state requires components them- 247

selves to acquire a transient nature. Since it is plausible 248

that some transient information should remain longer than 249

others, the life cycles of the components should not be syn- 250

chronized, identifying components with di�erent life spans. 251

Thus, to properly satisfy the nature of the session state, the 252

business logic is constituted by a set of stateful components 253

that live concurrently for a bounded sequence of requests, 254

and establish dependencies with each other. Since requests 255

arrive at runtime and depend on external factors (e.g., the 256

interactions on the interface) the evolution, intended as the 257

composition of the living components and the dependencies 258

established at runtime, are hard to predict at static time. 259

2.2. Component Management through the IoC 260

Container 261

The complex and intricate nature of business logic makes 262

its development cumbersome and error-prone. To ease the 263

task, development heavily relies on widespread frameworks 264

that provide high-level containers able to manage compo- 265

nents at runtime. More specifically, containers run alongside 266

the application and perform component dependencies injec- 267

tion (DI), and automated life cycle management activities. 268

For this reason, they are usually identified as Inversion 269

of Control Containers (IoC Containers) [15]. Component 270

dependencies injection consists of obtaining on the fly the 271

instance of the type specified at coding time and injecting 272

its reference in the dependent component. This also implies 273

dealing with race conditions and determining dynamically 274

if a specific instance should or should not be shared with 275

other instances. Automated life cycle management takes care 276

of component creation and destruction according to the life 277

cycle models specified by the SW developer at development 278

time. 279

Container behavior is configured through annotations 280

extending the plain code definition of classes with meta- 281

information. To properly manage components and their 282

evolution, the container maintains a runtime representation 283

based on the concepts of scope and context. A scope defines 284

a type of policy that the container can enforce in the lifetime 285

and visibility management of required components. Besides, 286

a context maintains a collection of references to running 287

objects, often termed contextual instances, managed under a 288

common scope. During the runtime, the container maintains 289

a set of contexts and each managed object is associated with 290

a scope specified by the object type. 291
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Though with various terminologies, scopes are tradi-292

tionally of four types: request, session, application, and293

enclosed. Components with request scope are allocated and294

maintained in memory only for the time between an in-295

teraction request and the response. In Web Applications,296

for instance, scopes are naturally shaped by concepts of297

the underlying HTTP protocol and its State Management298

Mechanism [5]. Thus, in web applications, request scoped299

components live for the equivalent of a single HTTP request.300

Besides, components with session scope maintain their state301

along a single session of usage. For Web applications, ses-302

sion scoped components will live among multiple HTTP303

requests, spanning from the initial contact (or login) to when304

the application is left (possibly with a logout). In the opposite305

direction, the application scope encompasses multiple ses-306

sions, along any long-term run from an application startup307

to shutdown. However, in many interaction scenarios, like308

use case scenario executions, data need to be maintained309

along a time span shorter than an entire session but longer310

than a single request. This is commonly supported by a311

scope, which we term here enclosed, whose boundaries are312

programmatically demarcated in the code by explicit be-313

gin/end operations. In addition to the four traditional scopes,314

we also consider another scope not always implemented315

in frameworks of DI and lifecycle management and that316

is often identified as a pseudo-scope. This pseudo-scope317

guarantees that a required component assumes the scope of318

the dependent component where it is injected. We call it319

conforming scope, in contrast with all the other mentioned320

scopes which will be termed absolute.321

The system of scopes is organized hierarchically: a re-322

quest context is always contained in a session and possibly in323

an enclosed context. An enclosed context is always wrapped324

in a single session context and the application context wraps325

all the session contexts. Finally, since managed components326

have a lifecycle, frameworks usually provide the possibility327

to define post-construct and pre-destroy actions for each328

component triggered, respectively, immediately after the329

creation and immediately before the destruction of the con-330

textual instance.331

2.3. A Visual Representation of Concurrency and332

Coupling among SW Components333

IoC Containers orchestrate the execution of multiple334

concurrent contexts and contextual instances. The container335

orchestration is determined by the static scope assigned to336

required components at coding time and by the sequence of337

requests received at runtime. In this concurrent execution,338

managed objects belonging to di�erent contexts interact339

with each other through method invocations that result in340

implicit data flow coupling.341

Figure 1 provides a visual aid to gain concrete insight342

into how the high-level concepts of presentation, logic, and343

data tiers considered in this research translate to the more344

concrete implementation notions used by the approach. As345

starting point, data needs to be transferred from the pre-346

sentation tier to the logic tier. This is depicted in Figure 1347

S�

LOGIN�

A

R1 R2 R3 R4 R5

EC �

S�

EC �
active

inactive

context
ending

interaction
(e.g., read,

write)

managed
component

context
beginning

Figure 1: Visual representation of components during a soft-
ware architecture execution. In the first shown epoch R1, the
application context A continues from the previous activity,
the session context S

�
and an enclosed context EC

�
are

started, and the instance within EC
�

is written, first by
of S

�
and then by of A. In the subsequent epoch R2,

the session context S
↵

and a request context LOGIN
↵

are
started, and the instance of S

↵
is written by the instance

of LOGIN
↵
. Component instances from both EC

↵
and

EC
�
, perform read/write operations on shared data from/to

the application context A.

as the instantiation of managed components at each epoch 348

R1-R5, corresponding respectively to the shapes and 349

(R1), (R2), and (R3), (R4), and (R5). The 350

response routine is then executed in the logic tier through 351

the instantiation of contexts and their interaction, depicted 352

in Figure 1 as coloured rectangles. During each epoch, 353

managed components belonging to di�erent context interact 354

between them (see directed arrows in Figure 1). Managed 355

components can belong to two di�erent tiers, either the logic 356

tier (e.g., function calls) or the data tier (e.g., raw data passed 357

from one context to another). 358

In Figure 1, time is partitioned in a discrete sequence of 359

epochs. Each epoch starts when a request arrives and terms 360

when the request is served and the service of the subsequent 361

request can be started. In Figure 1, epochs {Rn}Nn=1 are 362

represented on the horizontal axis. 363

Within each epoch, the run is characterized by: i) the 364

set of living contexts, either active or inactive, ii) the set 365

of contextual instances associated with each context, and 366

iii) the sequence of method invocations among contextual 367

instances. In Figure 1, living contexts are stacked along the 368

vertical axis. A is the application-scoped context, S� and 369

EC� are a session-scoped and an enclosed-scoped contexts, 370

respectively. During R1, the contextual instance is as- 371

sociated with context A, with S� , with EC� . Finally, 372

methods of are invoked first by and then by ; 373

At the beginning of each new epoch, each living context 374

is either started (e.g. EC↵ in R3), continued (e.g. S↵ in R3 375

or EC� in R3), inactivated (e.g. EC� in R2) re-activated 376

(e.g. EC� in R4), or released (e.g. EC� in R4). At release, 377

all instances in the context are destroyed and their state 378

is lost. At inactivation, instances maintain their state but 379

they are not visible until the context is activated again. At 380
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creation, the context starts as new so that each instance381

will be created from scratch when required. At continuation,382

instances maintain their state and visibility.383

Within each epoch, multiple contexts of the same type384

may be alive but only one context for each scope can be385

active. According to this, any active contextual instance will386

be able to directly interact only with instances belonging to387

its context and its embedding contexts, both of higher and388

lower level, respecting the hierarchical organisation fixed389

by definition (i.e., it can only interact with other active in-390

stances). Since the request scope belongs to the lowest level391

of the hierarchy, for each epoch, the abstraction identifies392

the set of visible contextual instances and makes explicit the393

lifetime along which they have maintained their state.394

The visual representation makes explicit two interact-395

ing mechanisms of cross-context coupling among managed396

components. On the one hand, concurrent instances active397

in the same epoch may invoke each other, yielding direct398

coupling between components, both in the same session (e.g.399

intra-session usage of during R1) and between a ses-400

sion component and the Application context (e.g. inter-401

session usage during R1). On the other hand, components402

that maintain their state across multiple epochs may carry403

indirect dependencies between components even when these404

are not concurrently alive (e.g. and transitive coupling405

intermediated by ).406

2.4. Problem Formulation407

The reaction to an external input of a three-layered408

architecture is influenced not only by the current request,409

but also on the past interaction history with the system. In410

other words, three-layered architectures showcase a stateful411

behavior, where outputs are provided based on the current412

interaction with the system, and the internal state reached413

by the system during its runtime evolution based on the past414

inputs received. The dynamic nature of this internal state is415

in fact conditioned also by business logic mechanisms and416

middleware functionalities, such as Dependency Injection417

(DI) and automated lifecycle management frameworks (refer418

to Section 2.2). Within this context, in this research, we419

aim to identify and evaluate failure-inducing interaction420

sequences by considering not only the current state of the421

presentation layer, but also the internal state embedded in422

the logic and data layers. As further detailed in Section 4,423

this point of view allows to identify a set of failures that424

cannot be otherwise identified by considering exclusively the425

presentation layer state.426

Due to components, software architectures can not be427

considered memoryless systems. It is not guaranteed that428

a response depends only on the type of request issued and429

its parametric values. The response process may depend430

on the transient information encapsulated in one or more431

components living at the moment of the request. The soft-432

ware architecture can be indeed considered as a stateful433

system where the state of the system is the set of components434

currently living in memory. To evaluate a stateful system435

properly, it is fundamental to test it under various state436

configurations. However, the evolution that the system state 437

experiences at runtime makes it insu�cient to test just the 438

state configurations. 439

More in detail, in software architectures, the system 440

evolves its state in reaction to the events that occur over 441

time. During the usage, it is expected that the transient data 442

required to support the session (i.e., the session state) will 443

change. In software architectures, it is fundamental then 444

to guarantee also that the state of the system will evolve 445

coherently with the sequence of requests that will receive. 446

Even if the system is proven to behave correctly under all 447

the possible state configurations, a wrong evolution during a 448

sequence of requests will still cause a malfunction. 449

The evolution of the system state represents a fragile part 450

of the architecture. It is guided by configurations defined 451

during the implementation of the architecture but the actual 452

implications can be observed only when the whole appli- 453

cation runs. The fragility is further emphasized when DI 454

and automated life cycle management frameworks are used. 455

The actual process of dependency injection of components 456

and the management of their life cycle is managed by the 457

container with logic that remains hidden to the developer 458

that simply exploits the framework. The opacity with which 459

the container works tends to complicate the ability to predict 460

the evolution of the system and to increment unexpected 461

evolution patterns. 462

Additionally, containers rely on high-level events e.g., in 463

web applications events are HTTP requests while in desktop 464

applications are interactions on the user interface. The high 465

level of the events prevents the standard techniques of unit 466

and integration testing from being used to evaluate how 467

the state evolution a�ects the runtime behavior. However, 468

neither standard system testing is usually enough. Hence, 469

system testing techniques, usually identify the sequence of 470

events relying on external information provided by the pre- 471

sentation layer. Similarly, also the test case evaluation phase 472

is based on the visible side e�ects observed considering the 473

system as a black box. In system testing then, the evolution 474

of the system state is only evaluated indirectly and partially, 475

ignoring completely living components, their interactions, 476

and the e�ects of the container. 477

Neglecting internal information makes the testing pro- 478

cess ine�cient for two main reasons. Relying only on exter- 479

nal information may lead to selecting poor test cases that ne- 480

glect the internal processes of both the business logic and the 481

middleware technologies. Moreover, a black box perspective 482

allows assertions only on the external interface of the system 483

under test. This prevents the immediate identification of 484

internal errors and allows the detection of malfunctions 485

only when propagated up to the presentation layer. Even in 486

the case of a test detecting a failure, the subsequent fault 487

detection procedure may be particularly complex due to the 488

complex chain of faults, errors, and failures involved, like for 489

Mandel- and Heisen-bugs [20, 13, 11]. 490

Scommegna et al.: Preprint submitted to Elsevier Page 5 of 19



3. Related Work491

In this section, we discuss the scientific work related492

to this study. Specifically, we focus on the closest related493

work to the approach presented in this study by considering494

black-box testing strategies (Section 3.1), white- and grey-495

box testing strategies (Section 3.2), mobile testing strate-496

gies (Section 3.3), and Diversity-Based Test Case Selection497

Strategies (Section 3.4).498

3.1. Black-box Testing Strategies499

Numerous research studies have been conducted over the500

years to identify sequences of interactions to exercise the501

presentation layer of software architectures. Many of these,502

including ours, rely on an abstraction of the system under test503

to extract a sequence of relevant interactions. For instance,504

the work of Biagiola et al. [7] proposes a method to generate505

system-level test cases in web applications. The testing506

strategy is based on a navigational model of the application507

where a path represents a list of pages visited by the user508

during a specific sequence of interactions. Biagiola et al.509

propose a strategy to select the test case on the navigational510

model guided by a diversity-based metric in order to generate511

a test suite as heterogeneous as possible. However, the metric512

proposed by the authors takes into account only the diversity513

of the interactions involved in the test neglecting the state of514

the system and its evolution during the execution.515

Yousaf et al. [50] instead propose an automated model-516

based test case generation strategy. The process is based517

on identifying sequences of interactions to be performed518

on the interface of the application under test. The selec-519

tion of paths on the interface relies on a model expressed520

using the Interaction Flow Modelling Language (IFML)521

formalism [17], a language adopted as a standard by the522

Object Management Group (OMG), which allows defining523

the design of web application interfaces. The work presents524

an interesting application of model-based user interface test525

case (MBUITC) generation. However, although IFML al-526

lows defining some behaviors of the business logic and thus527

representing dependencies between software components,528

the lifecycle and role of the container cannot be represented.529

Therefore, the test cases suggested by the method cannot530

take into account the faults identified in this work.531

3.2. White- and Grey-box Testing Strategies532

Previous work of Arcuri [4] has addressed the automatic533

test case generation for RESTful APIs. The strategy to534

generate test cases exploits an automated white-box testing535

approach. Tests are generated through an evolutionary al-536

gorithm guided by code coverage and fault-finding metrics.537

The approach also deals with the well-known hurdle of538

setting the initial state for test cases. Thus, a test case may539

require an exact state configuration to observe a specific540

behavior during the test execution. Setting the initial state of541

the system is sometimes hard and Arcuri solves the problem542

through smart sampling, a strategy that relies on a prede-543

fined set of test case templates. However, smart sampling544

considers only long-term and consolidated data (the record545

state) and ignores the transient state of the system. Our 546

approach instead, aims to find a sequence of requests that 547

bring the initial state of the system to the proper one also 548

taking into account the transient data maintained in software 549

components. 550

The work of van Rooji et al. [42] proposes a grey-box 551

fuzzer aimed to discover vulnerabilities in web applications. 552

As in our work, the goal of van Rooji et al. is to generate test 553

cases that evaluate the system beyond what is observable in 554

the application response while maintaining a tradeo� in the 555

scalability of the approach. As in our approach, the method 556

is guided by coverage criteria on a high-level representation 557

of the system, however as also outlined by the authors, the 558

faults studied are surface-level bugs. Considered faults in 559

fact do not rely on “complex internal application state” or 560

on a series of dependent requests to be triggered. 561

3.3. Mobile Testing Strategies 562

Mobile testing, and in particular Android testing, ad- 563

dressed extensively the problem of selecting sequences of 564

interactions to test the correct behavior of the system [28, 565

2, 47, 37, 21, 29]. Among all the above mentioned papers, 566

the work of Gu et al. [21], is very close to our method. The 567

authors propose a fully automated Model-Based automated 568

GUI testing technique. The test case selection is guided 569

by an abstraction that is gradually refined with dynamic 570

information about the system. The dynamic nature of the 571

model allows the method to take into account behaviors that 572

cannot be extracted statically from the application. How- 573

ever, the abstraction can extract and dynamically adapt to 574

behaviors visible from the user interface, this prevents the 575

abstraction from taking into account the evolution of the 576

internal state and suggests paths targeted to trigger the fault 577

that we address in this work. 578

3.4. Diversity-Based Test Case Selection Strategies 579

Many other works have addressed the problem of reli- 580

ability in systems subject to sequences of external events, 581

even without system abstractions. One of the researches 582

that is most closely related to this work is constituted by 583

the Route tool [27]. Route implements a novel strategy of 584

augmentation for system test cases. Starting from a test case 585

consisting of various interactions on the interface, Route 586

suggests alternative cases that verify the same functionality 587

as the original but follow a di�erent path. Taking a di�erent 588

path has the capability to stimulate di�erent dependencies 589

among the underlying components, thus inducing a distinct 590

evolution of the system’s internal state. 591

Although the work remains intriguing and presents in- 592

novative heuristics for test case augmentation, the strategy 593

remains blind to internal logic and relies solely on external 594

information, unlike our method, which tackles the problem 595

by employing a grey-box approach. 596

The work of Leveau et al. [25] presents a new ap- 597

proach to suggest rare and diverse sequences of interactions 598

during a phase of exploratory testing of web applications. 599

Although the approach is very interesting and in principle 600

also e�ective in identifying faulty sequences, the approach 601

measures the diversity and the rarity of a sequence ignoring 602
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the internal logic of the application itself. In our method603

instead, the sequence selection is heavily based on software604

components information and behavior.605

4. Chain of Threats Fault Types and Failure606

Modes607

We characterize the chain of threats a�ecting the devel-608

opment of the business logic of software architectures by609

classifying types of coding faults (Section 4.1) and failure610

modes that they can produce (Section 4.2).611

4.1. Fault Model612

We consider a catalog of fault types that can be intro-613

duced in annotation or programmatic lifecycle specification,614

which makes the scope of a managed component unfit for615

the needs of the point where it is injected.616

The catalog was populated by conducting a manual617

analysis on how the dependency injection and automatic life-618

cycle management are implemented in the IoC containers.619

The catalog, therefore, reflects the structural characteristics620

of annotation-based and programmatic specifications of the621

lifecycle of software components using IoC containers. To622

validate the catalog, developers of a complex three-layered623

architecture implementing an electronic health record in use624

for several years in a major Tuscan hospital [38, 14] were625

contacted for feedback. The developers confirmed the list626

as covering the fault types they experienced in their daily627

practice.628

The resulting catalog of faults considered in this study is629

reported below.630

• ShorterScope: a component is assigned an absolute631

scope lower than what would be required.632

• LongerScope: viceversa, a component is assigned an633

absolute scope higher than what would be required.634

• WrongConformance: a component is assigned a con-635

forming scope while it should have been absolute, or636

viceversa.637

• EarlyOrUndueClosure: the end demarcation of an638

enclosed context is erroneously added or placed too639

early in the code.640

• LateOrMissingClosure: the end demarcation of an641

enclosed context is missing or it is placed too late in642

the code.643

• LateOrMissingBegin: the begin demarcation of an644

enclosed context is missing or late in the code.645

• MissingStateClearance: the code misses a required646

clear-out or re-initialization of a component, which647

should be triggered at creation or destruction of some648

other component as a post-construct or pre-destroy649

action.650

• ErroneousDynamicInjection: the type of an injected651

component is erroneously determined, which may oc-652

cur when injection types are determined dynamically653

during the run-time.654

The identified faults are insidious and can be inserted by 655

developers with di�erent levels of skill, as can be observed 656

in technical social forums such as StackOverflow, Github, 657

and DZone. An overview of examples of such discussions is 658

reported for completeness in the replication package. 659

4.2. Failure Modes 660

Faults in annotation and programmatic specification of 661

managed components lifecycle may result in various kinds 662

of errors in the type of injected components or in the logic of 663

the intervals [1] during which they exist, maintain their state, 664

and are shared by multiple dependants. In turn, this may 665

cause various types of deviations in the functional behavior 666

delivered by the presentation layer. 667

We identify and characterise four types of failures oc- 668

curring when an injected component: does not maintain 669

memory as long as required (vanishing component); or, vice- 670

versa, it is not renewed when needed (zombie component); 671

or it becomes visible at the same time to multiple dependants 672

that should not share it (unexpected shared component); or 673

it is created in a wrong type variant (unexpected injected 674

component). 675

Vanishing component. An injected component may not 676

live and maintain its state with continuity along the time 677

interval needed by its dependants, thus resulting in a null 678

pointer exception or a data loss (if the component type is 679

restarted by a new injection), as illustrated in Figure 2.

C1

C2

R1 R2 R3

C1

C2

R1 R2 R3
Figure 2: Vanishing component failure. (left) the expected
correct behaviour in some scenario with two coupled instances

and living in distinct contexts C1 and C2: uses
twice expecting that this maintains its state across subsequent
requests. (right) a faulty behaviour: at the beginning of R3,
context C2 is restarted (instead of continuing) and the IoC
container constructs a new instance of the same component
type; the fault is activated at the point marked by , entering
an erroneous state that produces a data loss failure when is
used by .

680

Zombie component. In the opposite situation, an injected 681

component may remain alive with continuity while a depen- 682

dent component expects that it is destroyed and restarted. 683

This may lead to components that maintain an obsoleted 684

state, as illustrated in Figure 3, or it may also potentially 685

produce an aging failure due to memory leakage [19]. 686

Unexpected shared component. A context may remain 687

continuously active so as to be accessible by two or more 688

concurrent dependent contexts. This may lead multiple de- 689

pendants to erroneously share the same instance of some 690

required component, causing failures due to interference on 691

the component state, as illustrated in Figure 4. 692

Unexpected injected component. The type of a re- 693

quired component may be wrongly specified at its injection 694
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C1

C2

R1 R2 R3

C1

C2

R1 R2 R3
Figure 3: Zombie component fault.( left) in a correct imple-
mentation, should access two distinct instances of . (right)
however, since the context C1 is not closed and restarted, the
instance retains memory also during R2 and the second
access of will find an obsoleted and not refreshed state.

C1

C2

R1 R2 R3

C3

C1

C2

R1 R2 R3

C3

Figure 4: Unexpected shared component fault. (left) The
and contextual instances expect each one to inject a

different instance of the required component (i.e., and ,
respectively). (right) yet, the IoC container resolves both de-
pendencies with the same contextual instance, thus producing
interference and unpredictable race conditions.

C1

C2

R1 R2 R3

C1

C3

R1 R2 R3
Figure 5: Unexpected injected component fault. The IoC
container, in R1 resolves the dependency of with a wrong
contextual instance (i.e., instead of ), thus producing
unpredictable behaviours.

point, for trivial coding error or for subtle defects in the695

static selection of alternative implementations of a type or696

in the logic of a dynamic programmatic lookup. this may697

cause a variety of deviations from the expected use case flow,698

unpredictably leading to fast failure or to complex aging699

e�ects [19]. Figure 5 illustrates the concept.700

Identified fault and failure types have some typical causal701

relation, which may direct analysis of root causes: vanishing702

components naturally result from ShorterScope, EarlyOrUn-703

dueClosure, and LateOrMissingBegin faults; conversely, a704

zombie component can be easily caused by LongerScope,705

LateOrMissingClosure, and MissingStateClearance faults;706

an unexpected shared component can be produced by the707

same faults that cause a zombie component, but with a dif-708

ferent process; all failures due to longer or shorter scope can709

also be due to a WrongConformance, with e�ects depending710

on the specific mismatch between conforming and absolute711

expected components; finally, unexpected type typically re-712

sults from an ErroneousDynamicInjection.713

5. Identification of Software Component 714

Faults through Model-Based Testing 715

We propose a model-based testing approach [48] that 716

jointly involves: (i) the constraints of presentation interface, 717

(ii) the lifecycle specification of software components, (iii) 718

their data-flow dependencies, and (iv) the actual concur- 719

rency produced by the e�ects of container orchestration. 720

The approach relies on an abstraction, that we call Man- 721

aged Components Data Flow Graph (mcDFG described in 722

Section 5.1). The approach presented in this study is based 723

of a two-phase process, which first involves the mcDFG 724

generation, and subsequently generates test cases based on 725

the mcDFG model created in the first phase. An overview of 726

the complete process is depicted in Figure 6. 727

At the highest level the approach, starting from a use 728

case, generates a set of test cases allowing to verify the 729

correct execution of the use case. The presented approach 730

consists of a total of 6 intermediate steps, each one charac- 731

terized by their own inputs and outputs. 732

The first phase of the approach, comprising Step 1 and 733

Step 2 (see Figure 6), regards the generation of the mcDFG 734

abstraction (see Section 5.2 for more details). In the sec- 735

ond phase, starting from Step 3, the procedure exploits the 736

mcDFG abstraction to identify and subsequently generate 737

test cases. We describe this latter part in Section 5.3. 738

Since the mcDFG is a technology-agnostic abstraction, 739

the proposed procedure remains valid for generic three- 740

layered architectures with IoC containers. However, for the 741

sake of concreteness and to be able to demonstrate its valid- 742

ity through a proof of concept (Section 6), we implemented 743

the mcDFG generation tool for three-layered architectures 744

developed for the Java Enterprise Edition. In the workflow, 745

we have marked both the steps that we have automated and 746

those that we have executed manually. Note, however, that 747

the goal of our proof of concept was to demonstrate the 748

validity of the approach and not to provide a comprehensive 749

tool for practitioners. Thus, we also indicate in the figure 750

the steps that were manually performed during our proof of 751

concept but could easily be automated. 752

5.1. The Managed Components Data Flow Graph 753

Abstraction 754

Coverage of couplings across contexts occurring among 755

software components requires a testing approach able to 756

cover the execution paths interconnecting the points where 757

the state of each software component is defined and used. 758

The paths of interest are, therefore, sequences of interactions 759

that occur from the moment a software component is instan- 760

tiated by the IoC container to the moment a method of the 761

software component is invoked, thus capturing the runtime 762

data flow produced by contextual instances. In principle, 763

execution paths might be abstracted into an Object-Oriented 764

Data Flow Graph [46]. However, this would require ex- 765

plicit unfolding and representation of the complex actions 766

performed by the IoC container in the management of con- 767

textual instances (e.g., components proxies, aspect-oriented 768
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Legend
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Figure 6: Workflow of the proposed approach

programming techniques), with an explosion of graph ele-769

ments leading to infeasible dimensions of test suites.770

To this end, we propose the Managed Components Data
Flow Graph (mcDFG) abstraction, inspired by the classical
DFG and DFT theory [39], which combines elements of
structural and functional perspectives by capturing salient
characteristics of involved components with their depen-
dency hierarchies and lifecycles together with admissible
interactions along designed use cases. Formally, the mcDFG
is a directed graph, labeled on vertices and edges:

mcDFG := ÍV ,Vin : E , Ein, def , use,P ,Nav,CBÎ
Where V is the set of vertices, with each v À V representing771

a basic block, i.e. a sequence of method invocations and772

IoC container instantiations that are always executed as a773

whole. Vin ” V is the subset of vertices associated with774

basic blocks that terminate in any state where the interface775

waits for interactions. E ” V ù V is a set of edges, with776

< vi, vj >À E i� there exists an execution where the last777

operation of vi can be followed by the first operation of vj .778

Ein ” Vin ù V is the subset E made of the edges that leave779

a basic block that terminate with the interface waiting for an780

interaction.781

Relations def : V ô 2MC and use : V ô 2MC
782

associate each vertex with the subset of used and defined783

managed components, where MC denotes the set of all784

managed components, and, for any c À MC , c À def (v)785

means that an instance of component c is created during786

the execution of the basic block associated with vertex v,787

and c À use(v) means that an already existing instance of788

c is used by invocation of any of its methods. As opposed789

to the classical theory of dataflow testing, the relation of790

use does not distinguish whether the invocation will produce 791

a side e�ect on the used component. Besides, the relation 792

P : Vin ô presentation layer states associates each vertex 793

v À Vin with the specific interface provided by the pre- 794

sentation layer on completion of its associated basic block. 795

The presentation layer state identifies the set of interactions 796

currently allowed on the presentation layer. 797

The relation Nav : Ein ô {nav controller :: sign()} 798

associates each edge ✏ À Ein that exits from a vertex v À 799

Vin with the controller method triggered by the interaction 800

sign(). The relation CB : E ô EnclosingActions asso- 801

ciates edges with any programmatic action of control of an 802

enclosed context performed when the edge is traversed, with 803

EnclosingActions = {begin, end, end_begin}. 804

To exemplify the concept, Figure 7b reports the mcDFG 805

derived from a use case implemented in the online flight 806

booking system Flight Manager (more details in Section 6.2). 807

Vertices, associated with basic blocks, are represented as 808

green circles and they are labeled with def and use oper- 809

ations performed in the corresponding basic block, on violet 810

and green background, respectively (e.g. see, vertex 1); 811

vertices in Vin (e.g. vertex 5) are also associated with a pale 812

blue label with the identifier of the presentation layer state in 813

which the three-layered architecture waits for an interaction; 814

output edges from Vin vertices are labeled with the name 815

of controller methods triggered by an interaction (e.g. from 816

vertex 5, AirportController::viewAirport() and AirportCon- 817

troller::redirectToHome()) actions for programmatic control 818

of enclosed contexts are labeled on edges where they occur 819

(e.g. on edges Í1, 2Î and Í3, 0Î). 820

Note that the mcDFG is a kind of grey-box abstraction 821

that seams the structure of the navigational model, also 822
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known as page navigation diagram, of Figure 7a (the pale823

blue parts) together with lower-level information related to824

the application code (green parts) and the IoC container825

behavior (violet parts).826

AdministratorPage AirportList AirportView
view details

return

view airports

back

(a) A fragment of the PND of the Flight Manager application.

AdministratorPage

nav AirportController::goToAirportListPage()

cb begin enclosed

AirportList

0

DEF AirportController
DEF AirportDao
USE AirportController

1

USE AirportDao2

nav AirportController::redirectToHome()

nav AirportController::viewAirport()

AirportView

nav AirportController::goToAirportListPage()

nav AirportController::viewAirport()

USE AirportController3

USE AirportController4

USE AirportController5

cb end enclosed

nav AirportController::redirectToHome()

AirportList

(b) Managed Component Data Flow Graph.

Figure 7: A snippet of PND and the corresponding mcDFG for
the administrator use case “View Airports” (UC:A4.2).

5.2. mcDFG Generation (Phase 1)827

The mcDFG provides a powerful abstraction, well tai-828

lored to unravel the actual dependencies that result from829

the intertwined e�ects of (i) interactions on the presenta-830

tion layer, (ii) DI specification and method invocations in831

back-end components, and (iii) orchestration process imple-832

mented by the container. However, this e�ectiveness comes833

with a corresponding price in the mcDFG construction,834

which involves a significant and error-prone e�ort for the835

inherent complexity of integration of di�erent perspectives836

and for possible misconceptions of the IoC container behav- 837

ior. Nevertheless, a manual generation process would result 838

time-consuming. 839

To overcome the hurdle, we resort to a two-phase auto- 840

matic approach that, starting from a use case will generate 841

the corresponding mcDFG. 842

5.2.1. Business and Navigation Logic Acquisition 843

(Step 1) 844

The initial input of the presented approach, and hence 845

Step 1, is a user-goal level description of a use case [12]. 846

The first step consists in collecting information related 847

to both navigability and business logic of a use case. To this 848

end, a monitor tool for JEE architectures was implemented to 849

gather e�ortlessly the required information. More in-depth, 850

the tool operates at runtime and for each interaction issued 851

on the presentation layer, is able to detect (i) the initial 852

presentation layer state where the interaction is performed, 853

(ii) the name and the scope of the components involved in 854

the response process, (iii) and the state that the presentation 855

layer finally reaches. 856

Concretely, the acquisition process requires that the 857

monitoring tool is executed during the whole execution of 858

the application under test, in order to allow the acquisition 859

of the business logic and data layer runtime information. 860

Once the monitoring setup is in place, the use case needs 861

to be executed via the presentation layer of the application 862

under test, and the monitoring tool will observe and collect 863

information on the internal operations. To acquire an 864

exhaustive overview of the underlying logic, this phase 865

requires exercising both the main success scenario and their 866

variations [12]. 867

The output of this step is a report on the observed 868

response mechanisms of the presentation and business logic 869

layer. This information will be used as input in the next step. 870

5.2.2. Model Creation (Step 2) 871

Step 2 merges the information obtained in the previous 872

step - the reachability relationship of the interfaces (i.e., 873

navigability information) and component dependencies - 874

with the details related to the activities of the IoC container 875

in use. This phase represents a crucial part of the mcDFG 876

construction: it requires in-depth insights that tend to remain 877

transparent to software architecture developers and that con- 878

stitute one of the main causes of identified software faults. 879

The identification of def and use annotations on the vertices 880

of the mcDFG indeed requires not only an understanding 881

of the internal workings of the business logic, but also of 882

how the IoC container orchestrates the components (e.g., 883

creation and destruction of contextual instances). In this 884

case, therefore, relying on an automation procedure becomes 885

necessary not only to speed up the mcDFG generation but 886

also to ensure a correct result. 887

As notable features, the tool optimizes the number of fi- 888

nal vertexes and implements heuristics that keep the number 889

of cycles as low as possible, with a positive impact on the 890

number of paths that shall then be covered by di�erent test 891

cases. 892
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The output of this step is the mcDFG representation893

of the observed response mechanisms. In addition to the894

mcDFG representation, the next step (Step 3) requires also895

to specify a coverage criterion (e.g., all nodes), which needs896

to be manually provided as input (see Section 5.3).897

5.3. Test Case Generation Based on the mcDFG898

(Phase 2)899

Once the mcDFG is obtained through Phase 1, it is900

used in Phase 2 to identify a set of interaction sequences901

and construct the tests. The steps composing Phase 2 are902

described below.903

5.3.1. Paths Selection (Step 3)904

The mcDFG abstraction captures couplings among soft-905

ware component instances under the orchestration of the IoC906

container according to interactions issued on the interface.907

Coverage of these coupling comprises a focused and e�ec-908

tive means for the identification of faults in annotation-based909

and programmatic DI specification of back-end components.910

In so doing, a feasible mcDFG path subtends a sequence911

of interactions on the presentation layer that triggers a spe-912

cific chain of interactions among software components. We913

embed a single path in a test case and the set of paths914

satisfying a chosen coverage criterion in a dedicated test915

suite. In the following, we provide a suite of criteria inspired916

to the classical theory of Data Flow Testing [39], while917

various other coverage criteria could be used as well, e.g.,918

for presentation layers exposing Graphical User Interfaces,919

coverage metrics such as page or hyperlink coverage could920

be used, as described in [40].921

• All Nodes coverage verifies that every reachable basic922

block is tested at least once, which includes that each923

def (i.e., a component instantiation) and each use924

(i.e., a component method invocation) of any managed925

component is exercised;926

• All Edges verifies that every edge is traversed at least927

once, which implies that each nav use from each pre-928

sentation layer state (i.e., each interaction) is tested;929

• All Defs verifies that every def is tested at least930

one time, thus exercising each managed component931

instantiation, reaching one of its uses (i.e., one of932

component method invocations), without traversing933

intermediate defs of the same component;934

• All Uses verifies that for each def all the possible sub-935

sequent uses are covered, i.e. that: for each component936

c, and each vertex vd where c is def ined, and each937

vertex vu where c is used, at least one path that goes938

from vd to vu without visiting any intermediate def is939

exercised;940

• All DU-Paths verifies that all the possible acyclic941

paths between each def and all its subsequent uses942

are covered, i.e. that: for each component c, and each943

vertex vd where c is def ined, and each vertex vu where944

c is used, all the acyclic paths that go from vd to vu945

without visiting any intermediate def are exercised.946

Criterion Complexity

All Edges O(N � F )
All Nodes O(N)
All DU-Paths O(2N )
All Uses O(N2)
All Defs O(N � C)

Table 1
Complexities of mcDFG coverage criteria.

All Uses All Defs

All Edges All Nodes

All 
DU-Paths

Figure 8: Inclusion relationships among coverage criteria for
the mcDFG abstraction.

Once a coverage criterion is selected, the approach requires 947

to analyze the mcDFG in order to generate a set of mcDFG 948

paths that satisfy the coverage criterion. In the proof of con- 949

cept experimentation (see Section 6) the mcDFG coverage 950

of the generated paths is assessed manually. However, in a 951

future implementation of the approach, this process could be 952

automatable by utilizing a graph coverage algorithm. 953

Inclusion relationships among di�erent criteria are sum- 954

marized Figure 8. Note that they di�er from those of the 955

classical theory of data flow testing in [39] in that All Uses 956

coverage does not include All Nodes (and not either All 957

Edges): in fact, in the mcDFG, branching edges from a basic 958

block represent choices in navigation control, not alternative 959

complementary exits of a common guard expression as 960

leveraged in the proof of coverage inclusion referred to the 961

Data Flow Graph in [39]. 962

Theoretical complexity, expressed in terms of the limit 963

number of tests su�cient to implement each criterion, are 964

reported in Table 1, where N is the number vertices in 965

the mcDFG abstraction, C the number of distinct managed 966

components, and F the maximum number of choices in the 967

navigation out of any interface within a use case. 968

The output of this step is a set of mcDFG paths that 969

satisfy the selected coverage criterion. 970

5.3.2. Tests Generation (Steps 4) 971

To generate the test cases, each path identified in the 972

modeled mcDFG (see Step 2), will be translated in a test 973

case, as each path on the mcDFG represents a sequence of 974

interactions. The generation of the test is therefore system- 975

atically guided by the ordered list of nav edges that the path 976

encounters. 977

Specifically, given the mcDFG path, i.e., a sequence 978

of vertexes belonging to the graph, the test instruction of 979

each test case are manually generated by ensuring that all 980

conditions necessary to traverse the vertexes of the graph are 981

met. Given that the test case generation consists of a manual 982

process, the specific technology utilized to implement the 983

test cases is left open by the approach, and depends on 984
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the specific development context considered in practice. We985

note that, building on the presented approach, this step can986

be automated (see also Figure 6). A test is composed of a987

set of simulated interactions on the interface of the system988

under test, which are sequentially evaluated. The evaluation989

consists of validating the behaviors observable from outside990

the system (as in the classic cases of black box testing) and991

the state of the components (i.e., business logic and data992

persistence layer).993

Note that, a test case identified by the mcDFG abstraction994

implies a navigation constraint to verify on the actual imple-995

mentation and so, step 4 also defines a base oracle, open to996

be extended by the tester through specific inspections on the997

state of both the presentation layer and the business logic.998

The output of this step is a set of tests covering each999

mcDFG path.1000

5.3.3. Tests Fine Tuning (Step 5)1001

Step 5 requires the developer to add, if deemed neces-1002

sary, additional checks to the tests generated in the previous1003

step. This step is optional, but when combined with the1004

knowledge of the functional requirements of the use case un-1005

der consideration, it allows for an increase of fault detection1006

capabilities. The mcDFG also provides support to the tester1007

in this step. In fact, the def and use annotations present on1008

the vertexes of the corresponding test path suggest which1009

components undergo side e�ects and consequently should1010

be checked.1011

The output of this optional step is the final set of manu-1012

ally tuned tests covering the use case.1013

5.3.4. Tests Execution (Step 6)1014

Once the tests are obtained, they can be executed to1015

get the final test outcomes. Given the manual intervention1016

required for the test generation (see Step 4 for more infor-1017

mation), the test case execution is not strictly bounded to1018

any specific technology. However, to achieve a good de-1019

gree of repeatability, tests should be executed automatically.1020

Therefore, it is recommended to implement the tests with1021

technologies that allow automatic execution and subsequent1022

automatic evaluation of the test outcome. For example, in the1023

experimental proof of concept documented in Section 6, test1024

cases were implemented by utilizing Selenium 4.16.12 and1025

JUnit 4.133.1026

In the final test execution report provided as output,1027

failing test correspond to triggered failures identified by the1028

approach.1029

The output of this step is the final test execution report,1030

in terms of tests passed and failed.1031

6. Experimental Proof of Concept1032

To confirm the viability of our approach, we conducted1033

an experimental proof of concept to estimate the fault de-1034

tection capability and assess whether the use of our method1035

2https://www.selenium.dev/ Accessed January 4, 2024
3https://junit.org/junit5/ Accessed January 4, 2024

provides an advantage over a traditional system testing ap- 1036

proach. 1037

During the experimental proof of concept, we are inter- 1038

ested in evaluating (i) the fault detection capability of the 1039

identified test suites and (ii) the cost in terms of development 1040

time that the generation of each test suite implies. 1041

We report results showing how the mcDFG provides an 1042

e�ective abstraction for the selection of test cases that are 1043

able to: activate faults occurring in the usage of dependency 1044

injection and automated management of components life- 1045

cycle; and propagate them up to failures in the functional 1046

behavior of the presentation layer or in some observable 1047

inconsistency of the state of business logic components. 1048

6.1. Research Questions 1049

In order to assess the e�ectiveness and applicability 1050

of the approach, we address the following research ques- 1051

tions (RQs): 1052

• RQ1: To what extent is our method capable of detect- 1053

ing business logic faults? 1054

• RQ2: How e�ective is our method in comparison 1055

with techniques based on Page Navigation Diagram 1056

abstraction? 1057

With RQ1 we aim at investigating to which extent the 1058

method is able to identify faults of the identified fault model. 1059

In particular, we are interested in estimating the fault de- 1060

tection capability of the test suites obtained by applying 1061

the di�erent coverage criteria identified. Additionally, we 1062

are particularly interested in observing the behavior of the 1063

test suites in the presence of non-trivially identifiable faults. 1064

By non-trivially identifiable faults, we refer to faults that, 1065

once activated, do not immediately manifest a failure on the 1066

interface. 1067

With RQ2 we aim to provide a method of comparison 1068

with existing strategies. To the best of our knowledge, to 1069

date, no literature explicitly targets the correctness of busi- 1070

ness logic taking into account the evolution inferred over 1071

time by sequences of external events and IoC containers. 1072

System testing treats the entire architecture as a black box 1073

and is unaware of the underneath details of the business 1074

logic [36]. However, it subjects the system to sequences of 1075

external events and evaluates its functional behavior on the 1076

interface. The system test cases thus induce an evolution 1077

of the software components and are potentially capable 1078

of uncovering failures caused by business logic faults. As 1079

a comparison then, we have chosen to rely on a model- 1080

based testing strategy based on the Page Navigation Diagram 1081

(PND) [7, 24, 34]. The Page Navigation Diagram is an ab- 1082

straction of the system that is aware of external information 1083

(e.g., navigational logic and admissible interactions for each 1084

page) but ignores the behavior of the business logic. 1085

6.2. Experimental Object 1086

We conducted our experimental proof of concept on a 1087

web application called Flight Manager, developed in-house 1088
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Figure 9: Use case diagrams of Flight Manager.

by our laboratory. The research choice of adopting the Flight1089

Manager allowed us to have access to the source code of1090

an enterprise-level application with an adequate number1091

of classes and functionalities. More specifically, to assess1092

the correctness of the proposed approach, we require the1093

experimental subject to (i) leverage dependency injection,1094

(ii) be based on a thee-tier architectural pattern, (iii) ex-1095

plicitly document use cases, (iv) provide a test suite, and1096

(v) be compilable. As the goal of this investigation is to1097

study the theroetical viability of the approach, rather than1098

its generalizability, we focus the proof of concept on Flight1099

Manager, as it results to be an accessible experimental sub-1100

ject satisfying all documented prerequisites while making1101

all source code and related artifacts readily available for1102

scrutiny. Real-world enterprise applications are rarely avail-1103

able as open source, as they often hold economic value for1104

companies, which tend to keep them as proprietary software.1105

The application is made available online for scrutiny and1106

replication purposes as part o the replication package of1107

this study. Specifically, Flight Manager is a stateful web1108

application written in Java and the Java/Jakarta Enterprise 1109

Edition Platform. The application focuses on an online flight 1110

booking system and, as such, implements use cases common 1111

to this type of system (see Figure 9). 1112

As represented in Figure 10, the application follows a 1113

3-tier stateful architecture, consisting of the Domain Model, 1114

Data Source, and Presentation Layer. The Domain Model 1115

is composed of 10 entity classes. A representation of the 1116

domain model in the form of a class diagram is represented 1117

in the domain model package of Figure 10. For the sake 1118

of conciseness, the class diagram reports only the crucial 1119

element of the domain (e.g., no enum and abstact classes are 1120

represented). An exhaustive representation ao the domain 1121

model of Flight Manager is available in the replication 1122

package. The Data Source is formed by 6 Data Access 1123

Object (DAO) which exploits services of an Object Rela- 1124

tional Mapping (ORM) framework. The Presentation Layer 1125

is made of XHTML pages (roughly, 30 pages), organized as 1126

shown in the Page Navigation Diagram (PND) of Figure 11. 1127

Finally, a Business Logic Layer maintains roughly 30 classes 1128
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Figure 10: Architecture of Flight Manager.

of software components. Flight Manager is composed of1129

4.6k source lines of code.1130

6.3. Experimental Proof of Concept Process1131

To assess the feasibility of our approach, we leveraged1132

the opportunity to access the source code of the experimental1133

subject. Firstly, we constructed the test suites. Each suite is1134

composed of all tests, which are obtained by applying our1135

approach to every use case of the application, using a specific1136

coverage criterion from those indicated in Section 5.3.1.1137

The mcDFGs were obtained utilizing an automation tool1138

that was specifically implemented for this proof of concept1139

experimentation (refer to Section 6.6 for more details).1140

As already discussed in Section 6.1, we aim to compare1141

our method with standard system testing strategies. To do1142

this, we relied on an abstraction frequently used in literature1143

[7, 24, 34], which we identify here with the name of Page1144

Navigation Diagram (PND), see Figure 11 as an example.1145

Specifically, this abstraction is concerned with represent-1146

ing the information obtainable through an external analysis1147

of the system, with a particular focus on the acceptable1148

interactions on each individual page and the reachability1149

relationship that exists among di�erent pages. On top of1150

the PND abstraction, we generated two additional test suites1151

exploiting two coverage criteria. Specifically, we considered1152

All Pages coverage, which requires that each reachable page1153

is visited at least once, and All Navigation coverage, which1154

verifies that each navigation (i.e., each edge of the page1155

navigation diagram) is traversed at least once.1156

After obtaining the test suites, we estimated their fault1157

detection capability through a procedure similar to mutation1158

testing strategies and we compare the results. More specifi-1159

cally:1160

1. We create a faulty version of the application, com- 1161

monly referred to as a mutant, using a fault injection 1162

procedure. 1163

2. We execute the test suites on the faulty version of the 1164

application. 1165

3. For each test suite, we evaluate the final test execution 1166

reports. As each faulty version in the proof of concept 1167

experimentation corresponded to exactly one mutant, 1168

a single test of the test suite fails for that version 1169

indicated that the mutant was killed. 1170

4. We define the fault detection capability of a test suite 1171

as the percentage of mutants that the suite successfully 1172

kills over the total number of mutants considered, 1173

namely 32. 1174

The complex nature of faults, their propagation mecha- 1175

nisms, and the laws governing the manifestations of asso- 1176

ciated failures prevent us from exploiting automated tools 1177

for the fault injection phase. Therefore, for this work, faults 1178

were injected manually (hand-seeded fault [3]), leading to 1179

the generation of 32 faulty versions of the Flight Manager 1180

characterized by non-trivial faults. 1181

6.4. Fault Detection Capability Results 1182

Results obtained through the experimental proof of con- 1183

cept are summarized in Table 2. For each coverage criterion, 1184

the metrics associated with the corresponding test suite are 1185

reported. The “Avg. # tests per Use Case” column identifies 1186

the average number of tests required to validate a use case 1187

provided as input to the approach (see also Figure 6). The 1188

“Interactions per Test Case” column indicates the average 1189

number of user interactions required to complete a test. 1190

Lastly, the Fault Detection Capability describes the per- 1191

centage of mutants killed by an abstraction considering a 1192

certain coverage criterion over the total number of faults 1193

considered, namely 32 faults (see Section 6.3). With these 1194

metrics, we are able to assess the quality of our method not 1195

only in terms of fault detection capability but also in terms 1196

of applicability. In fact, the dimension of the test suite and 1197

the number of interactions per test case are two measures 1198

that, when considered together, can provide a directly pro- 1199

portional measurement of both the implementation e�ort 1200

and the execution times that the test suite requires. 1201

6.4.1. RQ1 Answer (Approach Fault Detection 1202

Capability) 1203

The collected results indicate that our approach is able 1204

to successfully identify hidden faults in the business logic. 1205

As indicated in particular by the fault detection capability 1206

of the test suites obtained with the mcDFG abstraction. To 1207

explicitly answer the RQ1, based on the results of the ex- 1208

perimental proof of concept, we can state that the proposed 1209

method is capable of identifying faults hidden in the business 1210

logic layer. However, we highlight the worst performance of 1211

the test suite obtained with the All Defs coverage criterion. 1212

We explain this as a consequence of the fact that All Defs 1213

coverage can be implemented by extremely compact paths, 1214

Scommegna et al.: Preprint submitted to Elsevier Page 14 of 19



BookingList

Home

BookingLogin

my booking

back to home

BookingView

enter

back to home

DeleteBookingSuccess

delete

BookingEdit

edit passengers

cancel

update

UpdatePassengersSuccess

return

logged my bookings

back to home

detailsmy bookings

return
{if Registered}

return {if Visitor}

search cancel cancel

select flight

confirm

confirm

back

back || new search

loginlogin as user

add flight

view flightsback

delete flight

back to show flights

back to add flghts

back to home

cancelcancel || save

view countries

back

add country

cancel || save

view details

AddCountry

FlightDetails

ConfirmationFlightsResult BookingDetails

view airports back

view details

return

add airport cancel

next

back || save and add new

cancel || save

AirportView

AddAirportsDetails

AirportList

AddAirportsMain

CountryList

next

save and add new

InsertFlightsDetails AddFlights

FlightsList

search

view details

return

FlightView

Login

login as admin

AdministratorPage

DeleteFlightSuccess

Figure 11: Page Navigation Diagram of Flight Manager.

Abstraction Coverage Avg. # Tests per Avg. # Interactions Fault Detection
Criterion Use Case per Test Capability (%)

mcDFG

All Nodes 1.18 6.09 100
All Edges 1.27 9.25 100
All Defs 1.18 3.09 84.37
All Uses 2.27 5.04 100
All DU Paths 3.09 7.76 100

PND All Pages 2 18 28.12
All Navigation 3 26.33 50

Table 2
Complexity and fault detection of coverage criteria on the 32 faulty versions of Flight Manager.

where some component methods may not be exercised at all,1215

as illustrated in Figure 12.1216

Furthermore, both test suite and number of interactions1217

per test case sizes maintain low values even for expensive1218

criteria, notably for All DU Paths. This indicates that the1219

e�ort required to develop and execute test cases remains1220

low as well. The causes of these low values depend on the1221

high-level perspective of the mcDFG, resulting in a sparse1222

graph with a limited number of vertices and edges. Thus the1223

dimension of the mcDFG is related by construction to just1224

the number of pages and interactions involved in use cases1225

which is by far lower than what may occur in a conventional1226

DFG expressed in terms of code-level basic blocks.1227

RQ1 Takeaways (Fault Detection Capabilities)

� Takeaway 1.1: Model-based approaches can success-
fully identify various faulty interaction sequences in
three-tiered layered architectures.
� Takeaway 1.2: The high-level perspective of the pre-
sented approach allows for the identification of a reduced
number of test cases per use case.
� Takeaway 1.3: Generated test cases require a low
number of interactions with the interface layer.
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6.5. Approach E�ectiveness Results1228

Always based on the Table 2, we now want to compare1229

the results obtained with the test suites based on the ab-1230

straction proposed by our method (mcDFG-based) with the1231

results obtained with the test suites derived from the page1232

navigation diagram (PND-based).1233

All coverage criteria based on the mcDFG show a high1234

fault detection capability, full in most cases, and definitely1235

over-perform test suites based on the PND abstraction.1236

In the comparison of dimensions of mcDFG and PND-1237

based test suites, the value related to the mcDFG represents1238

the average number of test cases needed to satisfy the cover-1239

age criterion in a use case, while the PND-related is the exact1240

number of test cases needed to test the entire application. In1241

fact, we used each method in its natural way: mcDFG-based1242

testing is use-case-wise, as it identifies a di�erent suite for1243

each use case, while PND-based testing targets the interface1244

pages of the overall application, which can be covered with1245

a limited number of "long" test cases. However, even if the1246

dimension required to test the entire application with the1247

proposed method is still low (the larger test suite is the one1248

related to the All DU Paths criterion and consists of 201249

test cases), it is possible to include multiple use cases in1250

the same mcDFG and then exploit the connectivity between1251

pages to further decrease the test suite dimension. This kind1252

of “trick”, however, has a drawback: while the number of1253

test cases decreases, due to the redundant navigation actions1254

used, the length of test cases (i.e., the number of user inter-1255

actions required to carry out the selected navigational path)1256

increases, suggesting that the test suite execution time will1257

not change too much with the use case wise or the application1258

wide approach (see the number of interactions per test case1259

in the Table). As a showcase, we generated an mcDFG1260

comprising both the “search flights” and the “book flight”1261

use cases (UC:U6 + UC:U7.1) obtaining test suites with the1262

same fault detection capability of the two separate diagrams,1263

with overall smaller size longer sequences characterizing1264

each test case (see the details in the repository).1265

6.5.1. RQ2 Answer (Approach E�ectiveness)1266

Comparing the results obtained with the mcDFG-based1267

test suites and those PND-based allows us to answer the1268

RQ2. Our method demonstrates to be more accurate in1269

identify hidden faults in business logic in comparison with a 1270

Model-Based Testing method aware of only external infor- 1271

mation. More in detail, the improvement can be explained 1272

as due to the ability of the mcDFG to extend the purely 1273

functional perspective of the PND with architectural infor- 1274

mation, which supports both test case selection and oracle in- 1275

terpretation. On the one hand, test cases identify navigational 1276

paths that stress the application not only under the end user 1277

functional perspective of page navigation but also under the 1278

business logic and IoC container structural perspective. On 1279

the other hand, test cases and interpretation of their e�ects 1280

are built so as to be aware both of the user interface and of 1281

the business logic components states, enabling detection of 1282

a fault even when its propagation does not manifest a failure 1283

at the user interface and remains hidden with consequences 1284

that are hard to observe and predict [20]. 1285

RQ2 Takeaways (E�ectiveness)

� Takeaway 2.1: When testing three-tier architectures,
considering only the presentation layer does not allow to
unveil faulty interaction sequences hidden in the business
logic.
� Takeaway 2.2: Despite enhanced fault detection ca-
pabilities, test suites based on the approach maintain
dimensions comparable to those generated via plain nav-
igational models.
� Takeaway 2.3: Considering interactions between the
presentation and logic layers allows for faults to be inter-
cepted even without the manifestation of a failure visible
outside the system.

6.6. Applying the Approach in Practice 1286

The presented approach is specifically designed to work 1287

with software-intensive systems that are structured using the 1288

three-tier architectural design pattern. The amount of work 1289

required to adapt this approach for di�erent architectural pat- 1290

terns is uncertain and is not considered within the scope of 1291

this study. When applied to other architecture conforming to 1292

the three-tier pattern, the approach does not necessitate any 1293

prior manual configuration. However, it would require a cus- 1294

tom implementation that depends on the specific framework 1295

of dependency injection. For Java-based applications using 1296

the Context and Dependency Injection (CDI) framework, 1297

the proof of concept implementation of the approach, which 1298

accompanies this study, can be used immediately without 1299

any need for prior implementation or configuration. 1300

Concretely, the tool is a CDI extension. CDI is a popular 1301

framework for Inversion of Control and it is the standard 1302

for Java/Jakarta EE.4 Being developed as a CDI extension, 1303

the association of the tool with the application is straightfor- 1304

ward, as the basic configuration requires only specifying the 1305

tool as an extension for the target application. The procedure 1306

can be deemed as rather e�cient, as it consists only in 1307

copying a single plain file inside the metadata directory of 1308

the target application. The tool automates the entire Phase 1 1309

4https://jakarta.ee/specifications/cdi/ Accessed January 4, 2024
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of the approach (see Figure 6), generating an mcDFG output1310

from the input use case.1311

6.7. Threats to Validity1312

In this section, we discuss the threats to validity of our1313

study, by following the classification provided by Runeson1314

et al. [43] and by considering potential pitfalls of mitigating1315

and documenting threats [49].1316

1) Construct validity: if the experimental proof of con-1317

cept we set is appropriate to answer the RQs. To answer to1318

RQs, we assessed the fault detection capabilities of various1319

test suites through a mutation strategy. Due to the complexity1320

of the faults, we were unable to rely on automatic tools, and1321

thus the fault injection phase was carried out manually. In1322

principle, defining and injecting manually the faults could1323

potentially influence the estimated fault detection capability:1324

the fault may be not representative or too easy to find for our1325

method. To minimize bias in this phase as much as possible,1326

some faults were proposed by members of our laboratory1327

who were not involved in writing this work. The remaining1328

faults, however, were reproduced by drawing inspiration1329

from real issues about software components reported in1330

technical social forums (e.g., StackOverflow and GitHub) by1331

developers with di�erent levels of experience and di�erent1332

expertise in language and frameworks. A collection of posts1333

on technical social forums that testify to the di�culty of1334

using IoC containers is reported in the replication package.1335

2) Internal validity: if the observed results are actually1336

due to the “treatment” and not to other factors. Our ex-1337

perimental proof of concept is conducted on a web appli-1338

cation developed in-house for this purpose. Exploiting an1339

application that is not actually used in practice could be an1340

unrealistic assumption.1341

To mitigate this threat, however, Flight Manager has1342

been developed by software professionals with strong and1343

consolidated experience, following disciplined software de-1344

velopment practices. Additionally, Flight Manager imple-1345

ments a widespread combination of reference architectural1346

patterns, largely documented in the professional litera-1347

ture [41, 33, 16], and developed using a language and1348

technology stack (Java and JEE) with primary impact and1349

spread in the practice of complex web applications.1350

3) External validity: whether and to what extent the1351

observations can be generalized. The results we obtained1352

are derived from an experimental proof of concept that1353

considers a specific architectural style and technology. The1354

results obtained may not be the same on other systems. To1355

mitigate this threat, this work did not rely on a specific tech-1356

nology, instead, it required an analysis of the most popular1357

frameworks that provide IoC containers in Java, C#, and1358

Python languages. The analysis led to the identification of1359

5 generic scopes: request, enclosed, session, application,1360

and conforming (Section 2.2) and the definition of a fault1361

model on which our method is based (Section 4.1). As a1362

reference, Table 3 enlists types of scopes supported by major1363

frameworks analyzed.1364

Moreover, we have attempted to maintain also our 1365

method technology-agnostic by encapsulating technology- 1366

dependent steps. In fact, the abstraction of mcDFG contains 1367

concepts that are pervasive across all the trhee-layered 1368

architectures. By changing the technology or architectural 1369

style of the system, it will su�ce to modify the mcDFG 1370

generation procedure (see Section 5.2). In particular, the 1371

first step required to generate the abstraction is particularly 1372

dependent on the system’s architectural style, as it needs 1373

to know where the business logic is implemented. Instead, 1374

the second step depends primarily on the DI and automatic 1375

lifecycle management framework used by the system. 1376

4) Reliability: whether and to what extent the obser- 1377

vations can be reproduced by other researchers. To ensure 1378

independent reproducibility and verifiability of the results, 1379

we made available online: the Flight Manager source code, 1380

its 32 faulty versions, and all the test suites derived from 1381

both the mcDFG and the PND abstractions (please refer to 1382

the replication package). 1383

7. Conclusions 1384

In the development of software architecture, Depen- 1385

dency Injection and automated lifecycle management play 1386

an essential role for productive implementation of the In- 1387

version of Control principle. This supports abstraction and 1388

loose coupling, enabling developers to specify components 1389

lifecycle models in a choreographic perspective and to del- 1390

egate to a Container the consequent orchestration. Yet, this 1391

also introduces error-prone steps and largely reduces design- 1392

ers control over the actual resulting behavior. 1393

In this work, we characterize the chain of threats a�ect- 1394

ing the development of software architectures that rely on 1395

Dependency Injection and automated lifecycle management, 1396

identifying faults that can be introduced in the specification 1397

of managed components lifecycles and in their composition, 1398

and characterizing mechanisms of fault to failure propaga- 1399

tion that result from the interaction of structural character- 1400

istics of software components and navigation paths exposed 1401

by the presentation layer. 1402

We then propose an abstraction, named managed com- 1403

ponent Data Flow Graph (mcDFG), which unravels concur- 1404

rency among objects living in the execution of a Use Case 1405

and which is derived through an automated procedure. 1406

The mcDFG abstraction is here finalized to the imple- 1407

mentation of a Model-Based Testing approach, supporting 1408

both test case selection and oracle verdict on state errors 1409

that would be hard to observe as functional deviations at 1410

the application interface. Experimental proof of concept on 1411

a mid-sized application with a suite of 32 faulty mutations 1412

suggests the viability and capability of detecting faults of the 1413

proposed approach. 1414

In terms of implications of the study, from a research 1415

perspective, the work presented argues on the limitations of 1416

testing three-layered architectures via black-box strategies, 1417

and lays the groundwork for more sound and comprehensive 1418
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Language Framework Built-in Scopes

request enclosed session application conforming

C# Autofac Ç Ç Ç Ç Ç
Spring.NET DI Ç Ç Ç Ç

Java
CDI Ç Ç Ç Ç Ç
Spring DI Ç Ç Ç Ç
Guice Ç Ç Ç Ç

Python
Dependency Injector Ç
Pinject Ç Ç
Injector Ç Ç Ç Ç Ç

Table 3
Comparison among built-in scopes for main IoC frameworks in high-level programming languages C#, Java, and Python.

testing approaches. As documented in this research, novel vi-1419

able approaches can be conceptualized and used to integrate1420

information from both the presentation layer and the busi-1421

ness logic layer by adapting existing black-box model-based1422

testing approaches. From a practitioner perspective, the re-1423

search serves as a cautionary tale on the impossibility of1424

comprehensively testing a software-intensive system based1425

solely on the state of the presentation layer. During all testing1426

stages, developers must be aware that considering only the1427

presentation layer (e.g., by using solely monkey testing) does1428

not allow to unveil faulty interaction sequences hidden in1429

the business logic of the system under test. In addition,1430

with this research we make available a thorough fault model1431

and a set of failure modes of three-tier architectures with1432

which they can improve their daily testing practice and build1433

upon it. Finally, we make readily available for practitioners a1434

proof of concept implementation outlining how to concretely1435

build a test suite addressing the presented fault model in the1436

companion replication package of this study.1437

The obtained results are promising, but we consider this1438

investigation as a preliminary step toward the consolidation1439

of the model-based testing through the mcDFG abstraction.1440

As future research activities, we plan to mitigate potential1441

threats to validity associated with our findings by con-1442

ducting empirical experimentation encompassing real-world1443

systems with di�erent architectural styles and technologies.1444

As additional future work, we plan to fully automate the1445

approach (with exception of the optional Step 5, as its nature1446

requires human intervention).1447

In a wider perspective, this work also aims at provid-1448

ing a contribution connecting patterns in the practice of1449

software architecture with models of concurrency open to1450

analysis and automated verification [10]. The application1451

and its faulty mutations, and their associated models, are1452

part of this aim. In particular, this opens the way to enrich1453

mcDFG models with a measure of probability, induced by1454

discrete time characterization of interaction sequences in the1455

execution of use cases.1456
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