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• Technical debt in microservices grows much faster during initial development phases.

• Technical debt growth is strictly related to the number of microservices.

• Technical debt growth rate does not to vary when microservices are added or deleted.

• Heterogeneous activities can introduce technical debt to different extents.

• Technical debt removal relies on specific actions aimed to improve software quality.
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Abstract

Context: Microservices are gaining significant traction in academic research and industry due to their ad-
vantages, and technical debt has long been a heavily researched metric in software quality context. However,
to date, no study has attempted to understand how code technical debt evolves in such architectures.
Aim: This research aims to understand how technical debt evolves over time in microservice architectures
by investigating its trends, patterns, and potential relations with microservices number.
Method: We analyze the technical debt evolution of 13 open-source projects. We collect data from systems
through automated source code analysis, statistically analyze results to identify technical debt trends and
correlations with microservices number, and conduct a subsequent manual commit inspection.
Results: Technical debt increases over time, with periods of stability. The growth is related to microservices
number, but its rate is not. The analysis revealed trend differences during initial development phases and
later stages. Different activities can introduce technical debt, while its removal relies mainly on refactoring.
Conclusions: Microservices independence is fundamental to maintain the technical debt under control,
keeping it compartmentalized. The findings underscore the importance of technical debt management strate-
gies to support the long-term success of microservices.
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1. Introduction

In the past decade, microservices architectures (MSAs) [28] have gained popularity in academic research
and have been increasingly adopted in industry practice. In addition to high scalability and flexibility,
microservices independence throughout the entire software lifecycle is perhaps the main benefit. The main-
tenance phase is highly beneficial for code quality as it heavily relies on it. Studies [17] show that the
resulting software quality in MSAs is perceived positively, making the maintenance phase easier to handle.

Despite many benefits, MSAs also present challenges, such as consistency management [76] and the
additional effort required for integration and system testing [42]. Additionally, adopting the microservice
architectural style can lead to a potential loss of the bigger architectural design and context [62, 75]. To face
the increased complexity, developers resort to sub-optimal implementation expedients, namely the Technical
Debt (TD) [10]. While providing temporary benefits, these solutions cause a considerable drop in software
quality over time, making future development interventions harder or even impossible. If left unmanaged,
TD leads to slowed development, more bugs, or the need to completely rewrite a system from scratch [70].

TD, and especially the Code TD type [4] on which this study focuses, has been extensively addressed
in literature for years [3, 40]. Similarly, albeit being popularized around a decade ago, the microservice
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architectural style is still gaining considerable academic interest [25, 65]. It is thus surprising that, despite
both TD and MSAs being popular topics in literature, only a handful of studies have to date focused on the
relationship between the two subjects. Even more amazing that, to the best of our knowledge, no one has
ever quantitatively investigated in-depth how TD evolves in MSAs.

Given the novelty in this area, i.e., the evolution of TD in MSAs, this work aims to be a stepping stone
towards a new topic investigation. As a first step, we consider the Code TD, one of the most widespread
TD types in literature [56, 74] and the most monitored by practitioners [31] due to the prevalence of tools
such as SonarQube [11]. However, we plan to extend this exploration to Architectural TD and smells.

In a previous work [72], we conducted a preliminary case study on the TD evolution of a single MSA
project constituted by 13 microservices and counting 977 commits and 38k lines of code. From the study,
we observed that Code TD can constantly increase over time or present long periods where TD remains
constant while development activities carry on. In addition, we observed that the TD increase or decrease
occurs consistently, regardless of the number of microservices currently present in the system.

This study aims to generalize the research by considering 12 additional systems to corroborate or disprove
the case study findings through the collection and statistical analysis of data along the history of the
repositories. Understanding how Code TD evolves in microservice-based systems is necessary for researchers
and practitioners to know how it can be effectively managed in such architectures, with the end goal of better
supporting the long-term success of software-intensive systems based on such architectural style.

We can generalize the main conclusions from the preliminary study: the growth of TD is correlated with
the number of microservices, but the growth rate is not. Considering more cases, we can extend our results by
identifying additional aspects of TD evolution in MSAs, e.g., differences between the initial and subsequent
development phases and more nuanced findings regarding the activities that led to the introduction of TD.

The main contributions of this research are:

(i) An in-depth examination of Code TD through the evolution of 13 MSAs spanning over 10k commits;
(ii) An exhaustive statistical analysis of the TD evolution and its relation to number of microservices; and
(iii) A comprehensive replication package1 containing the entirety of the raw, intermediate and final data,

analysis traces, and scripts used to collect and analyze the data on which our findings are based.

Paper Structure This paper is structured as follows. Section 2 provides the background information
required, while Section 3 discusses related work. Sections 4 and 5 describe, respectively, the design and
practical aspects of the study, including a detailed description of the research process and the dataset.
Section 6 presents the results, and Section 7 offers an in-depth discussion of the findings. Section 8 addresses
threats to validity, and finally, in Section 9, conclusions are drawn, and potential future works are outlined.

2. Background

In this section, we describe the two main topics of this work, namely: (i) TD, what it is, what causes it,
and why developers do not manage it (or at least do not fully pay it off); and (ii) MSAs, with a closer look
at the aspects that can either help or impede TD management in systems architected in such style.

2.1. Technical Debt

According to Avgeriou et al. [10], the software engineering community converges on defining TD as

“a collection of design or implementation constructs that are expedient in the short term, but set up
a technical context that can make future changes more costly or impossible; impacting internal system
qualities, primarily maintainability and evolvability.”

1https://doi.org/10.6084/m9.figshare.25922506
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Various types of TD have been introduced in literature [4], but Architectural TD, Code TD, and Design
TD are the most studied [56]. Code TD (CTD) is one of the most considered TD types and refers to
elements in the source code that negatively affect its complexity, legibility, and correctness, making source
code harder to maintain; in other words, it regards issues related to bad coding practices [41]. Indices
examples are code metrics (e.g., cognitive or cyclomatic complexity), code duplication, slow algorithms, and
code outside standards [4]. Architectural TD (ATD) takes into account ill-suited architectural decisions
with indicators like issues in software architecture and structural dependencies [4] that might lead to slow
deterioration of the architecture, causing performance degradation or even runtime failures [73]. Instances of
ATD are non-uniformity of architectural patterns and policies, dependencies violations (including modules
and external dependencies), non-modularity, compliance violations, and inconsistency in managing integra-
tion with subsystems [14]. Design TD (DTD) concerns issues at the design level and involves instances of
code smells, god classes, dispersed or intensive coupling, and schizophrenic classes [4]. Some authors also
consider DTD items a few types of ATD or CTD instances, such as design issues, duplicated code, and code
metrics [77], leading to a partial overlap [41]. The literature defines other types of TD, e.g., Requirements
TD, Test TD, Build TD, Documentation TD, Defect TD, Community TD, and Versioning TD, but their
appearance is much less frequent [41].

Ramač et al. [54] aggregate results from an international family of surveys conducted by researchers from
the TDresearchteam2 over six countries. The goal was to provide a comprehensive overview of common causes
and effects of TD in the industry. From the results, the main reason for introducing TD is the deadline
rush. Aspects relating to project management and technical decisions also appear frequently: inappropriate
planning, ineffective project management, lack of well-defined processes, focusing solely on productivity at
the expense of quality, and non-adoption of good practices. In addition to technical and managerial factors,
human factors like pressure and lack of experience are also involved. Concerning the effects of high TD, the
most commonly observed effects are delivery delay and low maintainability. These effects result from bad
code, which could lead to increased costs, low performance, more effort, and the need for refactoring and
rework. Lastly, although not so cited by interviewees, financial loss is potentially one of the most impacting
effects of TD.

Introducing TD might be inevitable, particularly in the early phases of software development. However,
according to Freire et al. [30], only a minority of practitioners pay off the TD, both for technical and
managerial reasons. A large portion of interviewees report as decision factors a focus on short-term goals,
but others also cite a lack of organizational interest, time and resources, and high cost and effort. Bomfim
et al. [43] briefly outline the underlying causes of these reasons: high effort might be due to a lack of test
coverage and insufficient knowledge from the developers of all parts of the system, whereas the organizational
interest is influenced probably by the belief that paying off TD has a low impact for the business.

2.2. Microservices Architecture Characteristics and Implications on Technical Debt

An MSA is a distributed application in which all its modules are microservices, defined as cohesive,
independent processes that interact via a messaging system [28]. Each microservice can be developed inde-
pendently, fulfilling a specific business functionality, and executed independently, enabling easy deployment
in cloud environments through containerization [69]. This architectural style refers to various principles,
widely and rigorously discussed by Velepucha and Flores [69], guaranteeing systems flexibility, modularity,
and evolution. These characteristics ensure that an application can keep up with the changing business
guided by the market, thanks to the ease of maintenance and implementation of new features [28].

Componentization involves creating small, independently deployable microservices exposed in a way that
hides internal details. Organization around business capabilities (substantially a strict application of Domain-
Driven Design [29] and single-responsibility principle [59]) refers to dividing the business to implement each
microservice by focusing on single functionalities rather than technical layers. The evolutionary design is a
natural consequence of these principles: each microservice can evolve autonomously, meaning that can be
replaced with a new implementation or even discontinued without affecting the system.

2www.tdresearchteam.com/home (accessed on 20th April 2024)
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From TD management perspective, one of the aspects of MSA that has the greatest impact is the
decentralized governance, which allows the organization of developers in small independent teams (also known
as two-pizza teams [55]). On the one hand, such teams are responsible for managing only a microservice
within the overall system, which helps to contrast the lack of knowledge of developers; on the other hand,
managing resources (both human resources and time) might be challenging if not handled at the managerial
level.

According to Bogner et al. [15], in the industry, TD is usually not handled differently in service- and
microservice-based architecture. Despite this, variations from other system architectures sometimes exist
and are mainly related to applied processes, such as different testing processes (e.g., integration testing) or
diverse development methodologies (e.g., the Agile approach).
2.2.1. Architecture Stability

The Stability of a system is the extent to which the software product can resist unexpected effects from
modifications of the software [2]. Martin proposed an Instability metric [46] as a function of Coupling
measures, which quantifies the instability of packages, i.e., the degree of difficulty in changing a package
without affecting the correct functioning of other packages. Hence, Stability is strictly related to a system’s
evolution.

Instability has a direct impact on TD, in particular, the Architectural TD, since it relates to design
and architecture levels. Instability issues can lead to Architectural Smells (ASs), known as Instability ASs,
such as Unstable Dependencies, where a component relies on other, less stable subsystems [7]. As Unstable
Dependencies increase, the risk of necessary change to a central component inevitably grows, and the effort
required for future maintenance actions, i.e., the TD, raises. In this context, an Architectural Debt Index
(ADI) that detects these ASs by measuring Martin metrics [46] has been proposed [8, 57, 60]. Moreover,
this index keeps track of ASs history, making it oriented to the healthy evolution of systems.

However, according to Capilla et al. [19], in the microservices context, Unstable Dependencies have a
limited impact on the overall ATD; the authors hypothesize that this aspect could be a consequence of MSA
principles, such as componentization and evolutionary design.

3. Related Work

In a previous work [72], we examine a big open-source software (OSS) project based on MSA. We look
at (i) the characteristics of the TD trend from a qualitative point of view, noting that despite an overall
growing trend, there are several periods with no significant TD increase; and its seasonality, finding that is
absent; and (ii) the correlation between the number of microservices and the amount of TD, which seems
to exist and be meaningful. This study further explores these aspects to determine if findings can be
generalized to a broader set of MSAs, by considering 12 additional MSA systems implemented in different
languages. This study also complements the findings with other facets, including a quantitative evaluation
of the trend, identification of possible common trend patterns, a focus on the activities performed in the
commits associated with the most outlier values in TD variations, and an in-depth analysis of correlations
considering various time lag displacements.

A thorough study on the evolution of microservices is carried out by Assunção et al. [9] involving 11
OSS projects. They aim to understand how microservices evolve from 3 different perspectives: technological
(the technologies enabling microservices development), services (the business logic of the system), and
miscellaneous (system-specific aspects). The findings reveal that rarely the evolution is service-based, with
the vast majority of commits related to technical changes. Since both technical and services evolutions can
impact the TD to different extents, this study complements that one, by utilizing the more narrow and
focused lens of TD in MSAs.

By considering the literature that focuses on Code TD evolution in MSAs, we can identify, at our best,
only few studies. The work of Lenarduzzi et al. [38] may be the most similar to this one. They investigate
the effect of migrating from a monolithic architecture to a microservices one on Code TD in a case study.
Results show the TD growing slower after the migration. In fact, although an initial rapid growth, the TD
tends to stabilize and to grow slower with microservices than in the monolithic system. This study differs
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from ours for at least two reasons, namely (i) we do not focus on the migration of code from a single, solid
monolith to multiple, independent microservices, and (ii) we consider a large number of study cases, some
of which are even bigger than the small case (5 microservices) considered by Lenarduzzi et al. [38].

Bogner et al. [16] conduct a study to examine how the sustainable evolution of 14 microservice-based
systems is ensured through 17 semi-structured interviews. The main focus is not on TD, but it emerges
as one of the main issues that undermine sustainable evolution. Additionally, although the study mentions
some tool-based DevOps processes, it is based on a qualitative research method. In a different work, Bogner
et al. [15] survey 60 software professionals on how TD can be limited through maintainability assurance.
The results indicate that using systematic techniques benefits software maintainability. However, these tools
are underutilized in practice. Both studies adopt a qualitative approach and do not explicitly account for
the TD and its evolution, unlike this one.

By examining other related literature, TD is primarily analyzed from an architectural perspective in the
context of microservices. Such studies are facilitated by tools that detect and measure ATD. Arcan [6] is
one of the most known and used; it implements TD indexes that consider ASs like Cyclic, Unstable, and
Hub-Like Dependencies [57, 60]. It also identifies microservice-specific smells like Shared Persistence and
Hard-Coded Endpoints [51]. ATDx [50] provides a TD index [71] incorporating rules from third-party tools,
including Arcan. Sen4Smell [26] acts as a wrapper for Arcan, prioritizing ASs based on their evolutionary
history. Lastly, Aroma [12] evaluates ASs like No API Gateway through dynamic analysis of microservices.

Capilla et al. [19] study the ATD presence on MSAs and, similarly to our work, try to analyze the relation
with microservices. Interstingly, their results indicate no relation between ASs and system size (in terms
of LOC and microservices). However, they conjecture that ASs might be related to the complexity, as a
high number of dependencies remarkably raises the chances of having cyclical or unstable dependencies. In
contrast to our research, their work does not focus on the analysis of evolution over the systems’ lifespan.

Sas et al. [61] explore how instability-related ASs evolve by tracking their history. They find that
while the total number of ASs does not significantly increase and often rises only temporarily, the number
of components involved grows, leading to tighter, almost inseparable connections. Unlike this work, our
approach does not trace the evolution of individual smells but only the general progress of TD.

de Toledo et al. [68] conduct a multiple case study to investigate the ATD in microservices from a qual-
itative point of view. The study, involving 25 interviews, identifies ATD issues, their negative impact, and
common solutions to repay them. In a similar work, de Toledo et al. [66] focus on ATD in the communication
layer through a qualitative analysis of documents and interviews related to a large case study. These studies
differ from ours in that the research method is primarily qualitative instead of quantitative, and the analysis
does not address the evolution in a time window.

Likewise, Zhong et al. [78] analyze the impacts, causes, and solutions of ASs as possible root causes of
ATD accumulation in MSAs. According to their findings, ASs can arise either inadvertently or intentionally,
often due to business aspects and responsibility management. Frequently, the only solution is to reconstruct
microservices and improve the organization of responsibility and communication among teams. This study
investigates specifically six types of ASs while our aim is not to address specific smells, whether related to
code or architecture, but an overall TD overview. In line with the microservices reconstruction theme, Brogi
et al. [18] propose an approach integrated into the µtosca toolchain by Soldani et al. [64], which enables
ASs automatic identification and selection of suitable refactorings to resolve them. de Toledo et al. [67]
investigate the benefits of repaying ATD on MSAs. Their results evidence the importance of this activity on
future incidents. Specifically, their total number is notably reduced, with a remarkable reduction of critical
and high-priority incidents. Conversely, our focus, as of now, is not on the benefits of repaying the TD but
rather its evolution during the software lifecycle.

A more systematic scrutiny of the literature on TD in microservices is conducted by Villa et al. [74].
Based on the analysis of the 12 primary studies they select, they somehow confirm the intuition on which this
research is based, namely the absence of studies focusing on the TD evolution in microservice-based systems.
Moreover, they find that Architectural, Code, and Design TD are the most common types of TD reported
in microservices contexts. This result aligns with the general trend observed in developer discussions on
Stack Overflow, as highlighted by Kozanidis et al. [37], which analyzes TD-related questions. These findings
firmly support the focus of this work, namely the evolution of Code TD over the lifecycle of MSAs.
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Summary To summarize the current state of the literature and highlight the differences with our work:
the key novelty of our study lies in its focus on the quantitative analysis of Code TD evolution in MSAs, over
time and across multiple case studies. Unlike previous research, which often focus on migration scenarios,
qualitative methods, or specific architectural aspects and smells (even tracking them over time), our study
provides a broader view of Code TD progression throughout the lifecycle of MSAs and its overall relationship
with architecture evolution.

4. Study Design

In this section, we outline the research design of the study in terms of research goal (Section 4.1), research
questions (Section 4.2), and research process (Section 4.3).

4.1. Research Goal

The goal of this study is to conduct an investigation into the evolution of Code TD in software-intensive
systems based on MSA. By considering the Goal-Question-Metric approach of Basili et al. [13], the goal of
this study can be formulated as follows:

Analyze software evolution
For the purpose of studying trends and characteristics
With respect to Code TD
From the viewpoint of software engineering researchers
In the context of microservice-based software-intensive systems.

This study aims to be a stepping stone towards extensively investigating how MSAs evolve from the
TD point of view. A comprehensive understanding of specific TD characteristics and trends could help
propose improvements for current MSA development practices and support tools. In fact, by knowing that,
developers could roughly predict the impact of incoming interventions on the total TD and take appropriate
action, such as scheduling extensive special maintenance to lower the TD and bring maintainability back
to acceptable levels before a major change in architectural or business levels (e.g., the introduction of new
microservices or features).

The focus of this first step into the evolution of TD in MSAs is the influence of such architectural style
adoption on code maintainability. Therefore, our focus is on Code TD rather than Architectural TD, whose
main causes (e.g., architecture smells) are already at an higher level of abstraction. The choice of considering
Code TD, moreover, is influenced by other factors too. Firstly, Code TD is one of the most frequent types
of TD appearing in microservice-based systems [74]; secondly, differently from other types of TD, Code TD
is supported by a wide range of consolidated tools that are extensively used both in academic research and
industrial practice [11], and consequently, it is by far the most considered TD type by practitioners [31];
lastly, for these reasons, it enables the study to consider a heterogeneous set of experimental objects.

4.2. Research Question

Based on the formulated goal it is possible to derive the main Research Question (RQ) on which this
study is based, which can be formulated as follows:

RQ: How does Code TD evolve in a microservice-based software-intensive system?

Rationale This RQ addresses the overall goal of the study, which is to investigate the evolution of Code
TD in MSA. Examining TD evolution permits us to catch both the trend over time and distinguishing
characteristics, such as its relation with architectural events (i.e., variations in the number of microservices),
sudden changes in conjunction with specific code activities, or different growth rates based on the current
life stage. Such knowledge can lead to a better understanding of TD and its enhanced management.
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For a more systematic approach, the RQ can be broken down into sub-RQs, each focusing on one of the
different aspects of TD evolution that this research aims to explore. Specifically, we decompose it into the
following two RQs, each associated with one or more hypothesis testing.

RQ1: What is the evolution trend of Code TD in a microservice-based software-intensive system?

H1.1
0 : TD evolution does not change in time

H1.1
a : TD evolution changes in time

H1.2
0 : TD evolution does not present periodic trend

H1.2
a : TD evolution presents periodic trend

With RQ1, the aim is to understand the overall evolution trend of TD in microservice-based systems,
e.g., determining if it is constant through the evolution of the software system, if it shows a growing trend,
or if a periodic trend can be observed. We consider natural to conjecture that there is an increasing trend
(as resulted in [38]) with an observable periodic trend (i.e., seasonal periods during which developers are
more or less prone to incurring TD, such as before or after holidays, or approaching a periodic deadline).

Tight deadlines, like other business-related dynamics, are an important cause of TD introduction [22].
Industries often follow an established development roadmap, possibly including periodic activities. Detecting
such a periodicity can help predict software evolution from a TD viewpoint [33].

Understanding how TD tends to increase/decrease over time might help in better managing financial
and human resources. This means allocating them more effectively during periods (of the project’s timespan
or the year) when TD is more likely to occur. It also allows for identifying the relationship between TD
fluctuations and specific code-related activities, which can help in focusing efforts on the most critical tasks.

RQ2: Is there a relation between Code TD evolution and the number of microservices?

H2
0: TD evolution does not depend on the number of microservices

H2
a: TD evolution depends on the number of microservices

With RQ2, we aim to understand if there is a relation between the evolution of TD and the number
of microservices that compose the system. We could hypothesize that, due to sub-optimal implementation
choices, as the number of microservices increases, the overall complexity of the system increases as well
and consequently the Code TD grows at a higher rate, possibly showing a superlinear or even exponential
relation with the number of microservices.

Revealing an underlying connection between the two metrics can provide insights into how architectural
changes, like adding or removing a microservice, affect the total TD. With this knowledge, developers can
anticipate future Code TD trends based on planned architectural changes. This foresight allows for proactive,
early measures to reduce TD before it becomes too burdensome.

4.3. Research Process

Following, we describe the research process that allowed us to answer the RQs: criteria used to define
the dataset to analyze, how selected repositories have been inspected to gather data, and how this data can
help to answer the RQs through a rigorous statistical analysis.
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4.3.1. Repository Identification

As a dataset to be analyzed, we want a substantial amount of repositories of microservice-based software-
intensive systems that have undergone an actual industrial-like development process, so we are looking for
actual systems or industrial demos that are not toy examples or exercise-in-style demos. However, during
our preliminary discovery phase, we found a lack of this type of OSS project, mainly because most companies
do not make their products open-source. As a result, we also have to accept industrial demos, which are
more widespread and, hopefully, are characterized by a similar development process.

Although many authors in the literature use the dataset provided by Rahman et al. [53] and its extension3,
most of the projects collected do not meet the just seen requirements. Therefore, we decided to define a
custom dataset by querying GitHub and filtering the results to select the most interesting projects from an
evolution standpoint, as shown in Figure 1. Querying and filtering criteria are summarized in Table 1.

Phase 1

Query GitHub

Phase 2-6

Filter results

Queries Filter
Criteria

Dataset

Figure 1: Repository selection process workflow

Phase 1: Query. In 2022, according to the “The State of Developer Ecosystem” annual survey conducted by
JetBrains4, the most commonly used programming language in microservices development is Java, followed
by Python, Go, C#, TypeScript, and JavaScript. As a result, our research will focus on these six languages.

We used a composite query to select the most relevant repositories for MSAs from GitHub. Specifically,
the query targets projects where the main programming language is one of those mentioned above and
that either feature microservices-related GitHub topics (i.e., “microservice”, “microservices”, “microservice-
architecture”, and “microservices-architecture”) or include the keyword “microservice”. Given the vast
number of repositories on GitHub related to microservices (tens of thousands selected with topics and
hundreds of thousands with keywords), we establish a star criterion to make an initial screening of the
highest quality projects suitable for case studies, discarding repositories with only a few GitHub stars. In
particular, we require that repositories collect at least 10 GitHub stars if selected through the topics or at
least 100 GitHub stars if retrieved through keyword. We set these numbers empirically to avoid picking
the most trivial repositories and to ensure a manageable number of results. The resulting query can be
expressed as follows:

language ∈ {Java, Python, C#, Go, TypeScript, JavaScript} ∧((
GH-topic ∈ {microservice(s), microservice(s)-architecture} ∧ GH-stars ≥ 10

)
∨(

keyword ∈ {microservice} ∧ GH-stars ≥ 100
))

Phases 2-6: Filters. To obtain repositories relevant for our research, the results need to be filtered to keep
only those that meet the wanted prerequisites and discard the ones that are not embodying a relevant case
study from an evolution viewpoint, e.g., have no commit history or have a flat evolution. The Filter Criteria
(FC) employed are:

3www.github.com/davidetaibi/Microservices_Project_List (accessed on 20th April 2024)
4www.jetbrains.com/lp/devecosystem-2022/ (accessed on 20th April 2024)
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FC1: The repository must have at least 250 commits.
This criterion discards repositories unrepresentative of long-lived software applications that have
already reached a certain maturity. An empirical threshold of 250 commits has been established,
balancing the repositories’ lifespan and the quantity of filtered results. The commits considered
are those of the main branch and any secondary branches already merged into the main [36];

FC2: The repository must have at least 2 contributors.
This criterion detects repositories that are the result of a single developer’s effort (e.g., trivially
exercise-in-style and personal projects, which, from our observations, are generally developed by
single practitioners and aspirants);

FC3: The repository must have a Docker compose file for at least 2⁄3 of the history and at least 250
commits.
This criterion is essential since the method we exploit for detecting microservices, Claim [44],
described more in detail in Section 4.3.2, has the use of Docker as a prerequisite;

FC4: The repository must present an MSA and be an actual industrial system or an industrial demo.
This filtering step is the only one done manually by examining the description, the README
file, and, in case of no clear clues, other artifacts, e.g., Docker compose files or the structure of
the code. Starter kits, templates, and big-industry-related projects are also assumed acceptable,
as from manual scrutiny result to be complex MSA systems developed in an industry-like setting.
MSAs presenting a single microservice, only MSA components, examples from books/sites, libraries,
development frameworks, and platforms are instead discarded with this criterion;

FC5: The repository must have a noteworthy evolution in the number of microservices.
This last step is essential to select the final fine-grained set of the most engaging case studies among
the filtered results. Our objective is to analyze case studies that already reached a certain level of
maturity but are still evolving since evolution is our primary focus. We formally formulated the
criterion based on: (i) the maximum number of microservices ever had; (ii) the longest period with
flat evolution; and (iii) the number of commits with no microservices present.
To discard early stage prototypes and sluggish, crystallized systems, we reject repositories that
have never counted at least 5 microservices and have spent more than half their life without any
microservices number changes or more than a third of their life with no microservices at all. All
the threshold values of this criterion have been found empirically via preliminary experimentation
by tuning them to obtain an appropriate number of resultant repositories. The aim is to select the
repositories most representative of a complex industrial system, near its maturity and that has not
experienced a migration from other architectures (e.g., the monolithic one) during its development.

Criteria Purpose Metrics

Query Retrieve relevant cases for the MSA topic Language, Github stars, GitHub topics

FC1 Select repositories with a long enough lifespan Number of commits on main branch

FC2 Select repositories result of multiple developers’ efforts Number of contributors

FC3 Select repositories using Docker as containerization framework Docker compose file presence along history

FC4 Select real-world or industrial demo MSAs Manual inspection of description and README

FC5 Select repositories with an active evolution Number of microservices along history

Table 1: Overview of querying and filtering Criteria used to select the dataset

4.3.2. Repositories Analysis

The repositories analysis is outlined in Figure 2 and involves iterating through all the commits in each
repository. For each commit, we count the number of microservices and measure the TD. After collecting
all the analysis data, we analyze them to answer the RQs.
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Figure 2: Dataset analysis process workflow

Phase 1: Repository cloning. During this step, we only clone the repository from GitHub.

Phase 2: Commit checkout. The second step is to checkout the commit to be analyzed, i.e., restoring all the
code artifact to the state they were in at that time. We consider only the commits of the main branch (and
those of secondary branches already merged into the main, as highlighted by Kovalenko et al. [36]) linearized
in temporal order. At this stage, we collect additional version-control-related data, such as the date, commit
hash, and parent(s) hash, to preserve the graph topology information we lost during linearization.

Phase 3: Microservices detection. Before analyzing the TD, microservices composing the system are de-
tected and enumerated. To perform this analysis, we use the Claim method [44], which exploits the
inspection of Docker configuration files, i.e., Docker compose files and Dockerfiles. Specifically, Claim col-
lects the Dockerfile generating the container image of each microservice, and identifies the Docker compose
file used to spin up all the microservices and possible infrastructural components of the MSA architectural
backbone. Via a set of empirical predefined rules, Claim determines which of the containers listed in the
Docker compose file can be microservices, discarding other elements (e.g., databases or gateways). As an
additional check, Claim verifies that the candidate microservices are actually microservices by inspecting
the correspondent Dockerfile to avoid false positive selections. Finally, Claim outputs the set of detected
microservices, enabling us to count the total number detected.

The use of this tool for microservices detection sets limits on the repositories we can analyze, restricted to
the ones using Docker as a containerization tool (see Section 4.3.1 for selection criteria); however, Claim is, to
the best of our knowledge, the most accurate tool for this purpose (i.e., language independent microservices
detection) that is also lightweight to run, limiting the time effort to analyze thousands of commits. In
Section 8, we discuss more thoroughly the possible effects on the validity of this study.

Phase 4: Sonar™ analysis. The last data to collect pertains to the analysis of code quality performed by the
Sonar™ tool suite5, one of the most known tools for TD measurement [11] (see Appendix B for the specific
version of tools used). The metric of interest is the SQALE index, which measures the TD in minutes needed
to pay off the identified Code TD [39].

The measurement includes all the languages supported by Sonar™ across the entire repository, not just
the main one. However, for some languages, namely Java and C#, Sonar™ requires compiled code, so
additional effort is needed to analyze such projects. Please note that in both cases, as per the specific
Sonar™ versions work, the analyzed code, regardless of the language, is just those included by the building
configuration files. Throughout the entire Sonar™ analysis, the default out-of-the-box configuration of the
tool is utilized.

5www.sonarsource.com (accessed on 20th April 2024)
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Phase 5: Data analysis. As the final step of the research process, we analyze the data collected. Before mov-
ing on, we clean the data by removing commits that incorrectly count no microservices due to a ill-formatted
Docker compose files (see Study Execution section, Section 5, for concrete values). This precaution ensures
that spurious values do not influence the analysis.

To answer RQ1, which is about the evolution trend of TD, various tests and investigations are conducted
on TD evolution, trend, and seasonality:

• We test the overall trend presence through the Mann-Kendall test [35, 45], a non-parametric test based
on Kendall’s rank correlation coefficient (Kendall’s τ). This test determines whether the TD time series
measured with the Sonar™ tool suite exhibits a specific trend, either increasing or decreasing. While
it can indicate the existence of a trend, it does not provide information about the slope of the trend,
which we evaluated afterward relating to the microservices number. The non-parametric property does
not assume a specific data distribution, e.g., the Pearson correlation coefficient assumes normality, but
our preliminary Shapiro-Wilk test [63] execution indicated that none of the systems exhibit normality
in the TD values. Moreover, with respect to other tests for trend detection relying on other correlation
coefficients (e.g., Spearman), the Mann-Kendall test best fits the preconditions imposed by data; as
a consequence, it is commonly employed in studies of software aging [21] and software evolution [47]
(particularly concerning quality and smells [32, 48, 52]) with similar data characteristics and scope.
An implementation of it is available as an open-source R library6;

• We obtain the trend for graphical means analysis by applying LOESS regression [20], which smooths
the TD evolution;

• We manually scrutinize the commits corresponding to “hotspots” of the TD time series. With
“hotspots” we mean commits characterized by an anomalous value in the variation of TD:

Hotspot := commit characterized by an outlier TD delta

We order the commits by the decreasing absolute value of introduced or paid-off TD, and we investigate
the content of the top 10 for each repository considered;

• We conduct a seasonality test using the combined method by Ollech andWebel [49] (a QS test combined
with a Kruskall-Wallis test). An implementation of this test is available as an open-source R library7.
Note that this test requires at least two periods of data, namely two years; hence, we have to ignore
systems with a shorter lifespan in this step, which constitutes a tradeoff between internal and external
validity of our results.

The LOESS regression and the seasonality test require a regularly spaced time series, however commits
are not. To address this potential impediment, we transform the series by (i) keeping only the last commit
of each day and (ii) introducing synthetic linearly interpolated data points on missing days.

To answer RQ2, which is about the relation between TD and the number of microservices, we examine
the potential correlation and causation between them, in particular:

• We clarify whether a correlation exists between the two time series using the Cross-Correlation Function
(CCF) [24]. This test checks the correlation between the two time series at different lags, i.e., offset
by some commits forward and backward;

• When a correlation at negative lags is detected, i.e., TD time series correlates with delayed microser-
vices time series, we conduct the Granger Causality test [34] to determine if a microservices number
change causes an increment or decrement of TD. We calculate the optimal lag order using the Akaike
Information Criterion [1];

• We analyze the potential correlation between the derivative of TD time series and the microservices
number to understand if the growth speed of TD depends on the number of microservices. In this
case, we use CCF as well.

6www.rdocumentation.org/packages/Kendall/versions/2.2/topics/MannKendall (accessed on 20th April 2024)
7www.rdocumentation.org/packages/seastests/versions/0.15.4/topics/combined_test (accessed on 20th April 2024)
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Before conducting the Granger Causality test, it is necessary to ensure that data is stationary; similarly,
the CCF may provide spurious results in the case of non-stationary series [23]. To test for stationarity,
the Augmented Dickey-Fuller test [27] is used, and when non-stationarity is detected, the data is made
stationary by differencing them.

The choice of studying correlation at different lags is due to the fact that we detect a microservice at its
insertion as a Docker container, which does not necessarily coincide with the start of its development. This
aspect might introduce a delay between the TD and the number of microservices; conversely, we have an
advance when the insertion as a Docker container occurs after finalizing a working version of the microservice.

5. Study Execution

The composed query described in the previous section retrieved8 a total of 2491 repositories: this number
refers to single results, excluding duplicated repositories resulting from multiple subqueries. After applying
FC1−3, only 121 repositories remain. With FC4, the manual criterion, only 46 repositories are identified
as actual or industrial demo MSAs. While discerning MSAs from libraries and development framework
is quite objective, distinguishing a real-world or industrial demo MSA from practitioners’ exercise-in-style
or didactic examples is more subjective. Our judgment is based primarily on the description from the
author(s) or other clear clues in the README9. Finally, we fine-tuned the parameters of FC5 to find
the best configuration that would result in a final dataset containing an appropriate number of reposi-
tories to be considered for analysis. The concluding selection comprises 15 repositories; however, during
the research process execution, we have to discard two initially included repositories from our analysis:
dotnet-architecture/eShopOnContainers faces severe building issues that impede the building of almost
all the commits except for the last period (likely due to incompatibility between different versions of .NET),
while for microrealestate/microrealestate, a suspicious TD constantly equal to 0 for a prolonged period
makes us realize that it was a multi-repositories project during its early life.

The final dataset comprises 13 repositories, summarized in Table 2. The dataset is heterogeneous in
terms of size (both as microservices and as Source lines of code, acronymized as SLOC), lifespan, and main
programming language used. Focusing on the distribution of the main languages, it appears to reflect the
language diffusion in the MSA context10. Due to these factors, we deem the dataset satisfactory from an
external validity point of view.

During the research process execution, some commits of the systems requiring the build get lost due to
committed failing builds, although we adopt strategies to minimize these occurrences. First, we apport minor
fixes to the building configuration files (i.e., Maven POM files, Gradle build scripts, and .NET global.json

files), concerning primarily dependency version updates and formatting corrections, to allow the build to
start. Secondly, we “force” the build when possible, letting the build not fail on non-blocking errors. While
this process could effect the functionalities of the compiled system, it does not effect the subsequent static
analysis utilized in this study to collect the results (see Section 4.3.2). Nonetheless, in a few cases of build
failure where the root cause is unclear or an objective solution might not exist, we decide to discard the
affected commits instead of using a subjective heuristic to resolve the issues. Examples of this case are
(i) dependencies that do not exist anymore, (ii) dependencies that make the build fail, (iii) the absence of a
build file (especially in very initial commits), and (iv) errors in the build file that are not objectively fixable.

The incidence of omitted commits can be found in Table 3. The number of omitted commits is relatively
low, accounting for less than 1% of the entire dataset. Thus, we do not believe this factor could substantially
impact the internal validity of our results. Additional considerations on this matter are documented in
Section 8.

8Query executed on 11th Sept. 2023; filters applied on the same day referring to commits until 8th Sept. 2023.
9To enhance the transparency and reproducibility of this study, we provide two examples of MSAs considered as not meeting

the required validity conditions: NTHU-LSALAB/NTHU-Distributed-System and ahmsay/Solidvessel.
10www.jetbrains.com/lp/devecosystem-2022/ (accessed on 20th April 2024)

12

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/microrealestate/microrealestate
https://github.com/NTHU-LSALAB/NTHU-Distributed-System
https://github.com/ahmsay/Solidvessel
www.jetbrains.com/lp/devecosystem-2022/


ID Repository
Main
lang(s) Type Comm. Contrib. SLOC MS From To

S01 1-Platform/one-platform TS product 1502 21 417k 6
a1c9466

01/04/2020
aa761bf

09/08/2023

S02 OpenCodeFoundation/eSchool C# product 275 9 5k 3
e556352

03/30/2019
46b19b5

04/25/2023

S03 ThoreauZZ/spring-cloud-example Java demo 279 4 7k 9
1ba3e35

01/11/2017
654cf9b

08/14/2020

S04 asc-lab/micronaut-microservices-poc Java demo 384 9 39k 9
5169e13

07/25/2018
9871a2e

04/19/2021

S05 bee-travels/bee-travels-node JS demo 375 7 255k 5
7cde267

09/04/2019
1228252

12/09/2021

S06 geoserver/geoserver-cloud Java product 1027 11 67k 8
9f6414d

07/09/2020
f8f3d90

09/06/2023

S07 go-saas/kit Go product 629 2 116k 2
e5a1488

08/23/2021
9194ce4

09/07/2023

S08 jvalue/ods TS, JS product 1428 16 219k 6
d4a4459

03/26/2019
843943f

05/17/2022

S09 learningOrchestra/mlToolKits Python product 1214 14 7k 6
b11a11a

03/19/2020
084699b

05/11/2022

S10 minos-framework/ecommerce-example Python demo 1069 4 44k 9
f4307ad

06/02/2021
9e3cdcc

02/01/2022

S11 nashtech-garage/yas Java, TS demo 535 28 82k 8
c88ec52

01/18/2022
4177b13

09/08/2023

S12 netcorebcn/quiz C# demo 658 3 4k 4
b70c960

02/22/2017
82fb546

11/20/2018

S13 open-telemetry/opentelemetry-demo TS demo 572 88 55k 15
75bf84f

04/26/2022
54aefe5

09/07/2023

Comm.: number of commits; Contrib.: number of contributors; MS: median number of microservices

Table 2: Selected repositories overview

ID Commits Omitted commits %

S01 1502 0 0%

S02 275 17 6.18%

S03 279 5 1.79%

S04 384 6 1.56%

S05 375 0 0%

S06 1027 11 1.07%

S07 629 0 0%

S08 1428 26 1.82%

S09 1214 0 0%

S10 1069 0 0%

S11 535 0 0%

S12 658 27 4.10%

S13 572 0 0%

Total 9947 92 0.92%

Table 3: Omitted commits per system
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6. Results

In this section, we only intend to report the obtained results objectively, postponing a more in-depth
discussion of the results and the RQs answers to Section 7, where also main lessons learnt and takeaways for
developers and researchers are discussed. We accompany the report with details of the most representative
data, while a comprehensive report can be found in the replication package as stated in Section 1.

6.1. RQ1: TD Evolution Trend

6.1.1. Overall Trend

By analyzing TD trends by graphical means, we can already get an overview of the overall trend (see
Figures 3 for significant examples discussed later, while in Appendix A are reported all the other study
cases). All the systems, with the exception of S12 and S13, show a generally accentuated increasing trend.
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Figure 3: Trend of TD in systems a) S01, b) S07, and c) S08

The Mann-Kendall test gives a statistical verdict of the overall presence of a TD trend: all 13 analyzed
MSAs present a trend (i.e., a p− value ≤ 2.2e− 16). Moreover, as shown in Table 4, almost all the systems
have a considerably strong growing trend, i.e., Kendall’s τ close to 1. The only exceptions are S12 and S13,
that show, respectively, a quite strong decreasing trend (τ = −0.58) and a weak growing trend (τ = 0.23).

IDs Kendall’s τ

S01, S02, S03, S04, S06, S07, S09, S11 τ ≥ 0, 79

S05, S08, S10 0, 49 ≥ τ ≥ 0, 59

S12 τ = −0, 58

S13 τ = 0, 23

Table 4: Kendall’s τ on TD trend (τ = 1: always increasing trend, τ = −1: always decreasing trend)
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Looking at the TD trend smoothed by LOESS regression, most of these systems (with the exception of
S06 and S11, whose growth is quite linear) are characterized by two distinct phases: in their early phase of
development, the TD growth rate is higher than in the later phase. However, for some cases, such as S05,
S01, or S08 shown in Figures 3a and 3c, the difference is remarkable; for other cases, the sudden decline
in the TD growth rate is milder, as in S02, S04, or S07 shown in Figure 3b. Systems S12 and S13 (see
Figure 4), namely those with a weaker or negative trend, show a similar tendency characterized by a high
initial TD followed by a constant decrease until a minimum and then a slow increase. While S12 finally
stabilizes at a value lower than the initial, S13 keeps growing.
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Figure 4: Trend of TD in systems a) S12 and b) S13

Further Investigation Observing these common patterns encourages us to delve deeper into possible
underlying causes. Specifically, we focus on the two distinct phases with different TD growth rates. We
examine the commit frequency and the age of the systems. After the elbow point, where TD begins to
increase at a slower rate, it is often noted that the commit frequency decreases, and long periods of constant
or decreasing TD occur. When considering the lifespan of the systems, projects with a shorter development,
like S07 (which spans 2 years), seem to show a more subtle change than longer-lived systems, such as S01,
which has nearly 4 years of development. However, this is not a property generalizable to all cases, as
counterexamples exist, e.g., systems S04 and S05 are against the trend. We discuss possible explanations
for this phenomenon in Section 7.

Regarding the S12 and S13 systems, the high initial TD is instead due, as revealed by a manual inspec-
tion, to the presence of a considerable amount of code already accumulated at the first commit. Subsequent
commits involved heavy refactoring and caused a sudden drop in TD before further development brought it
back to slow growth.

6.1.2. Hotspots Manual Scrutiny

This manual step concerns, as explained in Section 4.3.2, inspecting the content of the commits charac-
terized by the highest (positive or negative) variations of the TD to understand which developing activities
and interventions have the best or worst impact on TD. The scrutiny concerns only the type of changes
made in commits, and not the architectural components involved. The investigation of the top 10 hotspots
for each system reveals that adding a component (be it a microservice, an infrastructural component, or a
fronted UI) is the activity that introduces more TD, immediately followed by an evolution of the business
logic, recorded respectively in 40% and 34% of the analyzed hotspots that add TD (see Table 5). However,
these are not the only activities that can introduce TD since, in other cases, it has also increased simply
by adding or upgrading a library/package (4%), or even by refactoring (13%) or fixing (3%). However,
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refactoring (41%), with library upgrade (15%), fixing (13%) and testing (13%) to a lesser extent, is the main
activity when a significant part of TD is paid back.

The last inspected aspect regards the “size” of commits (i.e., changed files and added/deleted lines):
although it is more likely that a big commit impacts more TD than a smaller one, in many cases, small
commits or even single small changes (e.g., Java version update, library upgrade) introduce a notable
amount of TD.

Intervention type Incidence

TD introduction 93 hotspots

Adding components 40%

Evolve business logic 34%

Refactoring 15%

Framework/library/package change 4%

Fixing 3%

Intervention type Incidence

TD removal 39 hotspots

Refactoring 41%

Framework/library/package change 15%

Fixing 13%

Testing 13%

Removing components 8%

Configuration change 8%

Table 5: Hotspots main detected activity

6.1.3. Seasonality

Moving on to the seasonality, the Ollech & Webell combined test returns a negative response for all
the considered systems (i.e., p − value ≥ 0.01 and p − value ≥ 0.002 in the two individual tests). The
negative result of this statistical test proves the absence of any seasonality in the collected data, meaning
that the introduction of TD does not follow a periodic pattern over the year. Therefore, in microservices
contexts, TD can be introduced independently from annual events, like seasonal or national holidays or
periodic deadlines, which seem to have no influence on it.

6.2. RQ2: Relation Between TD and Microservices

Before presenting the statistical test results, we note that graphical analysis suggests a potential cor-
relation between the two time series, although this is not consistent across all commits and systems (the
entirety of plots are shown in Appendix A).

Most systems exhibit a trend in TD that resembles that of microservices. For example, system S06,
illustrated in Figure 5a, shows similar trend shapes, even if they are not identical. Both time series demon-
strate comparable trajectories over time, characterized by a rapid increase in the initial phases, followed by
stable periods interrupted by two noticeable steps.

In contrast, a few systems, such as S07 depicted in Figure 5b, display distinct trends. In this case, the
nearly constant growth in TD appears to be independent of the number of microservices, which experiences
a peak in the middle of the development process.

Focusing on the cases with comparable trends, for some of them the similarity is impressive. Take system
S11 shown in Figure 5c, for instance. Even though the removal of a microservice in early May 2023 does not
coincide with any change in TD and a sudden decline in TD in late March 2023 does not correspond with a
change of microservices, the overall TD trend closely follows the evolution of the number of microservices.

By utilizing the statistical tests presented in 4, in the following sections we analyze if the visual obser-
vation holds statistical significance.

6.2.1. TD and Microservices Correlation and Causality

As Table 6 summarizes, CCF reveals in 9 systems out of 13 a considerably strong correlation at some
lag. All the systems, except for S13, showcase the uppermost correlation at negative or no lag (i.e., the TD
never precedes the microservices number). S13 showcases a very high correlation of ≈ 0.8 at a positive lag,
as shown in Figure 6, albeit weaker ones also characterize negative lags, as depicted in Figure 6 along with
two other example cases, S10 and S11.
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Figure 5: Evolution of TD and microservices number in systems a) S06, b) S07, and c) S11

This result indicates that not only are the two trends correlated but also that changes in the number
of microservices typically occur before similar variations in TD. This observation confirms the correlation
between the two time series and suggests a potential causality relationship where microservices may influence
TD. It highlights the need for a causality test for systems that show a significant correlation.
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Figure 6: S10, S11, and S13 TD and microservices CCF

IDs Cross-Correlation (at some lag)

S01, S02, S08, S09, S13 very strong (>> confidence level)

S06, S10, S11, S12 strong (> confidence level)

S03, S04, S05, S07 absent or very weak (< or ≈ confidence level)

Table 6: Cross-Correlation between TD and microservices
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The Granger causality test discloses that among the systems with a correlation at negative lags, only in
4 of them a causality exists (i.e., p − value ≤ 0.01), as outlined in Table 7. In other words, in 5 systems
out of 9, although TD is correlated to the number of microservices, its variations are not caused by the
introduction/removal of a microservice.

In light of this result, we cannot affirm that a causal relationship between the evolution of microservices
and the introduction of TD exists as a general rule, rather it could be a characteristic of some specific MSA
systems.

IDs Granger causality Summary

S01, S06, S09, S13 Yes correlated and caused

S02, S03, S08, S10, S11 No correlated but not caused

S03, S04, S05, S07 — not even correlated

Table 7: Granger causality of TD by microservices number

Further Investigation These partially divergent results, which vary depending on the systems, encourage
us to search for common patterns to understand the underlying reasons. Firstly, we observe that the systems
where the two time series are not correlated (S03, S04, S05, and S07) share a common characteristic: they
begin to accumulate TD since their very first commits, but a Docker compose file is introduced only after
a significant number of commits. This suggests that the initial stages of development may have occurred
without a clear architectural overview.

Then, concerning the systems that exhibit a causality relationship, their nature could be the key: in
fact, systems S01, S05, and S09 are all real-world systems. Interestingly, while S02, S07, and S08 are
also real-world systems, the causality test produced a negative result for them (in the case of S07, even
a correlation is not detected). Although this pattern is apparent in some instances and could serve as a
distinguishing factor, it cannot be generalized across all systems, as each one may represent a unique case.

6.2.2. TD Growth Rate and Microservices Correlation

Finally, the CCF between TD derivatives and microservices number suggests a possible correlation
between them, existing in 6 systems out of 13, listed in Table 8. However, we can see in the plots in
Figure 7 that a correlation at positive lags is always counterbalanced by one or more correlation at negative
lags. As a take of this scenario, we can conclude that, from the statistic analysis, a significant correlation
cannot be observed in the collected data. TD, therefore, grows at the same rate regardless of the amount of
microservices present in the architecture.
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Figure 7: S01, S08, and S11 TD growth rate and microservices CCF
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IDs Cross-Correlation (at some lag)

S06, S08, S09 very strong (>> confidence level)

S01, S02, S10 strong (> confidence level)

S03, S04, S05, S07, S11, S12, S13 absent or very weak (< or ≈ confidence level)

Table 8: Cross-Correlation between TD growth rate and microservices

7. Discussion

The results obtained allow us to answer the RQs, shedding light on many aspects of interest, also thanks
to the additional qualitative inspections conducted to complement statistical results. Instead, on some other
points, they do not lead to an absolute answer; nonetheless, they offer meaningful clues enabling conjectures,
which can be further investigated in the future as suggested in Section 9.

7.1. RQ1: TD Evolution Trend

Undeniably, a growing trend exists for the TD since only 2 systems out of 13 do not showcase a strong
Kendall’s τ . Indeed, intuitively, TD tends to accumulate over time unless specific actions are adopted to
manage it. We observed by graphical meaning the TD trend of S12 and S13, both characterized by a high
initial value for TD. A further investigation reveals a common cause: both the systems start with a certain
quantity of already developed code, and a non-null TD; the following phase consists of various refactoring
that inevitably lower the TD accumulated in early commits or, in practice, even before the first commit.

While these responses already allow us to reject the null hypothesis H1.1
0 with statistical confidence,

concluding that in MSA systems, TD generally grows over time, the fact that in early phases, it grows faster
suggests more complex dynamics.

As a subjective interpretation, the elbow point we observed in Section 6.1.1 could correspond to the
passage from the initial intensive development to the maintenance phase, where adding new code is less
frequent and refactoring, which can lower the TD, is much more common. Looking at Figure 3, this
conjecture seems to find confirmations: (i) in younger systems, likely to be still in the development phase, the
elbow point is less prominent, and (ii) after the elbow point, the commits frequency decreases significantly.

During the later stages of development, long decreasing periods can also be noticed, likely induced by
efforts to pay back the TD. While this can be a virtuous practice, the real problem is in the early stages
of development, where intense development pace, as commit frequency proves, and tight deadlines force
developers to resort to sub-optimal expedients, as highlighted by [72].

As lesson learnt, developers should not worry too much about accumulating TD at the start of a project,
as we observe it is an intrinsic phenomenon dictated by the initial development phases. At the same time,
researcher should not obsess on tackling TD in the early phases of development, as it could counter the
natural evolution of shaping a software system, leading to a loss of development effectiveness.

The most controversial point comes from the manual scrutiny, which detected refactoring as an activity
that can either introduce or pay back TD, contrary to the common perception that a refactor inevitably
reduces TD. This double face of refactoring is probably related to its intent either to clean up the code (thus
paying back TD) or to prepare it for further development.

As takeaway, from our study we observed that refactoring activities do not necessarily guarantee a decrease
of Code TD. In fact, we observed that refactoring activities can often result also in the opposite, i.e., a TD
increase caused by refactoring activities. For developers, this implies that active effort should be spent not
only on general code refactoring, but also on carrying out refactoring activities explicitly considering Code
TD. For researchers instead, this entails that we cannot rely on the intuitive assumption that refactoring is
always associated to a TD decrease.

About the seasonality of the TD trend, data are overwhelming, giving us enough statistical confidence to
reject null hypothesisH1.2

0 on the absence of seasonality. Therefore, contrary to what one might expect, TD is
not more likely to be introduced/paid back in certain periods of the year (e.g., before/after seasonal holidays).
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RQ1: What is the evolution trend of Code TD in microservice-based software-intensive systems?

Answer. TD displays an overall increasing trend in time, above all in the initial development phase,
albeit the rate decreases in advanced phases characterized by long periods with limited TD introduced.

TD variations can happen either by adding microservices or evolving the business logic, but many
other activities can also be minor causes. Refactoring is the primary means of paying back TD, but only
if undertaken with this purpose in mind, otherwise it will prove to be a double-edged sword.

TD does not show seasonal variations and can manifest throughout the year without any difference.

7.2. RQ2: Relation Between TD and Microservices

The values of the CCF between the TD measurement and the number of detected microservices are
significant enough to affirm that a relation between the two metrics exists. Indeed, as seen in Section 6.2,
only 4 systems out of 13 do not showcase a significant correlation, i.e., greater than the confidence level. In
light of this, we could already reject the null hypothesis H2

0 , concluding that a relation exists.
To learn more about the identified relationship, we need to look at the results of subsequent tests. The

systems showcasing a weak or no correlation (S03, S04, S05, and S07) seem to have a common history,
characterized by an early accumulation of TD but a late definition of architecture. Such a result highlights the
importance of the architectural overview since the beginning of the development, otherwise the consequent
uncontrolled accumulation of TD unrelated to architectural aspects will result.

The causality test, at first look, does not have such an overwhelming result: in 4 systems, a causality
is detected, while in 5 not. Looking better, among the systems with a causation effect, we also found S13,
where the correlation is at a positive lag, meaning that a change in the TD amount precedes a variation
in the microservices number. As a result, albeit a causality relation exists, the latter metric can hardly be
used to forecast future values of TD, e.g., by framing and training a model (if enough data will ever be
available) that guides developers and project managers to schedule maintenance in advance based on planned
architectural intervention appropriately. It is challenging to detect a pattern characterizing the remaining
systems (namely S01, S06, and S09) where a causality relation exists. The only possible connection among
them is their nature of real-world systems. However, in other systems of this type, no causality (S02 and
S08) or even correlation (S07) is detected. We can suppose that attested industrial workflows might be
rigorous enough to establish, in some cases, a strict connection between the two metrics; however, further
study is required to clarify such conjecture. Another possible explanation involves the system stability:
although it is a property strictly related to the architectural level, its impact range can also extend to code
quality, with developers forced to resort to suboptimal code expedients because of unhealthy architectural
situations.

Regarding the TD growth rate, we started from the hypothesis that as the number of microservices
increases, TD grows at a higher rate due to increased system complexity. However, CCF values disagree,
showing a general non-correlation between the two metrics. Therefore, a desirable property appears: adding
or removing a microservice has similar impacts on TD growth rate irrespective of the already present
microservices. As a subjective interpretation, we hypothesize that this effect is a benefit of an appropriate
adherence to the MSA principles [69], i.e., componentization, business tailored microservices, decentralized
governance, and evolutionary design (see Section 2.1). Through these principles, microservices are developed
independently and in isolation by following a loosely coupled and highly cohesive architecture.

For developers, the observed relationship between TD and microservices implies that, by adhering to
rigorous MSA principles, it is possible to keep TD compartmentalized at the microservice level. For re-
searchers, this opens a new research direction, aimed at rigorously understanding how and why TD evolves
within different microservices.
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RQ2: Is there a relation between Code TD evolution and the number of microservices?

Answer. There is usually a strong correlation between the TD and the number of microservices, although
this may not always be the case in isolated situations. Generally, microservices number variations tend
to be shifted in advance over the TD ones.

While there may be cases where even a causality relationship exists, our observations suggest it is
not a general tendency.

The TD growth rate appears not to be significantly related to the microservices number. Conse-
quently, adding or removing a microservice does not impact the growing rate of TD.

8. Threats to Validity

Despite our best efforts, the results of this study need to be interpreted in light of potential threats
to validity, which might have influenced them. Certain factors may have affected the execution of the
research or the collection and interpretation of results. In this section, we discuss these factors following the
categorization of Runenson et al. [58].

8.1. Construct Validity

This category focuses on whether the measurements adopted are suitable for addressing the RQs. The
TD measurement is conducted using SonarQube™, which employs the SQALE index. This tool and index
are widely used in literature as well in industrial practice [10], but we are aware that using a different tool
could have led to different measurements; however, according to Amanatidis et al. [5], the difference should
not be significant.

The detection of microservices deserves a more detailed discussion. A static tool such as Claim may
affect this metric since it can exploit less information than a dynamic method. However, a dynamic approach
would have required excessive effort to configure each repository (and potentially commit) individually. To
mitigate potential issues, we use the most accurate static tool available in the literature to the best of our
knowledge. One limitation of Claim is the possibility of delay or advance in the microservices time series
due to its underlying detection strategy. We address this by examining the correlation between the two time
series at different lags with CCF.

8.2. Internal Validity

Here, we addressed potential confounding factors that could have influenced the recorded results to
ensure the accuracy of our findings. To minimize any potential “noise” in the results introduced by TD
measurement, we (i) discard all commits failing during the build for which we cannot find an objective
fix without altering the original intentions of authors; (ii) carefully review commits characterized by an
anomalous TD value and (iii) perform a rigorous statistical analysis on the collected data. As a last note,
being the number of omitted commits relatively low, i.e., < 1%, we deem this factor could not affect results.

8.3. External Validity

In terms of generalizing the findings, we can reasonably assert that comparable results might be ob-
served in other microservices-based software-intensive systems. Although there is a lack of MSA systems
because most of them are commercial products and finding an open-source one is uncommon, the dataset is
heterogeneous in terms of language, typology, size, and scope (see Section 5).

The choice of Claim as a microservices detection method represents a tradeoff between internal and
external validity. While language-independent for microservices, it relies on Docker as a containerization
tool, limiting the sets of analyzable repositories and representing a potential threat to external validity. Since
the containerization tool (or even its absence) should not impact significantly Code TD, we can conjecture
that the results might be similar considering other containerization tools, e.g., Kubernetes, adopting other
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microservices detection methods; however, further studies should be conducted to prove this, although, in
the current state of the art, dynamic methods have infeasible execution times for this kind of study.

A minor concern is the decision to consider only single-repository systems, i.e., those contained entirely in
one repository, as opposed to multi-repository ones that spread components over multiple repositories. This
choice is made to avoid missing the intermediate changes of the minor repositories between one commit and
the next in the aggregator repository. However, this aspect should be related only to the size and organization
of the system and should not affect its development mode and other factors that could influence TD.

8.4. Reliability

Given the almost purely quantitative nature of the study, our results are highly likely replicable by other
researchers. The only exception might be the manual scrutiny conducted to analyze commits with outliers
TD values, which constitutes only a minimal fraction. Apart from this limited portion, the study is based
entirely on mining and data analysis scripts made available for scrutiny and replication (see Section 1),
complemented with raw and final data.

9. Conclusion

In this study, we present a multiple case study to investigate, for the first time, the evolution of Technical
Debt in Microservices Architectures. The investigation includes 13 microservice-based systems selected
heterogeneously by different aspects, such as language, size, number of microservices, and nature (real cases
or industrial demos), totaling over 10k commits. The study is primarily quantitative, based on mining
software repositories, source code quality analysis, and statistical data analysis, although some results are
complemented with manual qualitative inspection of commits.

The results show that an overall growing trend, particularly accentuated in early development phases,
characterizes TD evolution; moreover, the evolution does not present periodic trends. TD variations can
happen due to multiple activities, but the more impacting ones are adding/removing a microservice, evolving
the business logic, and refactoring when not performed with a TD reduction in mind. Moreover, the extent
of TD variations is independent of the number of microservices already present, although the overall TD
evolution is strongly correlated with it, meaning that microservices independence is helpful in this aspect.

As concluding remarks, we note that adhering to microservices architecture principles might keep TD
compartmentalized within microservices, avoiding its surge and making it more manageable, differently
from other types of architectures (e.g., monolithic ones). It is crucial for developers to remain aware of the
potential TD they may incur, regardless of the activities they undertake, because even a trivial change, like
a function or class refactoring, could significantly impact the TD of systems.

Although adopting a code quality analysis step in the development workflow at the initial stage certainly
reduces the development speed, it could allow for the early isolation of the principal causes of TD that
will characterize the whole system lifecycle. Without such a precaution, even if it is feasible to maintain
a consistent level of TD during the system evolution, an increase in TD may be inevitable as the system
grows in size and complexity.

Future Work This study paves the way for a series of in-depth analyses. Several facets have not been
addressed yet, which could provide more insights into the phenomenon under investigation. As future work,
this study can be complemented by considering the following factors: (i) measurement of the individual
contributions of microservices to the TD; (ii) in-depth and more systematic analysis of TD hotspots to
understand which kinds of activities expose more developers to increased TD; (iii) assessment of the in-
volvement of each developer in the total TD by measuring the TD they introduce or pay off during the
implementation of microservices to evaluate if the TD is evenly distributed or not; (iv) evaluation of differ-
ent types of TD, other than Code TD, can be measured, especially ATD, which could give inspiring insights
into the development of MSAs (via the tools mentioned in Section 3, i.e., Arcan [6] and ATDx [50]).
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Appendix A. Additional Data Plots

Appendix A.1. TD Trend
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Figure A.8: Trend of TD in systems S02, S03, and S04
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Figure A.9: Trend of TD in systems S05, S06, S09, S10 and S11
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Appendix A.2. TD and Microservices Evolution
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Figure A.10: Evolution of TD and microservices number in systems S01, S02, S03, S04 and S05
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Figure A.11: Evolution of TD and microservices number in systems S08, S09, S10, S12 and S13
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Appendix B. Replicability

A replication package made openly available online (see Section 1). The package contains all scripts and
data used by the results presented in this manuscript, supported by a brief set of instruction on how to
replicate all research steps executed for this study. For completeness, following the adopted version for the
main tools used:

• Python v3.10.6
• SonarScanner CLI v4.8.0.2856
• SonarScanner for Maven v3.9.1
• SonarScanner for .NET v5.13.1
• SonarQube v9.9 LTS
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