
The Technical Debt Gamble: A Case Study on Technical Debt in a Large-Scale Industrial
Microservice Architecture

Klara Borowaa,∗, Andrzej Ratkowskia, Roberto Verdecchiab

aWarsaw University of Technology, Institute of Control and Computation Engineering, Warsaw, Poland
bUniversity of Florence, Software Technologies Laboratory, Italy

Abstract

Microservice architectures provide an intuitive promise of high maintainability and evolvability due to loose coupling. However,
these quality attributes are notably vulnerable to technical debt (TD). Few studies address TD in microservice systems, particularly
on a large scale. This research explores how TD manifests in a large-scale microservice-based industrial system. The research
is based on a mixed-method case study of a project including over 100 microservices and serving over 15k locations. Results
are collected via a quantitative method based static code analyzers combined with qualitative insights derived from a focus group
discussion with the development team and a follow-up interview with the lead architect of the case study system. Results show
that (1) simple static source code analysis can be an efficient and effective entry point for holistic TD discovery, (2) inadequate
communication significantly contributes to TD, (3) misalignment between architectural and organizational structures can exacerbate
TD accumulation, (4) microservices can rapidly cycle through TD accumulation and resolution, a phenomenon referred to as
“microservice architecture technical debt gamble”. Finally, we identify a set of fitting strategies for TD management in microservice
architectures.

Keywords: Technical Debt, Microservices, Case Study, Mixed-method Empirical Study

1. Introduction

Technical Debt (TD) is a metaphor that describes software-
related constructs created with short-term gains in mind, which
may consequently impact the system’s future maintenance and
implementation of new functionalities [1]. In order to mitigate
TD, architects may consider utilizing a microservice architec-
ture (MSA), which, in contrast to monolithic architectures, pro-
vides the intuitive promise of simplified maintenance and evo-
lution of systems due to the loose coupling between microser-
vices, making it possible to change one microservice without
affecting other microservices [2] [3]. However, this intuition
is not fully supported by research. Maintainability research in
MSA is lacking [4] and as such, it is not clear how severely
the additional coordination between microservices may hin-
der maintenance. Additionally, microservice co-evolution [5]
seems to be the practical norm instead of the separate evolution
of microservices, which means that change in MSA systems
may actually become extremely difficult. As such, the impact
of MSA on TD is not fully clear, and it clearly differs from
monolithic systems. Thus, TD requires separate research in the
context of MSA.

However, to date, only a small amount of research activities
focused on TD in the context of MSA [6], with most of the ex-
isting studies focusing on rather small systems, comprising mi-
croservices in the order of tens [7]. As a further research gap,

∗Corresponding author
Email addresses: klara.borowa@pw.edu.pl (Klara Borowa),

roberto.verdecchia@unifi.it (Roberto Verdecchia)

many existing studies on TD in microservice-based systems fo-
cus on the migration between monolithic and microservice ar-
chitectures [6] [8] instead of systems originally conceived with
a microservice architecture in mind. This research gap is of par-
ticular concern to the software engineering community since
the topics of architectural technical debt are under-researched
compared to code debt despite being a major issue for software
systems [9].

The aim of this research is to understand how TD manifests
itself in a large microservice-based system that is used as case
study for this research. In terms of research question (RQ), our
inquiry aims to answer the following one:
RQ: How is TD characterized in the industrial large-scale
microservice-based system considered as case study?

With our research question (RQ), we aim to systematically
achieve the goal set out by our industrial partner, namely to
gain insights into the TD of their system. This goal needs to
be achieved by utilizing the boundaries set out by our partner,
namely a combination of simple static analysis tools already in
place at the organization and direct access to the developers of
the software product, in order to identify and understand the
technical debt present in the system.

In order to answer our RQ, we performed an analysis of
the Retail System (RS), a software-intensive system compris-
ing over 100 microservices, which is currently used to operate
a network of over 15k convenience stores. We based our analy-
sis on both quantitative and qualitative methods, namely reverse
engineering the microservices relationships and measuring their
workload based on the Azure DevOps tools and static source

Manuscript accepted to the Journal of Systems and Software

code analysis using SonarQube, followed by a focus group dis-
cussion with a development team, and a closing interview with
the lead architect of the system.

The main contributions of this research are: (1) a mixed
methods case study of a large microservice-based industrial
system in the context of the system’s technical debt, (2) a show-
case of how this in-depth analysis of TD with the use of simple
code analysis, as well as a focus group discussion and interview
with the architect, were performed, (3) the finding that simple
code analysis can be a lightweight yet effective entry point for
comprehensive TD discovery, (4) the identification of the main
causes of TD in large-scale industrial case study system, (5)
uncovering the “microservice architecture technical debt gam-
ble” phenomenon characteristic of MSA, (6) the identification
of a set of best practices for TD management in MSA, (7) ad-
ditional material containing the simple code analysis results,
focus group discussion plan and slides [10].

This paper is structured as follows. We present research re-
lated to this study in Section 2. In Section 3 we provide de-
tails about the software-intensive system researched in this case
study. The research process followed is detailed in Section 4
and the results of this inquiry are presented in Section 5. The
findings of this research are documented in Section 6, while the
related threats to validity are reported in Section 7. The con-
cluding remarks of this study are drawn in Section 8.

2. Related Work

2.1. Technical debt identification
In this case study, we focused on inadvertent TD [11], which

can be hard to identify and monitor. Often, it is only when neg-
ative TD symptoms arise, e.g., the system’s performance sig-
nificantly slows down, that any efforts of finding this TD are
taken [12]. Such identification can be done using various ap-
proaches [13], most notably: the use of automatic TD detection
tools [14], human knowledge based analyses [15], and detec-
tion of anti-patterns [16].

While automatic TD detection tools are widely available
and relatively easy to use, it is important to note their main
drawbacks. Firstly, they usually measure TD through code
smells [13], i.e., signs that something “smells bad” in the
code [17], which can be an indicator of TD but are not a defini-
tive sign of it. Even if particular pieces of code are sub-optimal,
they may not cause maintenance or evolution-related problems.
Additionally, TD detection tools make use of very different
algorithms and often give contradictory results [18]. Despite
these drawbacks, tools detecting code TD, such as SonarQube,
are widely used in industry [19] [14]. In the case of this study,
our industry partner had created an environment that allowed us
to run SonarQube, which they recognized as useful for detect-
ing code-related technical debt in their organization.

Architectural technical debt (ATD) is a TD type that is of
particular interest to this study since we focus on an MSA sys-
tem. Although finding ATD is possible by identifying architec-
tural antipatterns and smells [15], detecting TD in architectural
structures is difficult to automatize [18]. Tools for ATD detec-
tion do exist [20] [14] [21] but are not as widely adopted as

SonarQube [14]. In this study, instead of focusing on ATD de-
tecting tools, we focused on finding whether this most popular
TD identification tool could be used to identify which microser-
vices are most impacted by technical debt. Therefore, in order
to get an additional understanding of ATD in this case study,
we complemented the SonarQube data gathering with a focus
group discussion with the RS system’s development team.

2.2. Technical debt in microservice systems

By focusing on the research considering TD in microservice
architectures, we were able to pinpoint only a limited number
of studies currently available in the literature. We present them
in this section while showcasing how our study differs from the
existing research.

The case study by Verdecchia et al. [7], which also focuses
on TD in a microservice system, closely resembles this study in
terms of the research method used, by blending a mix of qual-
itative and quantitative approaches. In contrast to that study
however, the case study of this inquiry is characterized by a
much larger size, comprising 30 key microservices from a sys-
tem of over 100 microservices rather than 13. Additionally,
the case study presented in this paper focuses on understanding
the current TD in a software system, rather than studying how
TD evolves over time. Finally, Verdecchia et al. researched an
open-source software project, rather than a large-scale indus-
trial one.

The study by Lenarduzzi et al. [8] also resembles this study
from a methodological standpoint, by adopting a quantitative
analysis followed by a complementary qualitative one. It differs
from this research however, as Lenarduzzi et al. consider the
impact on TD by migrating a monolithic architecture to a mi-
croservice one. The case study reported in this inquiry instead
considers a system that was originally conceived as a microser-
vice architecture. By focusing on the number of microservices,
we also note that the system considered in this study presents
a much higher number of microservices (30 key microservices
rather than 5), and could hence be deemed of bigger size and
potentially more complex in nature.

In another case study by Toledo et al. [22] interviews are con-
ducted to create a catalog of architectural TD, consequences,
and solutions. Unlike this study, Toledo et al. focus their re-
search process on a purely qualitative method, by conducting
interviews with practitioners. From a more semantic stance, in
this study we do not focus on a specific type of TD, while the
study of Toledo et al. explicitly concentrates on ATD.

By considering the more encompassing topic of software
quality in microservice-based systems, further related studies
can be identified. Bogner et al. [23] present a qualitative study
on evolvability assurance. While in their study TD emerged as
a topic related to microservice evolvability, unlike this work,
the study by Bogner et al. does not focus on TD. Methodolog-
ically, the study also differs by utilizing semi-structured inter-
views rather than a mixed-method case study.

In another work related to the maintainability of microser-
vice architectures, Pagazzini et al. [24] discuss how microser-
vice smells can be identified in software projects through source

2

code analysis. A major difference with that work is that this
study presents a mixed-method case study rather than using
only a source code analysis tool, and focuses on TD rather than
maintainability.

By considering the more encompassing topic of techni-
cal debt in service-oriented architectures (SOA), Nikolaidis et
al. [25] document a methodology to measure TD in services
by constructing a call graph. Differently, by following the di-
rectives of the industrial partner involved in this research, we
measure TD via the widely adopted SonarQube rather than
the approach of Nikolaidis et al., and specifically consider a
microservice-based architecture rather than a general SOA.

Through a systematic mapping study on TD in microservice
architectures, Villa et al. [6] present a literature review on tech-
nical debt in microservices. From the literature analysis, there
are few studies leveraging a quantitative research component
to study the topic result, laying a grounding motivation for the
research method used in this study.

3. Case Study Description

The case study focuses on a sales support system Retail Sys-
tem (RS) designed and implemented by a retail organization
operating a large network of over 15k convenience stores. The
main purpose of the system is to expose the capabilities of
point-of-sale (POS) applications to electronic sales channels,
e.g., end customers’ mobile apps and external partners.

The architecture of the RS is based on the Mesh App and
Service Architecture (MASA) [26] framework. MASA is a
Gartner-proposed architectural framework for enterprise-size
systems that are supposed to support divergent applications and
business processes through multi-layer APIs. The key concept
revolves around dividing the architecture into three layers (see
Figure 1):

• Outer APIs that serve external applications.

• The API and Event Mediation layer that provides consis-
tency in access management to inner APIs, reflecting busi-
ness processes in the organization.

• Services providing inner APIs that expose capabilities of
enterprise systems (e.g., ERP, Point of Sale, appliances in
shops).

Besides layers, MASA introduces meshes that crosscut ver-
tically all three layers for the particular needs of specific client
applications, e.g., a mesh for individual customers or a mesh
for third-party partners.

In the RS, the architecture is spread across more than 100
microservices that are organized into three different layers in
accordance with the MASA pattern. In the RS these layers
are named slightly differently, so we present the corresponding
MASA name in brackets. These layers are as follows:

• Experience API layer (in MASA: Other APIs layer):
This layer constitutes the top external layer of the system,
and groups the microservices used by the end-consumers.

Mesh
application 2

Mesh
application 1

Mesh
application 3

Client
Applications

Outer
APIs

API and Event
mediation

Services
providing inner

APIs

Figure 1: Mesh App and Service Architecture (MASA) example (based on [26])

The microservices in this layer represent atomic behavior
(also referred to as “experience”) for a certain capability
the application provides. Microservices generally possess
simple functionality, e.g. requests authorization or data
transformation between various formats. Microservices
belonging to the experience layer do not contain, by de-
sign, any business logic.

• Orchestration layer (in MASA: API and Event medi-
ation): This layer consists of microservices implement-
ing the logic of the application business processes. Mi-
croservices in the orchestration layer are invoked by the
microservices of the experience layer. Through each step
of a specific business process, appropriate calls are made
by microservices from the orchestration layer to services
layer microservices.

• Services layer (in MASA: Services providing inner
APIs): The bottom layer of the RS groups microservices
that represent isolated functionalities used to perform the
steps of various business processes. The Services layer mi-
croservices either use separate databases for storing their
data or use interfaces (wrappers) to call external point-of-
sale systems.

All microservices of the RS are deployed in a public cloud
infrastructure. Microservices are developed and operated by
multiple development teams located in various places around
the world, belonging to different time zones, backgrounds, cul-
tures, and work styles. While the whole system consists of over
a hundred microservices, this case study focuses on the 30 core
microservices of the RS, as selected by the lead architect of
the system according to the interest of the industrial partner.
The development and maintenance of the RS strongly employs
a DevOps approach, i.e. one development team is responsible
not only for delivering new features of software but also for the
stability and reliability of all software components used by their

3

Phase 1a:
 Component

diagram creation

Phase 3:
Focus group
discussion

Phase 4:
Reflexive thematic

analysis

Phase 2: Potential
TD hotspots

identification

GitHub
repositories

Azure

Measured
valuesPhase 1b:

Simple code
analysis

Microservice
dependencies

Quantitative
results

Transcript

Potential
TD hotspots

Phase 5:
Interview with
 lead architect

Themes

Figure 2: Research process overview

microservices. They have accountability for most tasks, such
as maintenance, bug fixing, system monitoring, and operational
efficiency (e.g. infrastructure cost tracking and optimization).
Due to this fact, technical debt is a vital concern for the devel-
opment team.

The RS was a microservice-based system since its inception
when the Enterprise Architecture team of the company decided
to employ the MASA pattern. As such, the system was never
a monolith or a distributed monolith, and all microservices can
be changed and deployed separately.

Due to the nature of the RS business, stakeholders require
the system to be easily modifiable, maintainable, and evolv-
able, simultaneously providing high reliability, availability, and
performance. The RS is fully operational and supports over 15k
stores, millions of customers, and millions of sale transactions
daily.

The partner company has specifically requested to find TD
that may impact the maintainability and evolvability of the RS
system. As such, this study focuses on these two software qual-
ity attributes.

4. Research Process

To systematically study the TD present in RS we adopted the
mixed method empirical research process depicted in Figure 2.

The research process, consisting of five main phases, starts
with an initial quantitative analysis which results in a compo-
nent diagram and SonarQube analysis (Phases 1-2). The output
of the quantitative analysis, namely a list of microservices that
could be most affected by TD (also simply referred to as “TD
hotspots” in this paper), is then used as input for a qualitative
analysis. During the qualitative analysis, a focus group with RS
developers and an interview with the lead architect (Phases 3-5)
were held to gain further insights, complement the quantitative
results, and gain a comprehensive understanding of the TD in
the RS.

We prepared material containing the full SonarQube results,
the focus group discussion plan, and focus group discussion
slides [10]. To preserve the anonymity of the partner company,
the employees partaking in this study, and the RS, all presented
data is anonymized by omitting personal names, component
names, and other potentially sensitive information.

4.1. Phase 1a: Component diagram creation.
The goal of this phase was to identify a set of microservices

to be researched in the context of TD. We assumed that the
most crucial microservices are the ones that process the most
requests in the system and sought to identify them.

The first research step we performed was the identification
of the core microservices used in the RS, as well as the rela-
tionships between them. This information was captured via the
Azure Application Insights 1 and the Azure Application Map
distributed tracing system2 based on the dynamic behavior of
microservices at runtime. This analysis employed the follow-
ing steps:

Microservice instrumentation. Each microservice, running
as java application, was equiped with the Application Insights
telemetry instrumentation, which is responsible for gathering
all generated microservice logs. The instrumentation is based
on the ”autoinstrumentation” approach [27]. In practice, this
means that each microservice, which was encapsulated in a
Docker container, had a Dockerfile which contained an appro-
priate declaration as showcased in Listing 1.

Listing 1: Dockerfile fragment necessary for Azure instrumentation

1 FROM gradle:6.9.4-jdk11 AS build

2 COPY --chown=gradle:gradle . /build/service

1https://learn.microsoft.com/en-us/azure/azure-monitor/

app/app-insights-overview. Accessed 4 April 2024
2https://learn.microsoft.com/en-us/azure/azure-monitor/

app/app-map. Accessed 4 April 2024

4

https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-map
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-map

3
4 WORKDIR /build/service

5 RUN gradle build --no-daemon --console verbose

↪→ test

6
7 RUN ls -la /build/service/build/libs

8 FROM adoptopenjdk:11-jre

9 WORKDIR /opt/service

10
11 COPY --from=build /build/service/build/libs/*.jar

↪→ ./service.jar

12 ADD https://github.com/microsoft/

↪→ ApplicationInsights-Java/releases/download

↪→ /2.6.4/applicationinsights-agent-2.6.4.jar

↪→ ./agent.jar

13
14 EXPOSE 8080

15 ENTRYPOINT ["/exec java -Djava.security.egd=file

↪→ :/dev/./urandom \

16 -XX:+UnlockExperimentalVMOptions \

17 -XX:+UseShenandoahGC \

18 -Xms1g \

19 -Xmx6g \

20 -javaagent:/opt/service/agent.jar \

21 -jar /opt/service/service.jar"]

As a result of autoinstrumentation, all logs generated by ap-
plications run using the java virtual machine are transmitted
into Azure Application Insights database.

Microservice relationship discovery. On the basis of Azure
Application Insights logs, it is possible to discover the relation-
ships between all microservices in the system.

Each external API request to the RS system is automatically
assigned a unique identifier known as operationId. This opera-
tionId is subsequently passed along with every subsequent call
to the next microservice in the call chain sequence.

Each request from this call chain sequence is logged in the
Application Insight time-series database, facilitating efficient
log querying. Beyond the operationId and request identifiers,
each request is enriched with additional metadata, such as the
microservice name and timestamp.

To find the relationships between services, one can query the
log database using a selected operationId and sort the results
by the names of microservices in chronological order through a
KQL (Kusto Query Language) query (see Figure 3).

The outcome of this query reveals the sequence of calls
among a group of microservices, thereby illustrating the caller-
callee relationships between them. This structured approach
to logging makes it possible the find microservice interactions
within the system’s architecture. One specific Application In-
sight tool, the Application Map, produces a visualization of
all relationships between microservices constructed from these
logs on a single diagram (see Figure 4).

Thus, using the Application Map and KQL queries, we were
able to obtain all relationships between microservices in the RS
and the amount of requests sent and received by these microser-
vices daily.

Microservices selection. The choice of the 30 core mi-
croservices was made as follows. The lead architect used Azure

Figure 3: Example query result from Application Insight database

Application Insights to gather information about the average
daily number of requests handled by each microservice. This
way, the top 20 microservices that handled most requests were
identified as initial core microservices. Then, the architect
found which microservices communicated with the initially se-
lected 20 microservices and added them to the core microser-
vices list, which resulted in 30 microservices in total.

The average number of daily requests the RS handles is
66.5M. Each of the identified 30 microservices handles, on av-
erage, from 17k to 15.1M requests daily, which means that they
are overall responsible for over 99% of the daily request load.
These microservices perform core business processes in the RS,
such as sales, billing, warehouse management, and pricing.

The final output of this phase, namely the reverse-engineered
microservice component diagram, is presented in Figure 6.

4.2. Phase 1b: Simple Code Analysis

This phase’s aim was to obtain an automatized quantitative
analysis of the microservices’ code, focusing on measurements
that may possibly be connected with TD.

As such, we gathered the following:
• Number of dependencies: Since the complexity of a mi-

croservice could be related to the number of its depen-
dencies. This information was gathered from the Azure
Application Map.

• Lines of code number: As a microservice composed by a
high number of lines of code may point to a lack of refac-
toring or overly complex code. This measurement was ob-
tained straight from the microservices’ GitHub reposito-
ries.

• Age: Given that software aging naturally leads to software
quality deterioration [28]. The age was obtained from the
GitHub repositories as well.

5

Figure 4: Application Map showcasing a fragment of the RS architecture with anonymized microservice names

• Number of contributors: Since human factors can have a
major role in incurring TD [29], a high number of contrib-
utors could be a symptom (or cause) of a TD hotspot. The
contributor count was gathered from the GitHub reposito-
ries.

• Rarely adopted programming languages: Microservices
written in a programming language different from all other
microservices could indicate a TD hotspot, since devel-
opers may not be able to efficiently work with a rarely
used technology. This information was also gathered from
GitHub repositories.

• Technical Debt: The TD measurement directly represents
the amount of time needed to repay the TD in minutes (cal-
culated by SonarQube). This measurement was used to
calculate TD density.

• Technical Debt Density: Since a microservice with high
TD density may be a major source of TD. Technical Debt
Density represents the amount of time needed to repay the
TD in minutes, divided by the lines of code number.

The software department of the retail organization employs
a multi-repository code-level strategy, where each microservice
is encapsulated in a dedicated GitHub repository. Many of the
measurements used in our analysis were obtained directly from
these repositories (lines of code, age, contributors programming
languages).

The number of dependencies was obtained using the Azure
Application Map, as described in Section 4.1.

Additionally, in order to calculate TD repayment time, we
decided on using an automatic TD detection tool instead of
methods such as architectural antipattern analysis, since we

knew of the use of the MASA [26] approach in the company
and it seemed unlikely, due to strict company policy, for archi-
tectural antipatterns to emerged unnoticed.

We chose SonarQube3, along with the other tools (Azure,
GitHub), since the partner company itself has set up an envi-
ronment for running SonarQube, which they used themselves
in their delivery pipeline. The company itself got interested in
using SonarQube [14] due to its popularity among TD mea-
surement tools and, thus, was able to share this data with us
without disrupting their daily operations. The partner company
was particularly interested in whether SonarQube could be used
to identify the most expensive TD in the system by employing
SonarQube analysis in the process.

We considered TD identification methods related to tracking
changes in the repositories. However, we decided not to employ
them for two reasons: (1) the lack of change in code can actu-
ally be a symptom of TD, since developers may become afraid
of “touching” TD impacted code [29], (2) the partner company
was insistent on using simpler code analysis instead of employ-
ing such tools.

We adopted SonarQube v10.2.1 with SonarScanner v50.0.1
and the default TD repayment cost of 30 minutes per line of
code. As a result, we obtained a TD measurement in minutes,
i.e., the amount of minutes necessary to repay the TD according
to SonarQube. The Technical Debt Ratio was then calculated
by dividing the TD measurement by the lines of code value ob-
tained from the microservice’s repository.

3https://www.sonarsource.com/products/sonarqube. Accessed 4
April 2024

6

https://www.sonarsource.com/products/sonarqube

ID Education ED-CS Role EXP EXP-COMP
1 PhD Yes Architect 20 6
2 Bachelor’s No Business&System Analyst 9 2.5
3 Master’s No Quality Assurance 6 4
4 Master’s No Scrum Master 8 1.5
5 Master’s No Developer 5 2.5
6 Master’s Yes Developer 11 2.5
7 Master’s Yes Developer 11 2
8 Master’s Yes Developer 5 1

Table 1: Focus group discussion participants
ED-CS – Education related to computer science,
EXP – Years of experience in software development,
EXP-COMP – Years in current company

4.3. Phase 2: Potential TD hotspots identification.
In this phase, we sought to find potential TD hotspots, i.e.,

microservices that the quantitative analysis suggested could be
most affected by TD. In order to do so, we analyzed the data
from Phase 1a and Phase 1b, while focusing on the following
criteria: the highest number of dependencies, the highest num-
ber of lines of code, the biggest age, the highest number of con-
tributors, use of unique programming languages not present in
the rest of the system, the highest TD measurement, the highest
TD density.

To verify the meaningfulness of the TD hotspots identified
according to the criteria listed above, we presented the prelimi-
nary list of TD hotspots to the lead architect of the RS. The lead
architect supported the final selection of potential TD hotspots.
In addition, from this preliminary consultation, we learned that
one known TD hotspot was missing, namely a “proof of con-
cept that stayed” [29] microservice, was missing from the list.
Therefore, we included this additional microservice.

The output of this phase resulted in a list of eight microser-
vices that were potentially the most impacted by TD. This list
was used as the basis for discussion to kickstart the focus group,
i.e., the first phase of the qualitative analysis (Phase 4).

4.4. Phase 3: Focus group discussion - data gathering.
In order to gain a complete picture of the TD present in the

RS, we complemented the quantitative results with a qualitative
analysis. We deemed this process necessary as TD is a liability
to internal system quality [1], which may be hard to measure
through a static analysis tool such as SonarQube.

Phase 3 of our research process consisted of a focus
group [30] where the participants were the current development
team of the RS (see Table 4.3 for development team demo-
graphic data). The participants of the focus group were selected
by the lead architect of the RS through purposeful sampling,
by considering primarily their knowledge of the RS, roles, and
availability. They were all part of the team that is responsible
for “foundational microservices”, i.e. the ones that provide core
functionalities that are currently the main source of the RS’s
business value. This was not the only team that takes part in
developing the system - there is also a second team responsible
for “new/experimental microservices”, which we did not inter-
view. This was not due to the researchers’ unwillingness to do
so, but simply because only the “foundational” team was made
available to us by our industry partner.

One author moderated the focus group discussion, while
two other authors supervised the process and intervened when

strictly necessary. The focus group lasted approximately one
hour and was transcribed in full for subsequent analysis.

The discussion started with gathering the consent of the par-
ticipants and ensuring that all the participants possessed suffi-
cient knowledge about the TD concept. Subsequently, partic-
ipants were asked to point out the microservices that, in their
opinion, were most impacted by TD (i.e. the TD hotspots). At
this point we did not present our list of TD hotspots, since we
wanted to discover which microservices the participants would
choose without any suggestions from us. To aid this process,
a de-anonymized version of the diagram depicted in Figure 6,
as well as supplementary information on the microservices re-
ported in tabular form, was presented to the participants during
the discussion.

For all microservices the participants picked as TD hotspots,
participants were asked a predefined set of 5 questions, namely:

1. “On a scale of 0 (none) - 5 (severe), how would you rate
the severity of TD in this microservice?”

2. “Could you describe the nature of TD in this microser-
vice?”

3. “What led to the introduction of TD to this microservice?”
4. “Are there any consequences of TD in this microservice?”
5. “How are you / will you manage the TD in this microser-

vice?”

Such questions were asked in a semi-structured fashion and
were used as introductory entry points to gain an as complete as
possible understanding of the TD item discussed in follow-up
questions. The five questions presented above were designed
not to target any specific debt type, e.g., code or architecture
TD, leaving this option open to the participants. This premedi-
tated research design choice allowed participants to discuss any
TD type, and hence not necessarily focus only the TD types
which might be more swiftly detected via our source code anal-
ysis, e.g., code and architecture debt. As further presented in
Section 5.2 and Section 6, this process led to the identification
of TD items of different nature in addition to code and architec-
ture TD, such as documentation debt and social debt [31]. By
following the focus group method, all the participants were en-
couraged to chime in with their perspective at any point during
the session, even when TD hotspots picked by another partici-
pant were being discussed.

After the participants had thoroughly described the microser-
vices they deemed as TD hotspots, they were presented with the
list of potential hotspots identified in Phase 2 of this research
(see Section 4.3). Microservices that were already picked for
discussion by the participants were not considered again for dis-
cussion during this step.

To ensure that participants were not unconsciously biased in
talking about a limited number of TD types, e.g. code or archi-
tectural TD, the focus group concluded with an additional step.
In this final step, for all TD types that were not already men-
tioned, the participants were asked whether TD of that particu-
lar type was present in the RS. The list of TD types was taken
from a fairly recent tertiary study collecting TD types from 19
secondary studies on TD [32].

7

And the technical debt that we have
there is kind of connected with that
technology that was chosen there. It’s C#
and the .Net Framework. So it's totally
different in fact, a totally different
language than Java in the other services.

Variation
increases
workload

The problem there is one that it's in C#,
so it's another technology that we need
to get familiar with, we need to know it.

Learning
new/old

technology

Codes

Increased workload for team
members

Incidents
Variation increases

workload
Learning new/old

technology

Hard maintenance

Hard/easy to change
project

TD makes work
harder

Updating problems

Theme developmentOpen Coding

(...)
Participant: So let's say that we are talking
about the report service because it's working,
let's say in cooperation with the Azure
functions that are not listed here. Here we
have this project that is actually creating the
reports and logs. And the technical debt that
we have there is kind of connected with that
technology that was chosen there. It’s C# and
the .Net Framework. So it's totally different in
fact, a totally different language than Java in
the other services. The problem there is one
that it's in C#, so it's another technology that
we need to get familiar with, we need to know
it.
(...)

Incidents from transcript
fragment 1

Codes

Incidents from transcript
fragment 2

Codes

In common we have some
framework that we use in
these services.

Common
framework

This framework is not
supported very well by the
vendor and I think this is the
big part of how we or why we
have the technical debt

Lacking
support

We could rewrite it. Rewrite

But still the question is if
business has money for that
and probably there are higher
priorities on our list.

Investment

Initial Open Coding

Focus group discussion
transcript

Subset of initially coded
incidents Coded incidents Themes

Iteratively refined Iteratively refined

Figure 5: Coding process example

The transcript of the focus group discussion was first auto-
matically transcribed and then manually reviewed by one of the
authors to ensure its fidelity with respect to the original record-
ing. To ensure the replicability and scrutiny of the focus group
process, the group discussion plan and slides are available as
additional material [10].

4.5. Phase 4: Reflexive thematic analysis.

Reflexive thematic analysis [33] is a qualitative research
method allowing researchers to find underlying themes in the
data. This method is extremely flexible and allows researchers
to explore qualitative data in-depth with an openness to new
unexpected findings. We employed this analysis method since
we wanted to extract the essence of what the development team
said during the focus group discussion with regard to their ex-
periences with TD in the RS.

During this research phase, we followed the guidelines pro-
vided by Braun and Clarke [33]. Specifically, the analysis con-
sisted of the following steps (see Figure 5 for an example):

• Step 1: Pilot of the initial coding via open coding [34],
where each of the three authors coded three randomly as-
signed pages of the transcript. The entirety of the codes
were then jointly discussed to establish a common coding
style for the open codes.

• Step 2: Open coding of the whole transcript by the first
author, followed by a coding review from the co-authors.
This step was repeated three times before the codes were
finalized. During this process, codes were jointly dis-
cussed, and initial theme candidates were identified.

• Step 3: Codes were grouped together into identified
themes, i.e., the central concepts that the codes are related

to. This process was done similarly to axial coding, where
open codes are grouped around an “axis” category [34].

As suggested by Braun and Clarke [33], through our reflex-
ive thematic analysis we iteratively analyzed and critically re-
viewed our ongoing analysis during its iterations. As a result,
the themes that ultimately resulted from this process were a
product of coding that was cooperatively done by all three au-
thors over a total of five iterations.

Additionally, since we asked the participants to rate the neg-
ative impact of TD on each discussed microservice, we noted
these ratings through magnitude coding [34] and compared
them to the SonarQube Technical Debt measurements. In two
cases, the participants explicitly stated an amount of time nec-
essary to repay the technical debt in their opinion, these were
also compared to SonarQube measurements.

As a result of this phase, 10 themes were identified, and a
comparison between SonarQube results and the participants’
TD severity ratings was created.

4.6. Phase 5: Interview with lead architect

The last phase’s goal was to validate the findings from the
qualitative analysis. In order to do so, we discussed the themes
and the comparison of microservices TD severity with the lead
architect of the RS in a semi-structured interview. Each theme
was presented to the architect and feedback was asked regard-
ing the correctness of the findings, any further detail the archi-
tect could provide us regarding the themes, and if they were
aware of any TD in the RS that was currently missing.

The final themes were adapted according to the final inter-
view. The entirety of the findings collected with this research,
both regarding the quantitative analysis (Phase 1-2) and the
qualitative one (Phase 3-5), are presented in the following sec-
tion.

8

A

B C

D E

F

GH

I

J L

M

N

O

P

R S

T

U

W

V

Q X

Y

Z

AAAB

AD

AE

AC

Use Use Use Use Use UseUse

UseUseUseUse

Use

Use

Use

Use

UseUse Use UseUse

Use

Use

Use

Use Use Use Use

Use
Use

UseUse

Use

UseUse

Use
Use

Se
rv

ic
e

la
ye

r

Use

Microservice choosen for discussion by focus group participants

A Single microservice, e.g. microservice A

REST API based communication

Potential TD hotspot based on GitHub measurements

Use

Potential TD hotspot based on SonarQube analysis

Potential TD hotspot based on Azure dependency count

Potential TD hotspot based the system's architect's opinion

O
rc

he
st

ra
tio

n
la

ye
rl

Ex
pe

rie
nc

e
A

PI
 la

ye
r

Figure 6: Component diagram of dependencies between RS microservices

5. Results

5.1. Quantitative Results

The reverse-engineered component diagram created through
the Azure features (see Section 4, Phase 1a) is documented
in Figure 6. The names of the microservices have been
anonymized due to a confidentiality requirement from our in-
dustrial partner. For simplicity, the microservices are identified
in this research by a sequence of letters assigned randomly by
following a lexicographical order, ranging from microservice A
to microservice AE.

For each microservice, we gathered data from three sources:
(1) directly from GitHub repositories, (2) Azure Application
insights and (3) SonarQube. Basic measures such as lines of
code, age and contributor count were obtained directly from
GitHub repositories. The number of dependencies was obtained
through Azure Application insights, Finally, SonarQube made
it possible to calculate the following: TD (time necessary to re-
pay the TD), TD Ratio (time for TD repayment/time used for
developing the code), and TD Density (percentage of code af-
fected by TD). A summary documenting the quantitative mea-
surements, in terms of average, standard deviation, minimum,
and maximum values, is reported in Table 2. The program-
ming languages used in the system were mainly Java (73.3%
microservices), Typescript (23.3%), and C# (3.3%). Specific
measurement values for each microservice are available online
for scrutiny as part of our replication package.

From the quantitative data collected, the following microser-
vices were identified as potential TD hotspots, i.e., the mi-

LoC AGE CNT TD TD-R TD-D DEP
AVG 1683.5 2.8 15.4 906.1min 1.9% 0.5 2.5
STDEV 1612.8 1.1 7.2 1237min 1.8% 0.5 4.4
MIN 45 0.5 4 10min 0.1% 0.02 0
MAX 6800 5 37 5760min 8.5% 2.6 24

Table 2: Code analysis summary
LoC - Lines of Code, AGE - Age in years, CNT - Number of contributors,
TD - Technical debt, TD-R - TD Ratio, TD-D - TD Density, DEP- Number of
dependencies

croservices that were subsequently discussed in the focus group
(see Section 4):

• Microservice A: This microservice was the first choice for
a potential TD hotspot. It was the central microservice
with most dependencies (24), had the highest lines of code
count (6800), the most contributors (37), was one of the
two equally oldest microservice (5 years), had the highest
level of TD (15 days), and was described by the lead RS
architect as “the fundamental service with most function-
alities and logic”. This microservice’s role is that of an
Orchestrator, which naturally leads to it having the most
dependencies.

• Microservice AE: This microservice presented the highest
TD density (2.56%) and interestingly had no dependencies
with other microservices.

• Microservice F: This microservice was characterized by
the second highest number of dependencies (9);

• Microservice B: While presenting mostly low measure-
ments in terms of lines of code (1000), TD (20 minutes),

9

TD density (0.2%), and dependencies (2), this microser-
vice was the one of the two equally oldest ones (5 years).
In addition, the RS lead architect mentioned that there had
been a recent update issue related to this microservice.

• Microservice D: This microservice had the second highest
lines of code number (5600) and was pointed out by the
RS lead architect as the one “containing the most complex
algorithms of RS”.

• Microservice AB: This microservice was identified as a
possible TD hotspot since it was the only one implemented
in C#, which was a programming language not used in any
other microservice in the RS.

• Microservice U: This microservice had the second highest
count of contributors (29).

• Microservice W: Despite not presenting any outlier mea-
surement, the RS lead architect mentioned this microser-
vice as a possible TD hotspot, referring to it as “a proof of
concept that stayed.”

5.2. Qualitative Results

In this section, we present the themes resulting from the re-
flexive thematic analysis, which were refined through an inter-
view with the lead architect of the RS (see Section 4, Phases
3-5). From the emerging themes, characterized by being het-
erogeneous in nature, we were able to capture a more holis-
tic understanding of the TD present in the RS. An overview of
these themes is presented in Table 3.

Obscure inheritance. The theme “obscure inheritance” rep-
resents a system that was originally created by people other than
the team currently developing and maintaining it. The current
team slowly unravels the specifics of this “inherited” system,
since the knowledge abut the system was not documented ap-
propriately.

The RS was originally created by a different development
team than the current one. This led to numerous problems and
challenges, one of them being the vaporization of architectural
knowledge. As one participant stated, when asked about the
only microservice implemented in C#: “I don’t know. I can
only imagine that maybe at that time when they were writing
it, it was like 3 or 4 four years ago.” When asked if anyone
working on the RS currently has worked on it since its incep-
tion, one participant stated: “Definitely there is no one, even the
original primary creator of that [the RS].” As a consequence
of lacking documentation, the current team had to recreate the
documentation themselves. By putting it in the words of one of
the current developers: “We perform a lot of archaeology on the
services, a lot of investigation to understand what’s going on.
Based on this, we prepared some documentation. . . and since
then we have a fully responsibility for this.”

It is possible that major problems related to the lack of
documentation about the architecture could have been at
least partially prevented by the use of architectural decision
records [35]. However, they were not used during the devel-
opment of the RS.

The natural software aging process. The participants of-
ten mentioned the classic, widely known, process of software
quality declining over time, mostly due to no major effort being
invested in keeping a software product up to date as time passes
by [28] [36].

This theme reflects the typical growth of any piece of soft-
ware and, in the case of the RS this theme is primarily embodied
in the history of “microservice A.”. Firstly, this microservice is
the oldest one in the system, as admitted by one participant: “It
has been created probably as one of the first things in this com-
pany”. Naturally, since it is an old key component, it became
relatively large, e.g.“there are lots of lines of code and many
classes.” With increased size, the complexity of the logic in it
also increased, as another participant described it:“The service
is quite complicated.”

During this period of growth, there was no refactoring of
code that became obsolete and sometimes even unnecessary.
For example, participants stated that the service contains a big
list of ”if” statements related to various customers: “ IFs for
customers that are not with us for months now and no one has
fixed that.”. This ultimately resulted in code that was hardly
understandable, as a participant described:“[. . .] a very big
service with spaghetti code with the framework that nobody
knows[. . .].”

Increased workload for team members. As commonly ex-
perienced and documented [37], one of the most widespread is-
sues the TD caused in the RS was a notable workload increase.

From the insights provided by the practitioners, the work-
load increase was mostly due to two seemingly contradictory
causes, namely (i) the use of the same technology (a propri-
etary framework) in most services, and (ii) the use of a specific
technology (C#) in only one microservice. Using a problematic
proprietary custom framework in most microservices led de-
velopers to face problems when updating the software in many
microservices. As described by one participant: “I encountered
problems with this framework not being forward compatible or
backward compatible and stuff like that.”. On the other hand,
using C# in the case of only one microservice made it neces-
sary to identify developers competent enough to use it in an
organization where all other systems were based on either Java
or TypeScript. As one participant stated: “[. . .] we basically
are Java development organization and we hire only Java de-
velopers[. . .].So having just one service that is in C# causes
that we need to build or gain somehow the competences [. . .].”

The RS lead architect additionally informed us that this in-
creased workload was not only a consequence, but also a cause
of TD. Since developers had less time to carefully develop new
features due to this increased workload, they incurred more TD,
creating a vicious TD cycle[38].

Domino effect possibility. This theme relates to various de-
pendencies in the system that make developers fearful of touch-
ing the existing software, in fear it may cause a “domino effect”
leading to new problems in unexpected parts of the system.

One piece of key information the participants shared was that
there are hidden dependencies that cannot be seen on the com-
ponent diagram. One of them was that “microservice AE” had
shared data with other microservices (“They share the data but

10

Theme Description Related Microservices
Obscure inheritance The process of inheriting an existing service from another development team. This includes various

problems that come from it: knowledge vaporization due to documentation TD and the need to learn
new exotic/obscure technologies and algorithms.

A, AB, B, F, W, Whole System

The natural software aging
process

The typical process of software aging: Over time, services become bigger and the code more complex,
and since there is little refactoring - big services full of code-level TD emerge.

A, AB, B, D, U, W, Whole System

Increased workload for team
members

Mentions of the additional time/effort that the developers have to do put into their everyday work. AB, B, D, F, P, U, Whole System

Domino effect possibility The situation where developers avoid ”touching” anything in existing code because they are afraid of
unexpected consequences that may affect other components/services.

A, B, D, U

Step by step rewrite strategy The repayment strategy that the team used to repay ATD - which is rewriting parts of the code in small
increments to slowly get rid of TD - usually to get rid of the “common framework”.

A, AB, D, P

Collaboration roadblock Participants’ explanations of why their collaboration with the other development team is lacking. AE, F, Whole system
Responsibility division Information about the responsibility for specific services/actions/tasks that fall on a specific team. AE, F, W, Whole system
Start-up mode Incurring TD on purpose in order to fastly develop an MVP that would satisfy business stakeholders Whole system
Developers vs. business The conflict between the development team and business stakeholders regarding TD management.

Usually, when developers try to obtain time/budget for TD repayment.
AB, P, Whole system

”It works” Mentions that despite various issues with the project, the system/service has the merit of “Work-
ing”/“Getting the job done”.

B, D, W, Whole system

Table 3: Thematic analysis results overview

they don’t share calls or invocations.”), which means that many
other unknown dependencies of a similar nature may exist in
the system. Additionally, while separate in functionalities, most
microservices used the same proprietary framework. As stated
by a participant: “[. . .] we have a framework that we use in
most services.”. Since this proprietary framework was faulty,
these seemingly separate microservices shared the same prob-
lems. As stated by one participant: “[. . .] this framework is in
the majority of of our services, so it’s problem for for the major-
ity of them, for the whole system.” Ultimately, the team often
resorted to the “no touching” strategy in the case of possibly
common elements, e.g. “Sometimes it’s better not to to touch
some stuff”.

The RS lead architect additionally complemented this find-
ing by adding that avoiding this fear of the domino effect was
actually the original reason why the system was developed as a
microservice architecture rather than a monolithic architecture.
While this problem may indeed have been avoided at first, as
the RS grew in size, it ultimately did start affecting this large
microservice-based system.

Step by step rewrite strategy. Due to their pressing prob-
lems with Architectural TD, the team devised a strategy allow-
ing them to repay TD without having to turn off the production
environment of the RS. The strategy can be summarized in four
key steps:

• Choose the microservice to refactor - the last one in the
dataflow that you are trying to refactor. As a participant
stated: “So this service is kind of at the end of the whole
path of the order.”

• Create a clone of the microservice - the same input data
should flow through both and the outputs should be com-
pared to check for any differences. As a participant de-
scribed: “the flow would go through both the old and new
path and we will compare the results of both version and
if there are any differences, we would know about them.”
The new microservice should not be sending any data to
the existing services yet.

• In small steps, rewrite pieces of each functionalities and
test for any differences in both microservice’s behavior.
As a participant said: “[. . .] we’ll be able to monitor how

the new version behaves and once we’re ready, once we fix
some stuff because of course there might be some errors in
new version.”

• Switch the new microservice in the place of the old one,
when both version’s behavior becomes identical. As stated
by one participant: “Once we’re ready, we can switch to
the new version and get rid of the old one.”

The participants shared that this approach has allowed the team
to replace the proprietary custom framework in the case of mi-
croservice T.

Collaboration roadblock. This theme is centered around
various problems that the team participating in the focus group
had while collaborating with a second team involved with the
system. Overall, three issues making the collaboration harder
and negatively influencing the TD in the RS were pointed out.
Firstly, lacking support - the other team took a long time to
respond to issues reported regarding their part of the system,
e.g. “it took like a month, a month for a very trivial thing to be
to be fixed, right?”. Secondly, there were different approaches
to establishing best practices, which resulted in inconsistencies
in the system. As one participant stated: “Let’s say they are not
following the object oriented principles, they are not following
the SOLID rules and so on.”. Thirdly, shallow communication
- the teams did not work closely together, as one participant
admitted: “[. . .] our contacts are only in case of emergencies
or some special cases.”

Responsibility division. This theme represents how the par-
ticipants’ team responsibility differed from the second team’s
responsibilities. In the case of three microservices that we
asked about(F, W, AE) we were not able to collect a satisfac-
tory amount of information, as the microservice was viewed as
the responsibility of the other team. This responsibility division
was often mentioned by the participants, e.g. “I think this one
might be owned by the other team”. The reason for this divide
was that in the focus group participants were responsible for the
“foundational” services, while the other team focused on new
innovative microservices. As one participant described: “[. . .]
we have two groups of services, one is foundational and one
is innovations. Our responsibility is to maintain and develop
foundational services, and their is to do good innovation stuff,
right.”

11

The RS lead architect pointed out that this division of respon-
sibility had one potentially dangerous consequence, which was
the emergence of “orphaned microservices” that no team felt re-
sponsible for, since each team believed that they were the other
team’s responsibility.

Start-up mode. The term “start-up mode” was used by one
of the participants to explain the original sources of lingering
TD. It described the situation when a young company had to
swiftly deliver an MVP in order to gain enough capital to con-
tinue operations. In the participant’s words: “So the creators
were in a rush. They need to deliver value quite quickly.” At the
time of the RS’s early inception, major decisions that resulted
in architectural TD were made with the knowledge of possible
future consequences. However, the consequences were more
severe than expected, as described by a participant “We know
that up front, let’s say, but I think nobody was expecting how
hard it would be.”

Developers vs. business. This theme focuses on the con-
flicting interests of software developers, who wanted ideal code
with no TD, with business stakeholders, who prioritized the
swift delivery of functionalities that are a source of business
value. The participants stated that convincing business stake-
holders to allow developers to repay TD in one case was a chal-
lenge: “it was a really long and bumpy road to convince busi-
ness to allow us to do it.” They also noted that, while TD may
not always be visible to business stakeholders, they may face
its consequences in the future: “[. . .]TD that is not recognized
by the business but it will hit them soon.”

“It works”. The “it works” theme conveys a key idea that,
although mentioned only four times, can be considered as ex-
tremely important. Despite all of the TD in the RS and all the
issues that the team faced, of most importance was the fact that
the RS “worked” properly and as such, it produced business
value. One participant, after stating that “There was no doc-
umentation at all for this.” positively ended with “[. . .] the
functionality is fully working on production. [. . .] we have not
had any major issue with this on production.”

5.3. Quantitive and Qualitative Results Comparison

In order to get more insights into the gathered results, we
compare the data collected via our quantitative analysis, i.e.,
the potential TD hotsposts, with the ones gathered through our
qualitative analysis. This additional process was conducted in
order to understand if, and in affirmative case to what extent,
the two research methods adopted were aligned in terms of TD
hotspot identification.

During the focus group discussion participants firstly dis-
cussed the microservices of their own choosing in the context
of TD. After that, we explicitly asked them about potential TD
hotspots that they have not chosen themselves. We did this to
avoid biasing participants into discussing only the potential TD
hotspots that we obtained through code analysis.

Additionally, we asked participants to rate the TD in all the
discussed microservices on a scale of 0 to 5 (where 5 was the
highest value). These values are compared to SonarQube TD
measurements in Table 4. In the case of three microservices, the

participants refused to answer by stating that the microservice
is the responsibility of another team. Additionally, a participant
provided their own estimate of TD for microservice B by stating
that “it would take months” to repay all the TD that it contains.
We noted this estimate since it was significantly higher than any
of the SonarQube measurements.

Figure 6 showcases a comparison between microservices
chosen in discussion by participants and the TD hotspots that
we obtained through our quantitative analysis. There are ex-
actly four mismatches between these, microservices F, W, AE
and T. The mismatch in the cases of microservices F, W and AE
were caused by the participants lack of knowledge about these
microservices, since a different team was responsible for them.
Finally, microservice T was mentioned in the context of being
a positive example of an almost “TD free” microservice, so we
do not consider it as a missed “TD hotspot”.

GitHub measurements. The following simple values from
the repositories were used to identify TD hotspots: lines of code
(microservices A and D), age (microservices A and B), contrib-
utors (microservice A and U) and unusual programming lan-
guages (microservice AB). All of these microservices were also
pointed out by participants during the focus groups as severely
impacted by TD, with severity ratings between 2 to 5. In total,
all 5 out of 5 TD hotspots identified by Github measurements
were confirmed as such by the qualitative analysis.

Azure Insights dependency measurement. Two microser-
vices were chosen as TD hotspots due to their high dependency
count: microservices A and F. Microservice A was confirmed
by participants to be severely impacted by TD with a severity
rating of 5. Participants lacked knowledge of microservice F
due to it being developed by another team. In total, 1 out of
2 TD hotspots identified by Azure Insights dependency count
were confirmed by the qualitative analysis, while 1 could nei-
ther be confirmed nor disproven.

SonarQube measurements. We choose the following TD
hotspots due to SonarQube results: A (TD repayment time),
AE (TD density). The Microservice with highest TD repay-
ment time was confirmed as a crucial TD hotspot by partici-
pants, with the maximum severity rating of 5. The microservice
with the highest TD density was instead not developed by our
participants and they could not confirm nor disconfirm its TD
severity. In total, 1 out of 2 TD hotspots identified by Sonar-
Qube analysis were confirmed as such by the qualitative analy-
sis, while 1 could neither be confirmed nor disproven.

However, from the collected results we noticed that the
SonarQube estimates often contradicted the level of TD per-
ceived by the participants. This is exemplified by the compar-
ison of microservices T and B. Microservice T was mentioned
by participants specifically to showcase a microservice that they
believed to be the most “TD free”, this is a young microservice
(0.5 years) where the team intentionally avoided incurring the
architectural TD that was plaguing most microservices in the
system, namely the common proprietary framework. As such,
it received a TD severity ranking of 1 from participants, despite
a high SonarQube TD estimate (2 hours and 9 minutes). In
the case of microservice B, participants gave an estimation of
“months” for TD repayment and gave a TD severity ranking of

12

Severity Microservice TD TD Ratio TD Density
1 T 2h9min 0.3% 0.1
3 B 20min 0.2% 0.02
4 D 4d1h 1.2% 0.35
4 AB 10min 0.7% 0.22
5 A 12d 3% 0.85
2 or 3 U 1d2h 1.7% 0.46
Unknown F 3d3h 1.5% 0.44
Unknown W 3d6h 2.4% 0.73
Unknown AE 3d6h 8.5% 2.56

Table 4: SonarQube measures comparison to participants’ TD
severity perception

3. However, the SonarQube’s TD measurement was very small
- only 20 minutes.

Comparison conclusion. Overall, participants have con-
firmed 5 out of 8 TD hotspots identified by our simple code
analysis. The 3 TD hotspots that were not conformed, were re-
lated to microservices that the participants had no knowledge
about. As such, all potential TD hotspots that could be con-
firmed, were found to be relevant to identifying major TD items.
Therefore, it seems that the simple code analysis is a good entry
point for holistic TD discovery.

6. Discussion

We analyzed the TD in the RS both through a qualitative lens
by utilizing data provided by Azure, GitHub and SonarQube,
and refined the inquiry results via a qualitative approach based
on a focus group and interview with the lead architect. From
the results collected in this case study, we can derive several
implications and takeaways, which are discussed further in this
section.

Firstly, we observed that SonarQube’s estimates of the time
required to repay TD were very different from the team mem-
bers’ TD estimates. This finding corroborates and builds upon
existing findings on SonarQube remediation times [39].In the
considered case study, the SonarQube estimates turned out not
to be representative due to the fact that the tool could not de-
tect TD in its entirety. In fact, the main architectural TD item
that was impacting the system, namely a proprietary framework
used in most microservices, was not detected and, to the best of
our knowledge, is not currently detectable via static or dynamic
source code analysis. However, it is worth noting that most
microservices that we hypothesized to be potential TD hotpots
via a combination of simple static metrics provided by GitHub,
Azure, and SonarQube did match the participant’s view on the
most TD-impacted microservices. In fact, all of the mismatches
were indicated by the participants as microservices that were
the responsibility of a different team, i.e., perticipants did not
possess the knowledge on TD severity in these microservices.
This indicates that the combination of simple static analysis
measurements can be a good starting point for a comprehen-
sive mixed-method TD analysis, through it would necessarily
require an additional qualitative input from the development
team to be regarded as complete.

Take-away 1: Simple source code static analyses can be
an entry point for holistic mixed-method TD discovery.
When used in isolation, simple static analyses may result in
the omission of key TD items. However, pointers from simple
source code analyses (e.g, GitHub metrics, microservices in-
terdependencies, and SonarQube TD values) can be success-
fully used to pinpoint which microservices may be more im-
pacted by TD and therefore require further qualitative, analy-
sis.

Three prominent themes arising from the qualitative analy-
sis of TD in the case study, namely “collaboration roadblock”,
“responsibility division” and “developers vs. business”, were
characterized by the common axis “communication”. In the
case of these first two themes, communication was lacking be-
tween the development teams. Since teams were responsible
for different microservices, possessed different working-styles,
and rarely contacted each other, this led to vicious collaboration
cycles such as finger-pointing frictions, followed by orphaned
microservices, and TD increase. This means that, at some point,
neither team felt responsible for certain microservices (which
they believed was the other team’s responsibility) and as such
the quality of these microservices dropped and the knowledge
about the orphaned microservices vaporized. In the case of the
“developers vs. business” theme instead, the communication
between the development teams and business stakeholders was
the main concern. TD management, and in particular TD re-
payment, requires resources that must often be negotiated with
business stakeholders, who are usually unwilling to invest in
TD repayment since it does not directly provide business value,
and is hard to measure.

Take-away 2: Fostering communication to mitigate inad-
vertent TD. A primary cause of inadvertent TD in a large-
scale microservice-based system can be lack of communica-
tion. Communication issues may arise either across develop-
ment teams (resulting in “orphaned microservices” and TD
increase) or between developers and management (resulting
in a lack of time for refactoring). Clear communication about
TD-related actions and responsibilities across teams and man-
agement can be a crucial factor to prevent inadvertent TD in
microservice-based systems.

From our case study, it emerged that the original idea be-
hind using a microservice architecture (rather than a monolith)
in the system was to avoid tight coupling and thus make it pos-
sible for developers to be less afraid of refactoring. However,
this approach was ultimately ineffective. While the system grew
in size, the complexity and the amount of dependencies in the
system grew in an uncontrolled fashion. This result emerged
in our study via our mixed-method approach, where quanti-
tative data, collected using simple static analysis tools such
as GitHub, Azure, and SonarQube, were complemented with
qualitative insights gathered from focus groups and interviews.
This mixed-method approach led to a deeper understanding of
the technical debt (TD) present in the system, which might not
have been easily identified by solely considering in isolation a

13

source code analysis or a purely qualitative approach. For ex-
ample, pointers from the source code analyses supported the
identification, via the subsequent qualitative process, of a so-
cial debt item [31] manifesting as collaboration frictions be-
tween two geographically distant teams. As emerging from a
post mortem reflection of the RS architect following our analy-
sis, despite optimistic expectations, frictions between the orga-
nizational and architectural structures led to the emergence of
novel architectural issues. In perfect line with Conway’s law,
the misalignment between the architecture and the communica-
tion structure, the inter- and intra-teams modus operandi, and
the geospatial distribution of the organization played a key role
in the introduction of inadvertent TD in the case study system.

As the final discussion takeaway on the misalignment with
Conway’s law observed in the studied case, we speculate that,
due to their inherent architectural complexity, microservice-
based systems may be more inclined to incur social debt when
compared to other architectures, e.g., monolithic ones. Specif-
ically, the modular nature of microservice architectures, com-
bined with intricacies arising from hidden microservice inde-
pendencies, may foster conditions where social debt items such
as miscommunication, friction, and working in isolation among
teams assigned to different microservices are more prone to
prosper.

Take-away 3: Misalignment between architectural and
organizational structures can influence TD. Following
Conway’s law, misalignments between communication struc-
tures, inter- and intra-team modus operandi, and development
culture with the architecture of a system can lead to the nat-
ural emergence of TD items. Given their architectural com-
plexity, miscorservice-based systems may be more prone to
incur social debt.

From the quantitative and qualitative analysis, a phenomenon
potentially characteristic of MSAs emerged. An intuitive de-
piction of this phenomenon, which we refer to as “MSA TD
gamble” from now on, is depicted in Figure 7.

In the considered case study, TD resulted to be perceived as
compartmentalized within each single microservices. Such TD
compartmentalization could be attributed to a correct adherence
to the MSA pattern, which advocates for loosely coupled mi-
croservices, hence isolating TD at the microservice level. Due
to perceived compartmentalization of TD within each microser-
vice however, developers felt confident in rapidly accumulating
TD within microservices as, due to its independence from other
microservices, such TD was perceived as swiftly resolvable in
isolation. We refer to such fast TD accumulation and resolution
cycles within isolated microservices as the “TD gamble”.

The risk implied by the observed TD gamble is that, given
the rapid accumulation of TD within microservices due to its
perceived effortless repayment, the TD in a microservice can
also swiftly become unmanageable. Losing the TD gamble,
i.e., accumulating an unmanageable amount of debt within a
microservice, can lead to inadvertently spread the TD to other
microservices due to growing hidden dependencies (e.g., hard-
coded inter-microservice calls leading to the “Domino effect

TD compartmentalized
within microservices

causes

Fast TD accumulation
 and resolution cycles
within micorcervices

if ill-managed
can lead to

Affect TD in other
microservices

Impact development activities
 not related to the microservices

Figure 7: Overview of the key components of the microservice architecture
technical debt gamble

possibility”, see Section 5.2) or more generally affect other de-
velopment activities due to the effort needed to refactor the mi-
croservice originally affected by high amounts of TD.

As described by one developer during the focus group: “We
had a colleague who started working in our project and he was
given a task to try rewrite the whole service and make it simpler
and actually he failed. . . ”

Take-away 4: The microservice architecture technical debt
gamble. Due to the perceived TD compartmentalization
within single microservices, TD at microservice level can ex-
perience fast accumulation and resolution cycles. Swift accu-
mulations of TD however can easily become unmanageable,
leading to inadvertently affect TD in other microservices or
impact negatively general development activities.

Despite all the identified issues related to TD, to date, the
RS is a commercial success that keeps providing high business
value to the partner company.

At the time of data gathering, the development team was
making their first steps towards TD management. The devel-
opment team already recognized that the system had reached a
point when a switch from “start-up mode”, when TD was heav-
ily incurred, to “long-term quality mode”, was necessary and
would require active TD management. To do so, they had de-
veloped their “step by step rewrite strategy” for TD repayment
and took part in this study to identify major TD items and strate-
gies for TD management.

This study allowed the partner company to understand how
TD in the RS has grown inadvertently out of control due to
the MSA TD gamble. As a result, in addition to the “step by
step rewrite strategy”, they decided that the following should be
done: TD monitoring, systematic incremental efforts guided by

14

the motto of the boy scout rule [29], improving communication
and collaboration across development teams with particular fo-
cus on responsibility division to avoid orphaned microservices,
improving communication about TD with business stakehold-
ers, and maintaining an up-to-date comprehensive architectural
overview by the architect.

Take-away 5: Conscious TD management is as crucial for
long-term MSA success. Notable care is needed to prevent
TD from rapidly growing out of control in an MSA. Key
TD management strategies include continuous TD monitor-
ing, the “step by step rewrite strategy”, incremental improve-
ments guided by the ”boy scout rule”, effective cross-team
communication, and maintaining an up-to-date architectural
overview.

7. Threats to Validity

In this section we discuss the primary threats to validity of
this research, by following the categorization of case study
threats by Runeson [40] and considering common shortcom-
ings of threats analysis [41].

Construct Validity. An inherent construct validity of this
case study lies in the shared definition among researchers and
practitioners of the TD phenomenon. To mitigate this threat, we
relied on the Daghstul 16162 definition of TD [1], and ensured
all the participants shared a common interpretation of TD at the
beginning of the focus group. The reductive focus on code TD
by SonarQube (see Section 4) was mitigated by complementing
the code analysis results with two qualitative processes, namely
a focus group and an interview with the lead developer of the
case study system. Finally, the last threat that should be con-
sidered is that we could not include the feedback of the second
development team of the RS in this research, which may have
provided additional insights.

Internal Validity. To mitigate the impact of confounding
factors on our results, we (i) utilized the default software anal-
ysis tool configuration settings as currently used in the com-
pany, (ii) followed focus group guidelines to ensure all partic-
ipants were able to provide insights [30], and (iii) adopted a
multi-round reflexive thematic analysis process involving three
researchers to analyze the focus group data.

External Validity. Due to the nature of case study research,
the reported results are intended to enable analytical generaliza-
tion, but should not be considered as statistically representative.
Intuitively, results such as obscure inheritance, domino effect
possibility, and collaboration roadblock (see Section 5) may
extend to other microservice-based systems. However, further
research would need to be conducted to understand whether and
to what extent the collected results are generalizable.

Reliability. While abiding by the non-disclosure agreement
with our partner and ethical guidelines governing this study, for
scrutiny and replication purposes, we have made available an
anonymized version of all the quantitative results collected for
this study, as well as the complete material used for the focus
group [10]. The focus group transcript is not made available to

preserve the confidentiality of our industrial partner and protect
the anonymity of all the participants partaking in the study.

8. Conclusion

In this study, we analyzed TD in a large-scale industrial
software-intensive system that comprises a total of over 100 mi-
croservices, and is currently in use in over 15k locations.

We utilized a mixed-method industrial case study that relied
on quantitative methods (architecture reverse-engineering via
Azure DevOps tools and TD analysis via SonarQube) and a
qualitative approach (focus group discussion refined via an in-
terview with the lead architect of the system).

Through this study, we managed to obtain a clear picture of
the TD residing in the case study product, in particular, from
the most pressing TD items to the main TD sources and con-
sequences. At the time of conducting this study, while armed
with the knowledge collected through this analysis, the devel-
opment team is also facing the challenge of shifting from “start-
up mode” (i.e., delivering value fast while incurring in TD) into
a more sustainable “long-term mode” of maintenance and de-
velopment.

This study made the development team understand how the
MSA TD gamble had influenced the RS so far and that their
strategy of TD repayment through the “step by step small
rewrites,” while successful so far, was insufficient in terms of
long-term TD management.

8.1. Current works
Currently, there is an ongoing effort to improve TD manage-

ment in the partner company. The most pressing issue is im-
proving communication, both between the development teams
and between developers and business stakeholders. The devel-
opment teams need to clearly define responsibilities and collab-
orate closely to minimize the impact of the MSA TD gamble and
to avoid orphaned microservices. Not addressing this impedi-
ment could be crucial, e.g., when considering the scenario in
which a key microservice stops working properly, and nobody
has knowledge about it. To avoid this, discrete and moderated
consultations across teams are needed to clarify the responsibil-
ities of each microservice, jointly with discussions on how the
responsibilities would be changed, managed, and documented
in the future. Additionally, the development team must clearly
communicate with the business stakeholders to make them un-
derstand that investing in TD management is necessary and how
it would be beneficial in the long-term.

Furthermore, the TD identification performed during this
study made the partner company realize that ongoing TD moni-
toring and maintaining an up-to-date architectural overview are
necessary for TD management and communication about TD.
As such, the partner plans to implement regular TD monitoring
efforts.

8.2. Future work
Future work could include: (i) supporting the team in resolv-

ing the TD detected via this inquiry and in implementing long-
term TD management strategies, and (ii) running an additional

15

specialized analysis of TD in the case study system at an archi-
tectural level [20] [21].

References
[1] P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman, Managing technical debt

in software engineering (dagstuhl seminar 16162) (2016).
[2] S. Newman, Building Microservices, 1st Edition, O’Reilly Media, Inc.,

2015. doi:10.1007/BF00627063.
[3] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,

R. Mustafin, L. Safina, Microservices: yesterday, today, and tomorrow
(2017).

[4] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, M. A.
Babar, Understanding and addressing quality attributes of microservices
architecture: A systematic literature review, Information and software
technology 131 (2021) 106449.

[5] W. K. Assunção, J. Krüger, S. Mosser, S. Selaoui, How do microservices
evolve? an empirical analysis of changes in open-source microservice
repositories, Journal of Systems and Software 204 (2023) 111788.

[6] A. Villa, J. O. Ocharán-Hernández, J. C. Pérez-Arriaga, X. Limón, A sys-
tematic mapping study on technical debt in microservices, in: 2022 10th
International Conference in Software Engineering Research and Innova-
tion (CONISOFT), IEEE, 2022, pp. 182–191.

[7] R. Verdecchia, K. Maggi, L. Scommegna, E. Vicario, Tracing the foot-
steps of technical debt in microservices: A preliminary case study,
Post-proceedings of the European Conference on Software Architecture
(2024).

[8] V. Lenarduzzi, F. Lomio, N. Saarimäki, D. Taibi, Does migrating a mono-
lithic system to microservices decrease the technical debt?, Journal of
Systems and Software 169 (2020) 110710.

[9] P. Avgeriou, I. Ozkaya, A. Chatzigeorgiou, M. Ciolkowski, N. A. Ernst,
R. J. Koontz, E. Poort, F. Shull, Technical debt management: The road
ahead for successful software delivery, in: 2023 IEEE/ACM International
Conference on Software Engineering: Future of Software Engineering
(ICSE-FoSE), 2023, pp. 15–30.

[10] K. Borowa, A. Ratkowski, R. Verdecchia, Additional Material for The
Technical Debt Gamble: A Case Study on Technical Debt in a Large-
Scale Industrial Microservice Architecture (Aug. 2024). doi:10.5281/
zenodo.13497407.
URL https://doi.org/10.5281/zenodo.13497407

[11] M. Fowler, Technical Debt Quadrant, https://martinfowler.com/
bliki/TechnicalDebtQuadrant.html [Accessed: (31.07.2024)]
(2009).

[12] P. Kruchten, I. Ozkaya, Managing technical debt: reducing friction in
software development, Addison-Wesley Professional, 2019.

[13] N. S. Alves, T. S. Mendes, M. G. De Mendonça, R. O. Spı́nola, F. Shull,
C. Seaman, Identification and management of technical debt: A sys-
tematic mapping study, Information and Software Technology 70 (2016)
100–121.

[14] P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. A. Fontana, T. Besker,
A. Chatzigeorgiou, V. Lenarduzzi, A. Martini, A. Moschou, I. Pigazz-
ini, et al., An overview and comparison of technical debt measurement
tools, IEEE Software 38 (3) (2020) 61–71.

[15] R. Verdecchia, I. Malavolta, P. Lago, Architectural technical debt identifi-
cation: The research landscape, in: Proceedings of the 2018 International
Conference on Technical Debt, 2018, pp. 11–20.

[16] J. R. Lahti, A.-P. Tuovinen, T. Mikkonen, Experiences on managing tech-
nical debt with code smells and antipatterns, in: 2021 IEEE/ACM In-
ternational Conference on Technical Debt (TechDebt), IEEE, 2021, pp.
36–44.

[17] M. Fowler, Refactoring: improving the design of existing code, Addison-
Wesley Professional, 2018.

[18] J. Lefever, Y. Cai, H. Cervantes, R. Kazman, H. Fang, On the lack of con-
sensus among technical debt detection tools, in: 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), IEEE, 2021, pp. 121–130.

[19] V. Lenarduzzi, F. Pecorelli, N. Saarimaki, S. Lujan, F. Palomba, A crit-
ical comparison on six static analysis tools: Detection, agreement, and
precision, Journal of Systems and Software 198 (2023) 111575.

[20] F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni,
E. Di Nitto, Arcan: A tool for architectural smells detection, in: 2017

IEEE International Conference on Software Architecture Workshops (IC-
SAW), IEEE, 2017, pp. 282–285.

[21] S. Ospina, R. Verdecchia, I. Malavolta, P. Lago, Atdx: A tool for pro-
viding a data-driven overview of architectural technical debt in software-
intensive systems, in: European Conference on Software Architecture,
2021.

[22] S. S. de Toledo, A. Martini, D. I. Sjøberg, Identifying architectural tech-
nical debt, principal, and interest in microservices: A multiple-case study,
Journal of Systems and Software 177 (2021) 110968.

[23] J. Bogner, J. Fritzsch, S. Wagner, A. Zimmermann, Assuring the evolv-
ability of microservices: insights into industry practices and challenges,
in: 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2019, pp. 546–556.

[24] I. Pigazzini, F. A. Fontana, V. Lenarduzzi, D. Taibi, Towards microservice
smells detection, in: Proceedings of the 3rd International Conference on
Technical Debt, 2020, pp. 92–97.

[25] N. Nikolaidis, A. Ampatzoglou, A. Chatzigeorgiou, S. Tsekeridou,
A. Piperidis, Technical debt in service-oriented software systems, in: In-
ternational Conference on Product-Focused Software Process Improve-
ment, Springer, 2022, pp. 265–281.

[26] B. Dayley, MASA: How to Create an Agile Application Architecture With
Apps, APIs and Services. Online. (2020).
URL https://www.gartner.com/en/documents/3980382

[27] Microsoft, What is autoinstrumentation for azure monitor application
insights? (Feb. 2025).
URL https://learn.microsoft.com/en-us/azure/

azure-monitor/app/codeless-overview

[28] M. M. Lehman, On understanding laws, evolution, and conservation in
the large-program life cycle, Journal of Systems and Software 1 (1979)
213–221.

[29] R. Verdecchia, P. Kruchten, P. Lago, I. Malavolta, Building and evaluat-
ing a theory of architectural technical debt in software-intensive systems,
Journal of Systems and Software 176 (2021) 110925.

[30] J. Kontio, J. Bragge, L. Lehtola, The focus group method as an empirical
tool in software engineering, in: Guide to advanced empirical software
engineering, Springer, 2008, pp. 93–116.

[31] D. A. Tamburri, P. Kruchten, P. Lago, H. van Vliet, What is social debt in
software engineering?, in: 2013 6th International Workshop on Coopera-
tive and Human Aspects of Software Engineering (CHASE), IEEE, 2013,
pp. 93–96.

[32] H. J. Junior, G. H. Travassos, Consolidating a common perspective on
technical debt and its management through a tertiary study, Information
and Software Technology 149 (2022) 106964.

[33] V. Braun, V. Clarke, Thematic analysis: A practical guide (2022).
[34] J. Saldaña, The Coding Manual for Qualitative Researchers (2nd edition),

2nd Edition, SAGE publications, London, England, 2013.
[35] O. Kopp, A. Armbruster, O. Zimmermann, Markdown architectural deci-

sion records: Format and tool support., in: 10th Central European Work-
shop on Services and their Composition, ZEUS 2018, 2018, pp. 55–62.
URL https://ceur-ws.org/Vol-2072/paper9.pdf

[36] D. L. Parnas, Software aging, in: Proceedings of 16th International Con-
ference on Software Engineering, IEEE, 1994, pp. 279–287.

[37] R. Ramač, V. Mandić, N. Taušan, N. Rios, S. Freire, B. Pérez, C. Castel-
lanos, D. Correal, A. Pacheco, G. Lopez, et al., Prevalence, common
causes and effects of technical debt: Results from a family of surveys
with the it industry, Journal of Systems and Software 184 (2022) 111114.

[38] A. Martini, J. Bosch, The danger of architectural technical debt: Conta-
gious debt and vicious circles, in: 2015 12th Working IEEE/IFIP Confer-
ence on Software Architecture, IEEE, 2015, pp. 1–10.

[39] M. T. Baldassarre, V. Lenarduzzi, S. Romano, N. Saarimäki, On the
diffuseness of technical debt items and accuracy of remediation time
when using sonarqube, Information and Software Technology 128 (2020)
106377.

[40] P. Runeson, M. Höst, Guidelines for conducting and reporting case study
research in software engineering, Empirical software engineering 14
(2009) 131–164.

[41] R. Verdecchia, E. Engström, P. Lago, P. Runeson, Q. Song, Threats to va-
lidity in software engineering research: A critical reflection, Information
and Software Technology 164 (2023) 107329.

16

https://doi.org/10.1007/BF00627063
https://doi.org/10.5281/zenodo.13497407
https://doi.org/10.5281/zenodo.13497407
https://doi.org/10.5281/zenodo.13497407
https://doi.org/10.5281/zenodo.13497407
https://doi.org/10.5281/zenodo.13497407
https://doi.org/10.5281/zenodo.13497407
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://www.gartner.com/en/documents/3980382
https://www.gartner.com/en/documents/3980382
https://www.gartner.com/en/documents/3980382
https://learn.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/app/codeless-overview
https://ceur-ws.org/Vol-2072/paper9.pdf
https://ceur-ws.org/Vol-2072/paper9.pdf
https://ceur-ws.org/Vol-2072/paper9.pdf

	Introduction
	Related Work
	Technical debt identification
	Technical debt in microservice systems

	Case Study Description
	Research Process
	Phase 1a: Component diagram creation.
	Phase 1b: Simple Code Analysis
	Phase 2: Potential TD hotspots identification.
	Phase 3: Focus group discussion - data gathering.
	Phase 4: Reflexive thematic analysis.
	Phase 5: Interview with lead architect

	Results
	Quantitative Results
	Qualitative Results
	Quantitive and Qualitative Results Comparison

	Discussion
	Threats to Validity
	Conclusion
	Current works
	Future work

