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Abstract
Context.With “work fromhome” policies becoming the norm during
the COVID-19 pandemic, videoconferencing apps have soared in
popularity, especially on mobile devices. However, mobile devices
only have limited energy capacities, and their batteries degrade
slightly with each charge/discharge cycle.
Goal. With this research we aim at comparing the energy con-
sumption of two Android videoconferencing apps, and studying
the impact that different features and settings of these apps have
on energy consumption.
Method. We conduct an empirical experiment by utilizing as subjects
Google Meet and Zoom. We test the impact of multiple factors on
the energy consumption: number of call participants, microphone
and camera use, and virtual backgrounds.
Results. Zoom results to be more energy efficient than Google Meet,
albeit only to a small extent. Camera use is the most energy greedy
feature, while the use of virtual background onlymarginally impacts
energy consumption. Number of participants affect differently the
energy consumption of the apps. As exception, microphone use
does not significantly affect energy consumption.
Conclusions. Most features of Android videoconferencing apps sig-
nificantly impact their energy consumption. As implication for
users, selecting which features to use can significantly prolong
their mobile battery charge. For developers, our results provide em-
pirical evidence onwhich features aremore energy-greedy, and how
features can impact differently energy consumption across apps.
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1 Introduction
A great impact on communication was brought into our lives by
the internet. The way people were able to communicate drastically
changed with all the services that it provided to everybody’s homes.
Given the widespread use of IT technologies, the sustainability
impact of this sector can no longer be neglected [1]. An even bigger
change was pushed by mobile devices and the sprout of videocon-
ferencing apps. Software like Skype, Google Talk, and Windows
Messenger allowed family members and friends to feel closer with
their video call functionalities [2]. During the COVID-19 pandemic
years, these types of applications have entered our daily lives and
in some cases have become vital to performing in our respective
fields, especially for students and “work from home” employees [3].
Zoom, Google Meet, Microsoft Teams, Webex, and GoToMeeting
are just some of the names of applications that have been used by
educational institutions and companies to organize their everyday
activities. Based on market statistics mobile video conferencing
apps experienced a staggering usage increase of 250% between
March 2020 and June 2021 [4].

By considering the drastic increase of mobile videoconferencing
apps, and the limitations in battery capacities of mobile devices,
developers need to take another look at their software stack, and
carefully evaluate what they want to spend their energy budget
on. While historically continuous improvements in efficiency of
chips implied that we could rely on new generations of devices
to satisfy our efficiency demands, we have seen a slowdown on
these fronts [5]. In addition, as lithium-ion batteries degrade in
capacity over time as they get charged and drained repeatedly [6],
it becomes paramount for users to be able to choose the apps and
related settings to optimize energy efficiency.

Despite mobile videoconferencing apps entered our daily lives
and users concerns, little research is available on the energy con-
sumption of these apps. To study the energy usage of videocon-
ferencing apps on mobile, our experiments measure the energy
consumption of popular videoconferencing apps on Android. We
study multiple scenarios to improve the generality of our results,
allowing us to represent the real world usage patterns of these apps.

Our study provide in-depth empirical insights into the energy
consumption of mobile videoconferencing apps. The ultimate goal
is to empower users to make their devices last longer, both during
the usage of the apps and in preventing the battery from degrading
in capacity. To provide insightful and actionable results, in addition
to comparing the energy consumption of two popular videocon-
ferencing apps, our results document empirical evidence on which

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


MOBILESoft 2022, May, 2022, Pennsylvania, United States Leonhard Wattenbach, Basel Aslan, Matteo Maria Fiore, Henley Ding, Roberto Verdecchia, and Ivano Malavolta

features are more energy-greedy, and how features can impact
differently energy consumption across apps.

The study focuses exclusively on the energy consumed by video-
conferencing apps on Android devices, i.e., we do not aim to assess
also the energy consumed by other hardware components involved
in the videoconferences (e.g., servers and network infrastructures).

The main contributions of this research are the following:
• An in-depth comparison of the energy consumption of two
among the most popular Android videoconferencing apps,
namely Zoom and Google Meet;mobile

• An investigation of the impact on energy consumption of dif-
ferent videoconferencing app features and settings, namely
number of participants, and camera, microphone, and virtual
background use;

• A comprehensive replication package, where the entirety of
the data and scripts used for this study are made available.1

2 Related Work
Two literature reviews conducted by Ong et al. [7, 8] in 2012 and
2014 demonstrated that videoconferencing is more environmentally
sustainable (in terms of energy and 𝐶𝑂2 emissions) than face-to-
face meetings. Ong et al. noted that videoconferencing uses at most
6.7%-7% of the energy/𝐶𝑂2 required by face-to-face meetings. The
higher sustainability of videoconferences is mostly due to commut-
ing fuel savings, operating transportation infrastructure, and time
saved by meeting participants. Differently from the papers of Ong
et al. [7, 8], rather than surveying the literature, our study presents
an in-depth empirical experiment, executed to measure energy
consumption characteristics of mobile videoconferencing apps.

In the work of Maiti and Challen [9] a method to measure the
perceived “value” of apps by users is presented. The value is then
utilized to manage energy on battery-bound mobile devices more
efficiently, by prioritizing apps execution. For example, to compare
two videoconferencing applications to improve their energy effi-
ciency, we first need to have a numerator to divide their energy
usage by their perceived usefulness, as the apps cannot be compared
directly. Maiti and Challen collected energy data from volunteers,
and used the data to rank applications in terms of energy efficiency
using their model for value as the numerator. The authors conclude
that, while the effort to measure an application’s value resulted to
be a failure, the authors hope that the mobile systems community
will continue work in this direction. Our research focuses exclu-
sively on energy consumption of apps, and does not attempt to
measure the intrinsic “value” of apps. While utilizing exclusively
energy efficiency does not allow us to compare completely different
apps to each other, this perspective is out of scope for our research,
and enables us regardless of documenting an “apples to apples”
comparison between videoconferencing apps.

Faber [10] introduced an adaptable framework for the systematic
measurement of 𝐶𝑂2 emissions of video conferences, by consider-
ing among others hardware waste, internet energy intensity, net-
work data transmission rates, and server power. The author reports
strategies to reduce emissions of video conferences, and use their
framework to measure the𝐶𝑂2 emission of a case-study conference.

1https://github.com/S2-group/mobilesoft-2022-replication-package

Faber concludes that, while video conferences emit far less 𝐶𝑂2
than their in person counterparts, there is still a significant amount
of 𝐶𝑂2 which we should aim to reduce. Similarly to [7] and [8],
our focus is narrower than the one of Faber [10], allowing us to
conduct an in-depth investigation on the energy consumption of
videoconferencing apps based on concrete empirical values, rather
than relying on approximations and estimates.

Trestian et al. [11] investigated the power consumption of An-
droid video streams. The authors tested various playback quality
levels, video codecs, and different scenarios, and measured the re-
lated energy consumption. The four scenarios considered were the
user being located near the access point (with and without any
background traffic), and the user being located far away from the
access point (with and without any background traffic). Trestian et
al. discovered that significant energy efficiency factors are signal
quality and network load, followed by codec and playback quality.
Compared to the work of Trestian et al., we do not test network
factors, and instead focus on videoconferencing app functionalities,
by ensuring that we control network related independent variables
to avoid potential confounding experimental factors.

3 Experiment Definition
3.1 Research Goal
By utilizing the formulation proposed by Basili et al. [12], the goal
of this study is to analyze videoconferencing applications for the
purpose of evaluationwith respect to their energy consumption from
the point of view of users in the context of Android applications.

3.2 Research Questions
Our study considers the following main research question (RQ1)
and sub-research questions (RQ1.1-RQ1.4):
[RQ1]: To what extent does the energy consumption differ between
videoconferencing apps? To answer this question, we compare the
two most popular and free videoconferencing apps from the Google
Play Store, namely Zoom2 and Google Meet3. We measure the
energy consumed during a fixed length video conference, executed
under different settings, as further detailed below.

In videoconferencing apps, settings that might affect the energy
consumption are present, e.g., if the camera is activated during the
call. We identified the following sub-questions to investigate the
impact on energy consumption of meeting settings and parameters.
[RQ1.1]: What is the impact of different numbers of participants on
the energy consumption of videoconferencing apps? With an increas-
ing number participants, the incoming data stream is also increased,
as the video and/or audio of more participants has to be transmitted.
In addition, the rendering of the additional received data is expected
to increase the energy consumed by the apps.
[RQ1.2]: What is the impact of using the camera on the energy
consumption of videoconferencing apps? Activating the camera is
expected to lead to a higher energy consumption, as the camera
has to be powered on, the video stream has to be processed, and
transmitted to the server.

2https://play.google.com/store/apps/details?id=us.zoom.videomeetings
3https://play.google.com/store/apps/details?id=com.google.android.apps.meetings

https://github.com/S2-group/mobilesoft-2022-replication-package
https://play.google.com/store/apps/details?id=us.zoom.videomeetings
https://play.google.com/store/apps/details?id=com.google.android.apps.meetings
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[RQ1.3]: What is the impact of using virtual backgrounds on the
energy consumption of videoconferencing apps? Virtual backgrounds
require computing power to identify which portions of the video
belong to the foreground and background. However, the resulting
video stream is expected to be smaller, due to the static background,
and thus less changing pixels that need to be transmitted.
[RQ1.4]:What is the impact of using the microphone on the energy
consumption of videoconferencing apps? Similar to activating the
camera, an activated microphone is also expected to increase the
transmitted data, and hence, the energy consumed.

4 Experiment Planning
4.1 Subjects Selection
To achieve our goal, this research focuses on testing two among
the most popular conferencing apps: Google Meet and Zoom. The
app selection was made based on the idea to test scenarios as close
as possible to real world scenarios and the purpose of having a
positive impact to as many users as possible. The two apps were
picked among the most popular ones, in terms of total number
of downloads from the Google Play Store. The popularity of apps
was further verified by considering web articles in which the usage
and number of adoptions of these apps over the last two years is
reported [3, 4].

4.2 Experimental Variables
The dependent variable for all RQs is the energy consumption,
measured in Joules, collected as total energy consumed over the
duration of a video conference.

For RQ1.1, the independent variable is the number of participants
in the video conference. In the experiment, video conferences with
either 2 or 5 participants are considered (as 1 participant is required
to start the call, and with 6 participants Google Meet splits camera
feeds in a different tab). The number of participants does not vary
within a single experimental run.

For RQ1.2, the independent variable is camera use. In the ex-
periment, video conferences with the local camera on and off are
conducted. The setting of the camera does not change during the
run. The camera of the other participant(s) is turned by default on.

For RQ1.3, the independent variable is virtual background use.
In the experiment, video conferences with the virtual background
on or off are conducted. Since it is only possible to use virtual
backgroundswhen the camera is on, the scenarios where the camera
is off and the virtual background is on are left out of the experiment.

Lastly, for RQ1.4, the independent variable is microphone use. In
the experiment, video conferences with the microphone on or off
are conducted. The camera setting does not vary during the run.

4.3 Experimental Hypotheses
To be able to answer our RQs, we formulate the following null and
corresponding alternative hypotheses. 𝜇 stands for the mean value
of the measured energy consumption for the treatment considered.

• 𝐻10: There is no difference in energy consumption between
videoconferencing apps.
𝐻1𝑎 : There is a difference in energy consumption between
videoconferencing apps.

𝐻10 : 𝜇zoom = 𝜇meet

𝐻1𝑎 : 𝜇zoom ≠ 𝜇meet

• 𝐻1.10: The energy consumption is the same for all numbers
of participants.
𝐻1.1𝑎 : the energy consumption is higher when there is a
higher number of participants.

𝐻1.10 : 𝜇pair = 𝜇multi
𝐻1.1𝑎 : 𝜇pair ≠ 𝜇multi

• 𝐻1.20: There energy consumption is the same when using
the camera and when not using the camera.
𝐻1.2𝑎 : The energy consumption is higher when using the
camera than when not using the camera.

𝐻1.20 : 𝜇camon = 𝜇camoff
𝐻1.2𝑎 : 𝜇camon ≠ 𝜇camoff

• 𝐻1.30: The energy consumption is the same when using a
virtual background and when not using a virtual background.
𝐻1.3𝑎 : The energy consumption is higher when using a vir-
tual background than when not using a virtual background.

𝐻1.30 : 𝜇virtualon = 𝜇virtualoff
𝐻1.3𝑎 : 𝜇virtualon ≠ 𝜇virtualoff

• 𝐻1.40 The energy consumption is the same when using the
microphone and when not using the microphone.
𝐻1.4𝑎 The energy consumption is higher when using the
microphone than when not using a microphone.

𝐻1.40 : 𝜇micon = 𝜇micoff
𝐻1.4𝑎 : 𝜇micon ≠ 𝜇micoff

4.4 Experiment Design
In Table 1 we document how the treatments are assigned to each
of our subjects in order to answer our RQs.

Table 1: Trials of the experiment
Webcam Background Mic Participants
on on on 2
on on off 2
on off on 2
on off off 2
off off on 2
off off off 2
on on on 5
on on off 5
on off on 5
on off off 5
off off on 5
off off off 5

To ensure the correctness and feasibility of the experiment, a pre-
testing phase is designed and executed. In this pre-testing phase,
the energy consumption of each application for different videocon-
ferencing lengths is studied, as further detailed in Section 5.1.

The experiment phase instead involves executing a combina-
tion of independent variables, selected by following our RQs. The
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investigation uses a complete design [13], since it allows testing
all combination of independent variables, hence reflecting the po-
tential usage of the apps in the real world. Since RQ1 is our main
question, the sub-questions are investigated first. The results are
then evaluated to reach a conclusion for RQ1.

4.5 Data Analysis
We analyze the experimental data collected via 4 main phases,
namely: data exploration, normality checking, hypothesis testing,
and effect size estimation.

Data exploration: In this initial step we visualize the measured en-
ergy consumption values via a combination of descriptive statistics,
namely histograms, violin plots, and boxplots, to gain preliminary
insights into data trends [14]. Following the visualization, we adopt
a fitting statistical techniques to test our hypotheses.

Normality testing: We analyze the distribution of the measured
energy consumption, to detect whether a sample comes from a
normal or non-normal distribution via (i) Q-Q Plots, (ii) the Shapiro-
Wilk test, and (iii) frequency distribution plots. This analysis allows
us to check whether parametric or nonparametric statistical tests
can be utilized for hypothesis testing [15][13].

Hypothesis testing: In this phase, we answer the RQs of our study
by applying statistical tests. If the data we collected is normally
distributed, we first use a t-test as parametric test [16] to evaluate
our hypothesis. If the null hypothesis is rejected (𝑝 < 0.05), we then
use Dunn’s Test to perform pairwise comparisons between each
independent group, and identify which groups are statistically sig-
nificantly different. If our data is instead not normally distributed,
we use Mann-Whitney nonparametric test to evaluate our hypoth-
esis, and determine if statistically significant differences between
groups exist.

Effect size estimation: We use Cohen’s 𝑑 (in case of normality) or
Cliff’s delta statistic (in case of non-normality) to measure effect
size and quantify differences between observation groups beyond
p-values interpretation [17]. In other words, we use effect size
estimation to assess the magnitude of the experimental effect of
our independent variables on the measured energy consumption.

5 Experiment Execution
5.1 Preliminary Experiment
For the purpose of correctness and feasibility of our experiment,
a pre-testing phase is performed. In this preliminary phase, the
energy consumption of each application is compared for different
video conference lengths, in order to verify if the energy consump-
tion grows linearly with time. A linear correlation allows us to
reduce the time of each run, therefore making it possible to in-
crease the total number of runs. Table 2 shows the treatments for
each trial used in the preliminary experiment, executed for both
considered apps. Each treatment is applied 20 times, in order to
mitigate potential threats to conclusion validity (see also Section 8).
In case our hypothesis of linearity is confirmed, we perform 20 runs
of 3 minutes, otherwise the number of runs is reduced to 10, with a
length of 10 minutes per run. By considering the total number of
runs, treatments, apps, and cooldown time, the total experiment
duration is estimated to be between 32 and 44 hours.

Table 2: Preliminary experiment

Webcam Background Mic Participants Time
on on on 2 10 min
on on on 2 9 min
on on on 2 7 min
on on on 2 5 min
on on on 2 3 min

Table 3: Pixel 3 – technical specifications

CPU 2.8 GHz Qualcomm Kryo 385 Octa Core
GPU Adreno 630
Memory 4 GB
Disk space 64 GB
Battery capacity 2915 mAh Lithium-Ion
Screen 5.5 inch, 2160x1080, Amoled
OS Android 9.0

5.2 Experiment Setup
In our experiment we are testing the mobile videoconferencing
apps Google Meet (version 2021.10.17.404394895.Release) and Zoom
(version 5.6.6). The two apps are both installed from the Google
Play Store, and are executed on a Google Pixel 3 smartphone, whose
technical specifications are listed in Table 3.

To automatically execute our experiment, we adopt the experi-
mental setup depicted in Figure 1, and further described below. The

Pixel 3

Computer

Zoom/Google Meet

Perform

video conference

(via Internet)

Monkey

Runner

Battery-

stats

Android Runner

Measure energy

consumption after

a certain amount

of time
(via USB)

Perform

UI actions

for starting

the meeting

(via USB)

1 3 2

Wi-Fi network

Zoom Client/

Meet on Chrome

Zoom/Meet on

Firefox

Zoom/Meet on

Chrome

Zoom/Meet on

Chromium

Figure 1: Structure of the experiment

experiment is run on a single computer. Care is taken to ensure the
computer is powerful enough to run 5 instances of the videoconfer-
encing application, as all the participants are joining the conference
from this device. The computer is also used to control the smart-
phone. Specifications of the computer used are documented in
(Table 4). The computer and smartphone are connected via USB
and communicate via the Android Debug Bridge (ADB).4

The Android Runner framework [18], is used to configure and
run the experiment. Specifically, such framework is used, among

4https://developer.android.com/studio/command-line/adb

https://developer.android.com/studio/command-line/adb
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Table 4: Asus A15 – technical specifications

CPU AMD Ryzen™ 7 4800H (8C/16T, 12MB Cache, 4.2 GHz)
GPU NVIDIA® GeForce RTX™ 2060, 6GB GDDR6
Memory 16GB DDR4-3200 SO-DIMM
Disk space 256GB M.2 NVMe™ PCIe® 3.0 SSD
Camera 720P HD camera
Screen 15.6-inch, FHD (1920 x 1080) 16:9 Anti-Glare
OS Ubuntu 18.04.6 Desktop (64-bit)

others, to specify via a configuration file the apps to be tested, the ex-
ecution/waiting times, and the plugins to be used. Batterystats [18]
is one of such plugins, which is utilized to measure the amount of
energy consumed in our experiment. One should be aware that Bat-
terystats measurements are software-based, and therefore are not
as precise as hardware-based measurements. Further consideration
on this threat are discussed in Section 8.

To implement a fully-automatic and replicable execution of our
experiment, we use MonkeyRunner5, a record-replay tool allowing
to first record sequences of user interface actions, and then replay
the actions in every run of the experiment.

The video conferences the mobile device joins are set up manu-
ally with the camera feed being spoofed by a script which runs a
video in a loop6. Thus the experiment is divided up into 4 parts, as
we need to set up a conference with 2 and 5 participants for both
Zoom and Google Meet apps. The tests for a conference are run
by executing a Python script that starts one instance of Android
Runner for each of our experimental configuration files sequen-
tially. One Android Runner instance is configured to do 20 runs
with a treatment for 3 minutes, with 1 minute of cool down time in
between each run. One run starts by launching the app, and subse-
quently using an after-launch script hook to join the conference and
applying the settings corresponding to the current treatment. Then
the Batterystats profiler starts measuring the energy consumption
for 3 minutes, after which Android Runner shuts down the app,
and finally enters the 1 minutes cool down period.

6 Results
6.1 Preliminary Experiment
As described in Section 5.1, we conduct a preliminary experiment
to assess if the energy consumption increases linearly over time,
allowing us to potentially consider an execution time shorter than
usual video conferences. Figure 2 depicts the energy consumption
of video conferences with different duration. The slight duration
fluctuations visible for each duration level are attributable to the
time required to trigger each individual run. As clearly visible, the
consumed energy grows linearly over time. This becomes evenmore
evident when dividing the energy consumption by duration, which
gives us the mean power consumption. From the data collected, we
observe that the mean power consumption is always around 300
to 350 Joules per minute, independently of the meeting duration
considered. These observations hold both for the Zoom and Meet
apps. Therefore, we set the duration of a video conference to 3
minutes, enabling us to execute 20 runs per treatment, instead of
only 10 runs.
5https://developer.android.com/studio/test/monkeyrunner
6https://github.com/whokilleddb/Fake-Stream
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Figure 2: Preliminary experiment: Energy consumption
over time

6.2 Data Exploration
Table 5 shows the summary statistic of the measured energy con-
sumption, grouped by the two apps, for the whole dataset. Zoom
results to have a slightly lower energy consumption compared
to Meet in all shown statistical characteristics. The mean energy
consumption of Meet (770.5 J) is 4% higher than the one of Zoom
(738.2 J), while the median energy consumption is 3% higher (995.7 J
for Meet and 970.5 J for Zoom).

Table 5: Energy consumption per app [J]
Min. 1st Qu. Median Mean 3rd Qu. Max.

Meet 245.2 282.5 995.7 770.5 1014.8 1109.5
Zoom 155.9 259.9 970.5 738.2 987.2 1041.4
Combined 155.9 267.6 977.8 754.3 1003.5 1109.5

Figure 3 shows the distribution of the energy consumption values
for Meet and Zoom as histograms. In both figures two distinct
clusters of particularly frequent values can be identified, with a
large area without any values between approximately 300 J and
900 J. Such trend is further discussed when considering the results
for each sub-RQ reported from Section 6.2.1 to Section 6.2.4.

Table 6 and 7 show the statistical characteristics for Meet and
Zoom respectively, grouped by the different treatments for the
factors participants, camera, virtual background, and microphone.
Table 8 instead shows the relative change of the median when
changing one of these factors. In the following subsections the
impact of the different treatments are discussed in more detail.
6.2.1 Number of Participants. We conducted the experiment with
either 2 or 5 conference participants. Figure 4 shows the distribu-
tion of the energy consumption in a combined violin- and boxplot
grouped by the number of participants and the used app. All groups
have in common that the distribution has two distinct peaks, as
further discussed in Section 6.2.2. This matches the observation of
the whole dataset, whose values could also be grouped into two
clusters (cf. Figure 3).

For Meet, the energy consumption is higher when having five
participants as compared to two. Themean increases from 750.7 Joules

https://developer.android.com/studio/test/monkeyrunner
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Table 6: Energy consumption using Meet [J]

Min. 1st Qu. Median Mean 3rd Qu. Max.
2 participants 245.2 265.6 991.8 750.7 997.8 1022.6
5 participants 252.3 289.2 1014.8 790.2 1068.5 1109.5
Camera off 245.2 264.1 267.2 272.6 281.7 292.3
Camera on 968.3 995.7 1003.0 1019.4 1028.9 1109.5
Virt. backg. off* 970.7 992.5 1002.5 1002.5 1014.8 1021.0
Virt. backg. on* 968.3 997.9 1035.1 1036.2 1074.8 1109.5
Microphone off 245.2 289.2 997.7 771.0 1013.4 1082.1
Microphone on 247.4 279.8 992.9 769.9 1015.2 1109.5
Combined 245.2 282.5 995.7 770.5 1014.8 1109.5

Table 7: Energy consumption using Zoom [J]

Min. 1st Qu. Median Mean 3rd Qu. Max.
2 participants 242.7 254.2 987.2 752.8 1010.7 1041.4
5 participants 155.9 265.0 953.0 723.6 973.5 985.0
Camera off 242.7 248.9 252.5 254.5 261.1 269.6
Camera on 155.9 970.7 979.4 980.1 1004.9 1041.4
Virt. backg. off* 155.9 956.8 975.5 972.8 1008.6 1041.4
Virt. backg. on* 943.5 971.8 984.2 987.4 999.9 1028.9
Microphone off 242.7 251.0 955.3 731.6 975.5 1011.9
Microphone on 155.9 265.0 978.6 744.9 1010.1 1041.4
Combined 155.9 259.9 970.5 738.2 987.2 1041.4

*Since a virtual background can only be used when the camera is on, only runs where the camera is turned on are considered here
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Figure 3: Histogram: Energy consumption per app (bin
width: 20 J)

Table 8: Relative increase of the mean energy consumption
when changing one factor

Meet Zoom
2 ; 5 participants +5% −4%
Camera off ; on +274% +285%
Virt. backg. off; on* +3% +2%
Microphone off ; on −0.1% +2%

*Since a virtual background can only be used when the camera is on, only runs where
the camera is turned on are considered here

to 790.2 Joules (+5%). For Zoom the mean energy consumption is
surprisingly higher for two participants (752.8 J) when compared
to five (723.6 J; −4%).
6.2.2 Camera. The violin- and boxplot for the camera, shown in
Figure 5, clearly differs from the one for the number of participants.
Here we have a large difference between the runs where the camera
was active and the runs where it was not. For Meet the mean
increases from 272.6 J to 1019.4 J (+274%), for Zoom the mean
increases from 254.5 J to 980.1 J (+285%).

Although the mean energy consumption is clearly higher when
the camera is on, the run with the lowest energy consumption
in Zoom was a run with activated camera (155.9 J). But since the
second lowest run with activated camera has a much higher energy
consumption of 926 J, it can be assumed that the outlier data point
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Figure 4: Violin- & boxplot: Energy consumption depending
on the number of participants
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Figure 5: Violin- & boxplot: Energy consumption depending
on whether the camera is turned on or off

is caused by some external factor influencing the experimental run;
for the sake of completeness we decided to keep this data point in
our dataset.
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Figure 6: Violin- & boxplot: Energy consumption depending
on whether the camera is turned on or off (zoomed in, out-
liers cut off)

Despite this outlier, the range of values for each boxplot is much
smaller than in the previous boxplots, showcasing a much higher
concentration towards median values. To further understand the
distribution trends within each violin- and boxplot, Figure 6 depicts
the same data, but with separated scales for camera off and on.
As can be clearly noticed, except for Zoom with activated camera,
all the plots display two distinct peaks due to the camera factor,
which can be noticed also in the distributions of the data analysis
conducted for the other factors.

6.2.3 Virtual Background. When the camera is active, it is also
possible for users to replace their video stream background with
a virtual background. It is of course possible to use a virtual back-
ground only if the camera is active. This is why we only consider
the runs where the camera is active when assessing the impact of
the virtual background feature.

Figure 7 shows the impact of the virtual background as a com-
bined violin- and boxplot. Both apps have a small increase in energy
consumption when activating the virtual background. For Meet, the
mean energy consumption increases slightly from 1002.5 J when
the virtual background is off to 1035.1 J when it is on (+3%). For
Zoom, it increases even less noticeably, from 972.8 J to 987.4 J (+2%).
As discussed in the previous subsection about the impact of the
camera, we again observe an outlier data point for the Zoom app.
As for the data on camera use, depicted in Figure 5, a single outlier
measurement is present for Zoom without virtual background. For
presentation purposes, such outlier is excluded from Figure 7 as,
given the distribution of remaining data points, such measurement
is with high probability due to an external factor.

6.2.4 Microphone.When considering the impact of the microphone,
we get four nearly identical violin- and boxplots, as shown in Fig-
ure 8. For Meet the mean energy consumption slightly decreases
when turning on the microphone from 771.0 J to 769.9 J (−0.1%),
for Zoom it slightly increases from 731.6 J to 744.9 J (+2%).
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*Since a virtual background can only be used when the camera is on, only runs where
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Figure 7: Violin- & boxplot: Energy consumption depend-
ing on whether the virtual background is turned on or off*
(zoomed in, outliers cut off)
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Figure 8: Violin- & boxplot: Energy consumption depending
on whether the microphone is turned on or off

6.3 Normality Testing
From the data exploration section, we have a strong suspicion that
the data is not normally distributed. Figure 9 shows the density and
Q-Q plots of the Google Meet and Zoom data. Both density plots
do not show a classical bell curve, which is generally present in
normally distributed data. The Q-Q plots do not show a diagonal
straight line, which would have been visible in normally distributed
data. Lastly, the Shapiro-Wilk test gives a p-value < 2.2e-16 for
both datasets, indicating that both for Zoom and Google Meet the
energy measurements are not normally distributed.With the results
of these three statistical methods, we can confidently conclude that
the datasets are not normally distributed.

Since the datasets are further split for hypothesis testing, we also
test each sub-dataset for normality. Figure 10 shows the resulting
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Figure 9: Density and Q-Q plots of the Zoom and Google
Meet datasets

density and Q-Q plots and Table 9 documents the sub-dataset cate-
gories with the resulting Shapiro-Wilk test p-values. It is evident
for most sub-datasets that they are not normally distributed. As
exception, the sub-dataset of Zoom with the virtual background
on is the only sub-dataset that, from a visual inspection followed
by a Shapiro-Wilk test, results to be normally distributed. To ease
the hypothesis testing and effect size analysis, we utilize exclu-
sively non-parametric tests, namely the Mann-Whitney test and
Cliff’s delta (cf. Section 4.5), as we can consistently use such tests
throughout all gathered sub-datasets.

Table 9: Shapiro-Wilk test p-values for sub datasets
Meet Zoom

2 participants 2.78e-16 8.01e-16
5 participants 2.75e-15 7.18e-16
Camera off 1.75e-05 1.22e-05
Camera on 2.912e-12 < 2.2e-16
Virt. backg. off < 2.2e-16 < 2.2e-16
Virt. backg. on 3.9e-08 0.18
Microphone off 3.01e-15 7.20e-16
Microphone on 4.74e-15 1.90e-15
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Figure 10: Density and Q-Q plots of the sub datasets

6.4 Hypothesis Testing.
After exploring the data and testing for normality, we can answer
our RQs by statistically testing the null hypotheses defined in Sec-
tion 4.3. In all null hypotheses we are considering one factor with
exactly two treatments. Since nearly all of the distributions are not
following a normal distribution, as shown in Section 6.3, we use
the Mann-Whitney test to statistically test our hypotheses.

In Table 10, we report the 𝑝-values of the Mann-Whitney tests,
which we apply to evaluate our null hypotheses. In addition, we
also document the 𝑝-values corrected via the Benjamini-Hochberg
procedure, in order to further mitigate potential type I errors.

Except for the microphone hypothesis for Meet (𝐻1.40), all null
hypotheses are confidently rejected. This means that a statistical
significant difference is present between the energy consumption
of Zoom and Meet, and also between the different configurations
within both apps. As only exception, turning on the microphone
when using Meet does not result to have a statistical significant
impact on the energy consumption.

6.5 Effect Size Estimation
As documented in the previous section, most of the factors have
a statistically significant impact on the energy consumption. To
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Table 10: Statistical significance using the Mann-Whitney
test and the Benjamini-Hochberg correction method (𝑝-
values < 0.05marked in bold)
Hypothesis Description 𝑝-value Corrected 𝑝-value
𝐻10 Meet vs. Zoom 6.905e-11 1.553625e-10
Meet
𝐻1.10 Number of participants 1.402e-11 4.206000e-11
𝐻1.20 Camera 2.2e-16 9.900000e-16
𝐻1.30 Virtual background 4.97e-05 6.390000e-05
𝐻1.40 Microphone 0.3577 0.3577
Zoom
𝐻1.10 Number of participants 3.745e-06 6.741000e-06
𝐻1.20 Camera 2.2e-16 9.900000e-16
𝐻1.30 Virtual background 0.04005 0.04505625
𝐻1.40 Microphone 4.518e-06 6.777000e-06

determine the different impact on energy consumption of the fac-
tors we consider, we utilize Cliff’s delta. This test returns a value
between −1 and 1, whose absolute value is used to classify the effect
size as either negligible (< 0.147), small (< 0.33), medium (< 0.47)
or large (otherwise).

Table 11 shows the results of applying Cliff’s delta on our differ-
ent RQs. For the overall comparison between Meet and Zoom (RQ1)
we get a value of −0.344 which can be classified according to the
thresholds as a medium effect size. For Meet we see a large effect
size for the number of participants (RQ1.1) and the camera (RQ1.2),
and a medium effect size for the virtual background (RQ1.3). The
effect size of the microphone (RQ1.4) would be negligible, but this
is regardless not meaningful, as the difference is not statistical sig-
nificant. For Zoom there is a large effect size for the camera (RQ1.2),
a medium effect size for both the number of participants (RQ1.1)
and the microphone (R1.4), and a small effect size for the virtual
background (RQ1.3).

Table 11: Effect size estimation using Cliff’s delta
Research Question Description 𝛿-value Classification
𝑅𝑄1 Zoom vs. Meet −0.344 Medium
Meet
𝑅𝑄1.1 Number of participants 0.505 Large
𝑅𝑄1.2 Camera 1.000 Large
𝑅𝑄1.3 Virtual background 0.372 Medium
𝑅𝑄1.4 Microphone −0.069 Negligible
Zoom
𝑅𝑄1.1 Number of participants −0.345 Medium
𝑅𝑄1.2 Camera 0.988 Large
𝑅𝑄1.3 Virtual background 0.188 Small
𝑅𝑄1.4 Microphone 0.343 Medium

7 Discussion
In this section, we revisit our research questions, and further discuss
implications for the users of videoconferencing apps.
[RQ1]: To what extent does the energy consumption differ between
different videoconferencing apps? We observe a statistically signifi-
cant difference between the two apps considered, with a medium
effect size. For a user who wants to save energy on their phone,
Zoom would be the better choice. However, as the mean energy
consumption of Zoom is only 4% lower compared to Meet, other
factors such as usability or restrictions of the free versions should
be taken into account as well.

[RQ1.1]: What is the impact of different numbers of participants on
the energy consumption of videoconferencing apps? For both apps
the number of participants has a statistically significant impact on
the energy consumption, leading up to a 5% energy consumption
increase. The effect size is large for Meet and medium for Zoom.
An interesting observation is that, while the energy consumption
in Meet increases with the number of participants, it decreases in
Zoom. This could possibly be due to the fact that, by default, the
Zoom app always displays exclusively the speaking person, while
Meet displays the video streams of the participants as a grid.
[RQ1.2]: What is the impact of using the camera on the energy con-
sumption of videoconferencing apps? Using the camera has by far the
largest impact on energy consumption. With an active camera, the
mean energy consumption is up to 285% higher than without cam-
era. In addition, the statistical test demonstrate that for both apps
camera use leads to statistically significant differences in energy
consumption, with large effect size. Thus, when not required during
a conference call, turning off the camera will lead to considerable
savings in energy consumption for the call.
[RQ1.3]: What is the impact of using virtual backgrounds on the
energy consumption of videoconferencing apps? Both apps exhibit
a statistically significant increase of consumed energy when us-
ing a virtual background compared to using the original camera
stream. Nevertheless, the mean energy consumption only increases
by 3% for Google Meet and or 2% for Zoom. We conjecture that,
albeit isolating the foreground image implies an additional com-
putation task, the impact on the additional energy consumed by
this tasks is mitigated by the need to stream less data. In addition,
it is possible that virtual backgrounds might be implemented to
benefit from hardware acceleration, potentially further reducing
the overall impact on energy consumption of this feature.
[RQ1.4]:What is the impact of using the microphone on the energy
consumption of videoconferencing apps? For Meet, we could not
observe statistically significant evidence that microphone use in-
fluences energy consumption. As explanation of this finding, we
conjecture that the microphone does not get physically deactivated,
and instead the data is simply not transmitted to the other partic-
ipants. However further investigation needs to be conducted in
order to verify this claim. For Zoom the observations were statisti-
cally significant, and the effect size was classified as medium. With
the microphone active the mean energy consumption increased by
2%, which is nevertheless a much lower increase with respect to
the use of the camera.

8 Threats To Validity
The validity of the experiment has been analyzed based on four
classification types, namely internal, external, construct, and con-
clusion validity, as proposed by Campbell and Cook [19].

8.1 Internal Validity
8.1.1 History. This threat is closely related to the experiment de-
sign and operation. A potential threat in this category is constituted
by the temperature of the mobile device utilized for experimenta-
tion, which may have influenced the data of sequential runs. To
mitigate this threat, we ensured that an appropriate cool down pe-
riod, equal to 1 minute, was present between each subsequent run.
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8.1.2 Maturation. A potential maturation threat is constituted by
possible caching functionalities of the apps used as experimental
subjects. In fact, data caching may have influenced how the apps
reacted to our factors, as these were sequentially applied through-
out our experiment. To mitigate this threat, we ensured the cache
of the mobile device utilized for experimentation was cleared be-
fore each run.
8.1.3 Reliability of measures. Several factors could influence the
reliability of measures, such as brightness of the mobile screen,
notifications, distance to the router, and interference with other
processes which consume more energy. To mitigate this threat, we
ensured that throughout the entirety of the experiment notifications
were turned off, brightness was set to the same intensity, the device
was positioned at the same distance from the router, and only the
functionalities required for the experiment were running on the
mobile device.

8.2 External Validity
8.2.1 Interaction of selection and treatment. In order to mitigate
potential threats to external validity, we adopted as experimental
subjects two among the most popular Android videoconferencing
apps, namely Zoom and Google Meet, which are utilized by millions
of users every day. An additional threat to external validity is con-
stituted by the mobile device utilized in our experiment. To mitigate
this threat, we selected and used a popular mobile device, namely
the Pixel 3, which is distributed by a prominent multinational tech-
nology company (Google), and reflects in terms of specification the
hardware of commonly utilized mobile devices (cf. Table 3).
8.2.2 Interaction of setting and treatment. A threat in this category
is constituted by the video conference duration, which was set to 3
minutes each, and hence might not be representative for real video
conferences duration. To mitigate this threat, we performed a pre-
liminary experiment to assess that the duration of the experiment
runs do not influence significantly our findings (cf. Section 6.1). In
addition, changes in internet bandwidth could have influenced our
results. We deem this threat as minor, as the experimental environ-
ment relied on a dependable internet connection, and no devices
other than the ones used for the experiment were running.

8.3 Construct Validity
8.3.1 Definition of constructs. In order to mitigate potential threats
of this category, in Section 4 we reported an in-depth description
of our experimental setting, including a documentation of the de-
sign phase and the related rationale, and description of all met-
rics, factors, and measurement tools utilized. In order to mitigate
threats related to insufficient interpretation, we formulated system-
atic hypotheses and scenarios to answer our RQs, and tested our
hypothesis by utilizing exclusively fitting statistical tests.
8.3.2 Mono-method bias. Our experimental results are based on
one dependent variable, namely energy consumption. Thus, our
experiment might be affected by a mono-operation bias. Per se, we
do not deem utilizing only energy consumption measurements a
notable threat, and utilizing such single metric is a common prac-
tice in software energy efficiency research [20–22]. However, our
measurements relied on energy estimations, rather than direct en-
ergy measurements, as provided by the tool Batterystats we used.

To mitigate potential threats related to the adoption of this mea-
surement method, we ensured that the tool was peer-reviewed [18],
based on a sound theoretical foundation [23], provided as open
source (hence allowing for independent scrutiny), and previously
used in other academic peer-reviewed studies (e.g., in the work
of Malavolta et al. [24]).

8.4 Conclusion Validity
8.4.1 Low statistical power. In order to mitigate potential threats
of low statistical power, we ensured to systematically collect the
required volume of data, and conducted statistical analysis to draw
conclusions. More specifically, we collected the experimental data
by using a fixed number of 12 treatment combinations for our
experiments, conducted by considering 2 experimental subjects.
Each treatment was applied 20 different times for both applications,
resulting in a total of 480 data samples which were collected for
this study.

8.4.2 Violated assumptions of statistical tests. To mitigate potential
threats of violated test assumptions, before performing our statis-
tical analysis, we tested the normal distribution of our collected
sample. This process was conducted to select the most appropriate
statistical test from a list of tests systematically defined a priori.

8.4.3 Treatment implementation.All treatments were implemented
as fitful as possible w.r.t. a real-world videoconference scenario.
The only slight difference is constituted by the use of a script to
generate the incoming camera videos. We do not deem this as a
prominent threat, as this variation may have influenced only the
mocked users devices, and not the device receiving the videos (i.e.,
where the energy consumption was measured).

9 Conclusions
In this research, we document an empirical experiment conducted to
study the energy consumption of Android videoconferincing apps.
In addition to investigating the differences between two popular
videoconferencing apps, we study if distinct features, such as use
of web camera, microphone, and virtual background, significantly
influence the energy consumption of the apps. From our findings
emerge that, both when considering different apps and features, the
energy consumed by mobile devices drastically changes. Camera
use has the larges impact on energy, with an increase up to 285%
energy consumed. In contrast, microphone use does not influence
considerably the energy consumption, with only a negligible 2%
energy consumption increase for one of the two apps considered.

As future work, we plan to replicate our experiment in order to
further mitigate some of the threats to validity of our study, e.g., by
considering different mobile devices and more videoconferencing
apps. In addition, we plan to broaden the scope of our research, by
considering additional factors related to videoconferencing apps
that could influence energy consumption. For instance, we envision
to test the impact on energy consumption of turning off the screen
when only audio is needed, using different connection types, e.g.,
4G/5G, and utilizing the chat available in videoconferencing apps
during the meetings. Finally, we envision to investigate potential
tradeoffs between energy consumption and other non-functional
properties of the apps (e.g., security, usability, performance).
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