
Submitted 27 June 2021
Accepted 6 December 2021
Published 7 February 2022

Corresponding author
Roberto Verdecchia,
r.verdecchia@vu.nl

Academic editor
Robert Winkler

Additional Information and
Declarations can be found on
page 41

DOI 10.7717/peerj-cs.833

Copyright
2022 Verdecchia et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Empirical evaluation of an architectural
technical debt index in the context of the
Apache and ONAP ecosystems
Roberto Verdecchia1, Ivano Malavolta1, Patricia Lago1,2 and Ipek Ozkaya3

1Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2Chalmers University of Technology, Gothenburg, Sweden
3Carnegie Mellon Software Engineering Institute, Pittsburgh, USA

ABSTRACT
Background. Architectural Technical Debt (ATD) in a software-intensive system
denotes architectural design choices which, while being suitable or even optimal when
adopted, lower the maintainability and evolvability of the system in the long term,
hindering future development activities. Despite the growing research interest in ATD,
how to gain an informative and encompassing viewpoint of the ATD present in a
software-intensive system is still an open problem.
Objective. In this study, we evaluate ATDx, a data-driven approach providing an
overview of the ATDpresent in a software-intensive system. The approach, based on the
analysis of a software portfolio, calculates severity levels of architectural rule violations
via a clustering algorithm, and aggregates results into different ATD dimensions.
Method. To evaluate ATDx, we implement an instance of the approach based on
SonarQube, and run the analysis on the Apache and ONAP ecosystems. The analysis
results are then shared with the portfolio contributors, who are invited to participate
in an online survey designed to evaluate the representativeness and actionability of the
approach.
Results. The survey results confirm the representativeness of the ATDx, in terms of
both the ATDx analysis results and the used architectural technical debt dimensions.
Results also showed the actionability of the approach, although to a lower extent when
compared to the ATDx representativeness, with usage scenarios including refactoring,
code review, communication, and ATD evolution analysis.
Conclusions. With ATDx, we strive for the establishment of a sound, comprehensive,
and intuitive architectural view of the ATD identifiable via source code analysis.
The collected results are promising, and display both the representativeness and
actionability of the approach. As future work, we plan to consolidate the approach via
further empirical experimentation, by considering other development contexts (e.g.,
proprietary portfolios and other source code analysis tools), and enhancing the ATDx
report capabilities.

Subjects Computer Architecture, Software Engineering
Keywords Technical debt, Software architecture, Index, Software metrics, Software portfolio
analysis, Empirical evaluation

How to cite this article Verdecchia R, Malavolta I, Lago P, Ozkaya I. 2022. Empirical evaluation of an architectural technical debt index
in the context of the Apache and ONAP ecosystems. PeerJ Comput. Sci. 8:e833 http://doi.org/10.7717/peerj-cs.833

https://peerj.com/computer-science
mailto:r.verdecchia@vu.nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.833
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.833

INTRODUCTION
Architectural Technical Debt (ATD) in a software-intensive system denotes architectural
design choices which, while being suitable or even optimal when adopted, lower
the maintainability and evolvability of the system in the long term, hindering
future development activities (Avgeriou et al., 2016). With respect to other types of
technical debt (TD), e.g., test debt (Samarthyam, Muralidharan & Anna, 2017) or build
debt (Morgenthaler et al., 2012), ATD is characterized by being widespread throughout
entire code-bases, mostly invisible to software developers, and of high remediation
costs (Kruchten, Nord & Ozkaya, 2012b).

Due to its impact on software development practices, and its high industrial relevance,
ATD is attracting a growing interest within the scientific community and software
analysis tool vendors (Verdecchia, Malavolta & Lago, 2018). Notably, over the years,
numerous approaches have been proposed to detect, mostly via source code analysis,
ATD instances present in software intensive-systems. Such methods rely on the analysis
of symptoms through which ATD manifests itself, and are conceived to detect specific
types of ATD by adopting heterogeneous strategies, ranging from the model-based
analysis of heterogeneous architectural artifacts (Pérez, 2020), the combination of
technical and business factors to support architectural decision-making (Ampatzoglou
et al., 2021), the analysis of dependency anti-patterns (Arcelli Fontana et al., 2017),
and the evaluation of components modularity (Martini, Sikander & Madlani, 2018).
Additionally, numerous static analysis tools, such as NDepend (https://www.ndepend.com),
CAST (https://www.castsoftware.com/products/code-analysis-tools), and SonarQube
(https://www.sonarqube.org), are currently available on the market, enabling to keep
track of such symptoms of technical debt and architecture-related issues present in code-
bases. These existing academic and industrial approaches focus on fine-grained analysis
techniques, considering ad-hoc definitions of technical debt and software architecture,
in order to best fit their analysis processes to technical debt assessment. Nevertheless, to
date, how to gain an informative and encompassing viewpoint of the potentially highly
heterogeneous (Verdecchia et al., 2021) ATD present in a software-intensive system is still
an open question.

In order to fill this gap, in this studywe present an improved version of ATDx (Verdecchia
et al., 2020), an approach designed to provide data-driven, intuitive, and actionable insights
on the ATD present in a software-intensive system. ATDx consists of a theoretical, multi-
step, and semi-automated process, concisely entailing (i) the reuse of architectural rules
supported by third-party analysis tools, (ii) the calculation of the severity of architectural
rule violations based on the comparison of normalized values across a software portfolio,
and (iii) the aggregation of analysis results into a set of customizable ATD dimensions.

The vast majority of state-of-the-art TD and ATD indexes relies on predefined
remediation costs and metric thresholds, e.g., the TD index provided by SonarQube
(see ‘Related Work’ for further details on related work). In contrast, ATDx distances
itself from predefined ATD severities and remediation efforts, as recent literature pointed
towards their potential inaccuracy (Baldassarre et al., 2020). In order to avoid utilizing

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 2/45

https://peerj.com
https://www.ndepend.com
https://www.castsoftware.com/products/code-analysis-tools
https://www.sonarqube.org
http://dx.doi.org/10.7717/peerj-cs.833

ATD severities and remediation efforts defined a priori, ATDx deduces in a data-driven
manner the severity of ATD instances in relation to the other projects belonging to a given
software portfolio. Regarding the severity of ATD instances, it is important to note that
the ATD severities calculated by ATDx are based on a quantitative approach considering
source code analysis results, and point to potential ‘‘hotspots’’ where ATD resides (for more
information of the concept of ‘‘hotspots’’ refer to the work of Procaccianti et al., 2015).
Hence, while the ATDx analysis results can support software developers and architects
by providing a bottom-up overview of the ATD detectable via such approach, the results
require in any case to be interpreted by practitioners in order to plan future development
and maintenance activities.

Similarly to other studies in the literature (e.g., the work by Kuipers & Visser, 2004), in
this paper we refer to software portfolio as the set of software projects (also referred to as
software assets) owned by a single company.

The portfolio analysis performed by ATDx allows not only to mitigate potential threats
entailed by utilizing predefined remediation costs and metric thresholds, but also to
consider the specific context in which a software product is developed and maintained.
Furthermore, differently from most state-of-the-art TD and ATD indexes (Avgeriou et
al., 2020), ATDx provides a decomposition of its value into different ATD dimensions,
allowing to gain an informed overview of the nature of the calculated ATD values. Finally,
most state-of-the-art ATD indexes and identification approaches are context-independent,
i.e., they do not consider the implementation characteristics of software-intensive systems,
that may vary according to the specific domain considered (e.g., as observed by Malavolta
et al., 2018), in the context of Android code clones are directly dictated by the templating
phenomenon of the activity-intent-based nature of the Android programming idiom,
and hence should be considered as a widespread programming practice, rather than
a maintainability issue). In order to mitigate this potential shortcoming of context-
independent approaches, in ATDx the context can be considered by focusing the analysis
on a portfolio of software projects sharing a similar context. Adopting a context-specific
portfolio allows to base the severity calculation of ATD issues by comparing software
project of similar nature, hence acknowledging that prominent issues in a certain context
could be instead a programming norm in another context.

It is important to highlight that ATDx is specifically tailored to the analysis of the
implemented architecture of a software-intensive system, i.e., ATDx is capable of reporting
exclusively the results regarding the ATD that is identifiable via source code analysis.

ATDx is designed to serve two types of stakeholders: (i) researchers conducting
quantitative studies on source-code related ATD and (ii) practitioners carrying out software
portfolio analysis andmanagement, to suitably detect ATD items and get actionable insights
about the ATD present in their systems according to their organizational and technical
needs.

This study builds upon the research in which ATDx was preliminarily reported (Verdec-
chia et al., 2020) by (i) refining the ATDx in order to address some of its drawbacks (see
‘The ATDx Approach’), and (ii) conducting an empirical evaluation of the approach.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 3/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

We carry out an empirical evaluation of the ATDx approach involving two open-source
software ecosystems (Apache and ONAP), 237 software projects, and 233 open-source
software contributors. The gathered results shed light on the representativeness and
actionability of ATDx, and provide further insights of the benefits and drawbacks which
characterize the approach. Among other, the most relevant characteristics of ATDx are:
(i) analysis tool and programming language independence, (ii) data-driven results, rather
than based on a priory defined severities, remediation costs, and metric thresholds (iii)
extensibility, and (iv) customizability to specific application domains and portfolios.

The main contributions of this paper are the following:

• the evolution of ATDx, an approach providing a multi-level index of architectural
technical debt; refined by replacing the outlier-based calculation of the original
approach (Verdecchia et al., 2020) with a severity clustering algorithm;
• a detailed description of the process for building an instance of ATDx, supporting the
independent implementation of an instance of ATDx by researchers and practitioners;
• an empirical evaluation of the representativeness and actionability of the ATDx
approach based on SonarQube, involving two software ecosystems, 237 software
projects, and 233 software contributors, supported by the complete replication package
(https://github.com/S2-group/ATDx_replication_package), and a thorough discussion of
the uncovered ATDx advantages and drawbacks.

The reminder of the paper is structured as follows. In the next section, we present the
theoretical framework underlying the ATDx approach, followed by the formalization of
the approach, and the description of the steps required to implement an instance of ATDx.
In ‘Empirical Evaluation Planning’ and ‘Empirical Evaluation Execution’ we document
the planning and execution of the empirical evaluation, respectively. The results of the
evaluation are then reported in ‘Results’. In ‘Discussion’ the discussion of the results is
reported, while in ‘Threats to Validity’ we elicit the potential threats to validity which may
have influenced our results. In ‘Related Work’ we present and discuss the related work.
Finally, ‘Conclusions and Future Work’ draws conclusions and hints at future work.

THE ATDX APPROACH
In this section, we provide the definitions of attributes on which the calculation of ATDx
relies (‘Definitions’), the ATDx formalization (ATDx Formalization’), and describe the
steps for building ATDx (‘ATDx Building Steps’).

Definitions
Definition 1. Architectural rule. Given a source code analysis tool T and the set of its
supported analysis rules RT , the architectural rules ART supported by T are defined as the
subset of all rules RT

i ∈R
T ,i={1,...,|RT

|} such that:

• RT
i is relevant from an architectural perspective, i.e., strongly influences one choice of

structures for the architecture (Keeling, 2017);

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 4/45

https://peerj.com
https://github.com/S2-group/ATDx_replication_package
http://dx.doi.org/10.7717/peerj-cs.833

• RT
i is able to detect a technical debt item, i.e., ‘‘design or implementation constructs

that are expedient in the short term but that set up a technical context that can make a
future change more costly or impossible’’ (Avgeriou et al., 2016).

In ATDx, we consider every ART
i as a function ART

i : E→{0,1}, where E is the set of
architectural elements according to a granularity level (see below). In case that an element
e ∈ E violates rule ART

i , then ART
i (e) returns 1, and 0 otherwise.

For example, a rule ART
i checking that method overrides should not change contracts

is (i) architectural since it predicates on the high-level structure of a Java-based software
project (i.e., its inheritance tree), and (ii) related to technical debt as violating such rule
might not lead to immediate repercussions, but could potentially cause unexpected
behaviour and cumbersome refactoring as the software project evolves.

Definition 2. Architectural rule granularity level
(Granularity level). Given an architectural rule ART

i , its granularity level Gr
T
i is defined

as the smallest unit of the software project being analysed which may violate ART
i , e.g., a

class, a method, or a line of code. As an example, if we consider a rule which deals with
cloned classes, its corresponding granularity level is ‘‘class’’. Such mapping of architectural
rules to different granularity levels enables us to evaluate and compare the occurrence of
rules violations across different software projects at a refined level of precision, instead
of trivially adopting a single metric for the size of software projects for all the rules in
ART , e.g., source lines of code (SLOC). In addition, it enables us to assess the scope of the
technical debt and as needed differentiate from defects.

Definition 3. ATD dimension. Given a set of architectural rules ART for an analysis
tool T , the set of ATD dimensions ATDDT contains subsets of architectural rules
ART

i ⊆ART with similar focus. One architectural rule ART
i can belong to one or more ATD

dimensions ATDDT
j ⊆ATDDT and the mapping between ART

i and ATDDT
j is established

by generalizing the semantic focus of ART
i . For example, if an architectural rule ART

i
deals with the conversion of Java classes into Java interfaces, the ART

i could fall under
the general Interface ATD dimension. In ATDx, we use the 3-tuple 〈ART

i ,ATDD
T
j ,Gr

T
i 〉

to represent the mapping of each architectural rule ART
i to its granularity level GrTi and

ATD dimensions ATDDT
j . It is important to note that, while an ART

i can be associated to
one and only one granularity level GrTi , an ART

i can be mapped to multiple dimensions
ATDDT

j s, and vice versa.

ATDx formalization
ATDx aims to provide a birds-eye view of the ATDpresent in a software project by analyzing
the set of architectural rules ART supported by an analysis tool T , and subsequently
aggregating the analysis results into different ATD dimensions ATDDT .

The goal of ATDx is portfolio analysis of projects in respect to their level of ATD.
Intuitively, starting from a dataset of ART and GrT values belonging to a set of software
projects S. ATDx performs a statistical analysis on the elements contained in the dataset,
in order to classify the severity of the architectural rule violations of the software projects.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 5/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

The level of severity the system-under-analysis (SUA) exhibits for each rule ART
i ∈AR

T ,
is then reported as a constituent part of the ATD dimension ATDDT

i ∈ATDD
T mapped

to ART
i . Notice that the ATDx analysis results of a specific SUA are relative to the other

projects S in the same portfolio, and hence should not be interpreted as absolute values.
ATDx is based on the calculation of the number of architectural rule violations of a

software project S (normalized over the size of S) in order to compare the occurrence of
rule violations across projects of different sizes. Specifically, for each architectural rule
ART

i , we first calculate AR
T
i (S), defined as the set of architectural elements in S violating

ART
i , i.e.,

ART
i (S)=

⋃
e∈GrTi (S)

arTi (e) (1)

where GrTi (S) is the set of all elements e in S according to the granularity GrTi (e.g., the
set of all Java classes in a Java-based project), and arTi (e) is a function returning e if the
element e violates the architectural rule ART

i , the empty set otherwise.
Subsequently, we calculate NORMT

i (S), defined as the normalized number of
architectural rule violations |ART

i (S)| over the total number of elements e according
to granularity GrTi , i.e.,

NORMT
i (S)=

|ART
i (S)|

|GrTi (S)|
(2)

where |GrTi (S)| is the size of S expressed according to granularity level GrTi (e.g., the total
number of Java classes in S), and |ART

i (S)| is the total number of violations of rule RT
i (see

Eq. (1)).
Once the NORMT

i (S) for rule AR
T
i in S is calculated, we statistically establish its severity.

In order to do so, we require the set NORMT
i , which contains the values of NORMT

i (S) for
each software project belonging to the portfolio, i.e.,

NORMT
i ={NORM

T
i (S1),...,NORM

T
i (Sn)} (3)

where n is the total number of projects belonging to the considered portfolio of software
projects.

Given the calculation of NORMT
i , we can establish the severity of the NORMT

i (S)
measurement by comparing its value with the other ones contained in NORMT

i . More
specifically, given the set of values NORMT

i and the value of NORMT
i (S), we define the

function severity as:

severity :Xm
×[0,1]→ {0,1,2,3,4,5} (4)

where X = [0,1] and m is the total number of software projects belonging to the portfolio.
The severity function returns a discrete value between 0 and 5, indicating the level of
severity of NORMT

i (S) w.r.t. the other values in NORMT
i . In order to do so, we adopt a

clustering algorithm, namely CkMeans (Wang & Song, 2011), which guarantees optimal,
efficient, and reproducible clustering of univariate data(i.e., in our case, NORMT

i values).
Consequently, this step consists of identifying the severity cluster of NORMT

i (S) that

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 6/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

Figure 1 Example of kernel density plot (Givens & Hoeting, 2012) representing a NORM distribution
of SonarQube rule ‘‘java:107’’ (see Table 2) of the Apache portfolio.

Full-size DOI: 10.7717/peerjcs.833/fig-1

contains similar NORMT
i values of other software projects within the portfolio. The usage

of the CkMeans algorithm replaces the outlier-based calculation of ATD on which the
original ATDx approach was based (Verdecchia et al., 2020); this decision allows us to gain
finer-grained results (i.e., a discrete value between 0 and 5 instead of a boolean value).

An example of ART values distribution, and relative severity clustering, is provided in
Figs. 1, 2. As we can observe in Fig. 1, the majority of the projects possess NORMT

i values
between 0.0 and 0.1, which are grouped viaCkMeans into three distinct clusters, as depicted
in Fig. 2. Such clusters correspond to the lowest levels of severity, namely severity 0, 1, and 2
respectively. The other three clusters, possessing centers (i.e., weighted mean of cluster) of
respectively 0.12, 0.21, and 0.5, correspond to the higher levels of severity, namely severity
levels 3, 4, and 5. From the clustering depicted in Fig. 2 we see that, according to their
distribution, most projects are classified as possessing low severity (severity <= 2), while
only a smaller number of projects possesses a relatively high severity (severity >= 3).

In order to provide an overview of the ATD dimensions of a software project S, for
each ATD dimension ATDDT

j ⊆ATDDT we define the value of ATDDT
j (S) as the average

severity of the ART
i mapped to it, i.e.,

ATDDT
j (S)=

∑n
i=1 severity(NORM

T
i ,NORM

T
i (S))

j
(5)

where j is the total number of rules in ART mapped to ATDDT
j .

Finally, we define an overall value ATDxT (S), embodying the overall architectural
technical debt of S calculated via our approach, as the average value of all the defined ATD

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 7/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-1
http://dx.doi.org/10.7717/peerj-cs.833

Figure 2 Example of severity calculation via CkMeans clustering of SonarQube rule ‘‘java:107’’ (see
Table 2) of the Apache portfolio, where different colours indicate different clusters with growing sever-
ity (from 0 to 5) from the left- to the right-hand side.

Full-size DOI: 10.7717/peerjcs.833/fig-2

dimensions ATDDT , i.e.,

ATDxT (S)=

∑k
j=1ATDD

T
j

k
(6)

where k is the total number of ATD dimensions ATDDT considered in the specific
implementation of ATDx.

ATDx building steps
In this section, we report the steps for building ATDx. It is important to note that the
whole process is generic, i.e., it is not bound to any specific analysis tool or technology and
extensible. The described process can be performed by both (i) researchers investigating
ATD phenomena and (ii) practitioners analyzing their own software portfolios. In fact,
following the steps of the process allows its users to implement the instance of ATDx which
best fits their specific technical, organizational, and tool-related context.

Figure 3 presents the building steps for implementing the ATDx approach. Given an
analysis tool T (e.g., SonarQube), five steps are required to build an instance of ATDx,
namely: (i) the identification of the set of architectural rules belonging to ART , (ii) the
formulation of the 3-tuples in the form 〈ART

i ,Gr
T
i ,ATDD

T
j 〉, (iii) the execution of T on a

set of already available software projects to form the dataset of ART
i (S) measurements, (iv)

the execution of the ATDx analysis on the constructed dataset, and (v) the application of
the ATDx approach on the specific SUA.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 8/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-2
http://dx.doi.org/10.7717/peerj-cs.833

ART
Identification

ART

Software
Repository

Identification

Initial Repository
Dataset

Repository
Filtering

Final Repository
Dataset

Manual ART
Classification

3-tuples
(ART, GrT, ATDDT)

ATDx
Analysis

ART(S)
Calculation

ATDDT(S), ATDxT(S)
 Values

STEP 1
ART Set Identification

STEP 3 - ART Dataset Building

STEP 2 - 3-tuple Formulation

STEP 4 - ATDx Analysis STEP 5 - ATDx SUA Analysis

Source Code
Rules RT

Version
 Control
System

ART(S), GrT(S)
Values

ATDx
SUA

Analysis

NORMT(S)
Values

SUA ATDDT(SUA), ATDxT(SUA)
 Values

Figure 3 Overview of the ATDx building steps (Verdecchia et al., 2020).
Full-size DOI: 10.7717/peerjcs.833/fig-3

Step 1: Identification of the ART set
The first step of the ATDx building process is the identification of a set of architectural
rules ART that will be used as input to the subsequent steps of the process. Specifically,
given an analysis tool T and its supported analysis rules RT , a manual inspection is
carried out in order to assess which of its rules qualify as ART according to the criteria
presented in Definition 1. This process can be carried out either by inspecting the concrete
implementation of the rules RT under scrutiny, or by consulting the documentation of T ,
if available.

Step 2: Formulation of 3-tuples 〈ART
i 〉, ATDDT

j , 〈GrTi 〉

After the identification ofART , the 3-tuples 〈ARi〉, ATDDj , 〈Gri〉 are established bymapping
each rule ART

i to (i) one or more architectural technical debt dimensions ATDDT
j and (ii)

the granularity level GRT
i of the rule. The process of mapping an ART

i to its corresponding
architectural dimensions ATDDT

j is conducted by performing iterative content analysis
sessions with open coding (Lidwell, Holden & Butler, 2010) targeting the implementation
or documentation of the rule in order to extract the semantic meaning of the rule. More in
details, once the semantic meaning of each rule is well understood, the ART

i under scrutiny
is labeled with one or more keywords expressing schematically its semantic meaning. Such
analysis is carried out in an iterative fashion, i.e., by continuously comparing the potential
ATDDT

j associated to the ART
i under analysis with already identified dimensions, in order

to reach a uniform final ATDDT set.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 9/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-3
http://dx.doi.org/10.7717/peerj-cs.833

1In the fortunate instance in which the GRT
i

mapped to ART
i is explicitly specified in

the source from which the rules RT are
gathered, such information should be
preferred over a manual inspection of the
rule.

The process ofmapping an architectural ruleART
i to its corresponding level of granularity

GrTi is also carried out via manual analysis of the architectural rule, and subsequently
identifying the unit of analysis that the rule considers (e.g., function, class, or file level)1.

It is important to note that Steps 1 and 2 are performed only once for the whole portfolio
and, depending on the tool and its rules, their corresponding 3-tuples can be reused as is
across different portfolios.

Step 3: Building the ART (SUA) dataset
After the identification of the ART set (Step 1), it is possible to build the dataset of
ART (S) measurements. This process consists of (i) identifying an initial set of projects to
be considered for inclusion in the portfolio, (ii) carrying out a quality filtering process
in order to filter out irrelevant projects (e.g., demos, examples) and (iii) calculating the
ART (S) sets and extracting the |GrT (S)| values of each project included in the portfolio.
The selection of the initial portfolio of projects to be considered for inclusion is a design
choice specific to the concrete instance of ATDx. In other words, such choice is dependent
on the analysis goal for which ATDx is adopted, the availability of the software projects to
be analyzed, and the tool T adopted to calculate the ART (S) sets. It is important to bear in
mind that, given the statistical nature of ATDx, having a low number of projects in this step
would not lead to meaningful ATDx analysis results (as further discussed in ‘Discussion’).

As for the selection of the projects to be considered, the step of carrying out a quality-
filtering process on the initial set of projects depends on the setting in which ATDx is
implemented. In the case that ATDx is used for an academic study, e.g., by considering
open-source software (OSS) projects, this step must be carried out to ensure that no toy
software-projects (like demos or software examples written for educational purposes) are
included in the final software portfolio to be considered (Kalliamvakou et al., 2016).

After the identification of a final set of projects to be considered for analysis, the ART (S)
sets are calculated for each software project S in the portfolio. The execution of such
process varies according to the adopted analysis tool T . In addition, during this step also
the cardinalities of the granularity dimensions |GrTi (S)| are computed for each project S in
the portfolio. Such values will be used in the next ATDx steps.

Step 4: ATDx analysis
Once the ART (S) and GrT (S) sets are calculated for the whole portfolio, the architectural
technical debt of the projects can be assessed (see ‘The ATDx Approach’). Specifically, this
step takes as input ART (S) and GrT (S) sets for all the projects in the portfolio, and outputs
the ATDDT (S) and ATDxT (S) values of each project. It is worth noticing that this process
is incremental. Indeed, after a first execution of the ATDx approach on the whole portfolio,
it is possible to carry out further ATDx analyses on additional projects by relying on the
previously formulated 3-tuples 〈ART

i ,ATDD
T
j ,Gr

T
i 〉 and the pre-calculated intermediate

values of the ATDx analysis NORMT
i .

Step 5: Applying ATDx to a SUA
After the execution of ATDx on all projects in portfolio, the resulting ATDDT and atdxT

values of a specific SUA can be computed.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 10/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

Algorithm 1: Computing the ATDDT dimensions and the ATDxT value for a single
SUA
Input: SUA, ART , NORMT , ATDDT

Output: ATDDT (SUA), ATDxT (SUA)

1 dimensions← empty dictionary
2 atdx← 0
3 for all dimensions j in ATDDT do
4 dimensions[j]← 0
5 end
6 for all rules ART

i in ART do
7 violations← ART

i (SUA)
8 normalizedViolations← NORMT

i (SUA)
9 dimensions[j]← dimensions[j] + severity(NORMT

i , normalizedViolations)
10 end
11 for all entries j in dimensions do
12 dimensions[j]← dimensions[j] / getNumRules(j)
13 atdx← atdx + dimensions[j]
14 end
15 atdx← atdx / |ATDDT

|

16 return dimensions, adtx

As shown in Algorithm 1, the computation of ATDDT and atdxT takes as input 4
parameters: (i) the SUA, the set of rules ART , the NORMT values computed in the step 4,
and the set of dimensions ATDDT defined in step 2. The outputs of the algorithm are two,
namely: (i) the set of ATD values of the SUA ATDDT (SUA) (one for each dimension) and
(ii) ATDxT (SUA). The outputs of the algorithm serve two different purposes; Specifically,
the ATDDT values provide support in gaining more insights in the severity of the ATD
according to the identified ATD dimensions, while the atdxT value provides a unified
overview of the ATD present in the SUA. After setting up the initial variables for containing
the final output (lines 1–2), the algorithm builds a dictionary containing an entry for each
dimension in ATDDT , with the name of the dimension as key and 0 as value (lines 3–4).
Then, the algorithm iterates over each rule in ART (line 5) and collects the number of its
violations, both raw (line 6) and normalized by the level of granularity of the current rule
(line 7). Then the entry of the dimensions dictionary corresponding to the dimension of
the current rule is incremented by the severity level of NORMT

i as defined in Eq. (4) (line
8). For each dimension j (line 9) we (i) average its current value within the total number
of rules belonging to j in order to mitigate the potential effect that the number of rules
belonging to the dimension may have (line 10) and (ii) increment the current ATDxT with
the computed score (line 11). Finally, the ATDxT value is normalized by the total number
of dimensions supported by all ART rules (line 12) and both dimensions and ATDx values
are returned (line 13).

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 11/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

2If Q1 and Q3 are the lower and upper
quartiles of a set of observations,
respectively, then the upper inner fence lies
at Q3 + 1.5(Q3 - Q1) as detailed by Frigge,
Hoaglin & Iglewicz (1989). Informally, the
upper inner fence is the theoretical value
lying at the top of the upper whisker of a
boxplot.

Atdx in a Nutshell.

ATDx is a data-driven approach providing an overview of the architectural techni-
cal debt identifiable via source code analysis of a software-intensive system. The ap-
proach, based on the analysis of a software portfolio, uses pre-computed architectural
rule violations (ART) and granularity levels (GrT) to calculate the severity level of vi-
olations via a clustering algorithm. Results are aggregated into different architectural
technical debt dimensions (ATDDT).

Differences with respect to the original ATDx approach
As indicated in ‘Introduction’, the ATDx approach presented in this research constitutes
an evolution of the original approach first introduced by Verdecchia et al. (2020). While
all the building steps of the approach remain unvaried (see Fig. 3), one crucial aspect
was redesigned, namely the technique with which the severity of NORMT

i violations are
calculated. This design choice constitutes a change to the logical core of ATDx, overcoming
one of the most prominent drawbacks of the original approach, namely the ‘‘emphasis
on outlier values’’ (Verdecchia et al., 2020). The severity calculation in the original ATDx
approach relied exclusively on the identification of NORMT

i ‘‘outlier’’ values, i.e., only the
NORMT

i values greater than the upper inner fence2 of NORMT
i . By focusing exclusively

on ‘‘outlier’’ values, the naive statistical technique used by the original ATDx posed two
major disadvantages. On one hand, ATDx would provide only a boolean severity level of
granularity, i.e., if NORMT

i values were ‘‘outliers’’ or not. On the other hand, the approach
would focus exclusively on anomalously high NORMT

i values, disregarding via a lossy
statistical analysis all NORMT

i values that were not identified as ‘‘outliers’’. In order to
overcome this drawback, in the version of ATDx presented in this research the ‘‘outlier’’
identification was substituted with a clustering algorithm, namely CkMeans (Wang &
Song, 2011). By providing optimal, efficient, and reproducible clustering of univariate
data, CkMeans allows ATDx to (i) provide finer-grained results by considering a range of
severity levels, namely 0,1,2,3,4,5, where 0 is the lowest severity and 5 the highest, instead
of a simple boolean value, and (ii) considering the totality of the input NORMT

i , instead
of exclusively the ‘‘outlier’’ values. In addition, by considering the totality of NORMT

i
rather than only outlier values, CkMeans mitigates the ‘‘potential empirically unreachable
ATDD’’ that noticeably affected the analysis results of the original ATDx. Finally, the set
of predefined number of clusters used by CkMeans allows for ad-hoc customization of the
severity calculation, providing the capability to increase or decrease the number of clusters,
i.e., the discrete levels of severity of NORMT

i values according to the specific needs of the
users.

EMPIRICAL EVALUATION PLANNING
We conduct an in vivo evaluation to assess the viability of ATDx. In the remainder of this
section we report (i) the goal and research questions of the empirical evaluation (‘Goal and
Research Questions’) and (ii) its design (‘Empirical Evaluation Design’).

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 12/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

Goal and research questions
Intuitively, with our empirical evaluation we aim to understand if the ATDx analysis
results faithfully represent the ATD present in real life software projects. In addition,
we aim to assess if the ATDx analysis results are actionable, i.e., they motivate
practitioners to refactor their ATD. More formally, we formulate the goal of our empirical
evaluation by following the template proposed by Basili & Rombach (1988) as follows:
Analyze ATDx analysis results
For the purpose of evaluating their representativeness and their ability to stimulate action
With respect to architectural technical debt
From the viewpoint of software practitioners
In the context of open-source software projects

It is important to note that ATDx can be applied to both open-source and proprietary
software. In this study we focus on open-source software projects due to (i) the availability
of rich data about their source code and development process and (ii) the ease of mining
of such type of software projects with respect to proprietary ones (Hassan, 2008). Further
considerations on the this empirical evaluation design decision are reported in ‘Threats to
Validity’.

By taking into account our research goal, we can derive the following two research
questions:

RQ1: To what extent are the ATDx results representative of the architectural technical debt
present in a software project?

By answering this research question, we aim at assessing the representation condition
(Fenton & Bieman, 2014) of ATDx, i.e., the extent to which the characteristics of the ATD
present in a software intensive-system are preserved by the numerical relations calculated
via the ATDx approach. In other words, this research question evaluates to which extent
the ATDx analysis results are representative of the ATD in a software project, both by
considering individually the results for each software-intensive system, than by comparing
results across different systems.

RQ2: To what extent do the ATDx results stimulate action of developers to address their
architectural technical debt?

By answering this research question, we aim to assess the extent to which the ATDx
analysis results stimulate developers to address ATD, i.e., if the results motivate developers
to actively manage the ATD detected via ATDx.

Empirical evaluation design
The empirical evaluation is designed according to our research questions and includes all
the building steps of the ATDx approach described in ‘The ATDx Approach’. The empirical
evaluation is composed of nine main phases:

• Phase 0 – Identification of the analysis tool T to be used in the empirical evaluation.
• Phase 1 – Identification and classification of the set of architecturally-relevant rules
(i.e., ART); this step corresponds to the ATDx building Steps 1 and 2 in Fig. 3.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 13/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

• Phase 2 – Identification of one or more software portfolios to be analyzed.
• Phase 3 – Establishment of the ART dataset(s) for the selected software portfolio(s);
this step corresponds to Step 3 in Fig. 3.
• Phase 4 – Analysis of the dataset(s) via ATDx; this step corresponds to Steps 4 and 5 in
Fig. 3.
• Phase 5 – Identification of a curated set of contributors of the selected software
portfolio(s).
• Phase 6 – Generation of personalized ATDx reports.
• Phase 7 – Distribution of the ATDx reports.
• Phase 8 – Online survey on the ATDx analysis results.

In the remainder of this section we explain each phase of our empirical evaluation; we
present the phases in general terms, so that independent researchers can fully reuse them
in future replications of this study. Then, in ‘Empirical Evaluation Execution’ we provide
the technical details about how we implemented and executed each phase in the context of
(i) Java projects, (ii) the SonarQube analysis tool, and (iii) the Apache and ONAP software
ecosystems.

In order to evaluate ATDx, we implement a concrete instance of ATDx by following the
building steps presented in ‘The ATDx Approach’. As a first step, in Phase 0 we select a
source code analysis tool T , implementing the RT rules.

Phase 1 aims at identifying a set of ART rules on which the ATDx approach will be
based. Specifically, the ART identification process is conducted by considering: (i) the
soundness of the ART rules, demonstrated by industrial adoption and scientific evidence,
(ii) the industrial relevance of the tool implementing the ART rules, and (iii) the feasibility
of calculating ART values. In addition, during this phase, the identified ART rules are
manually classified, in order to derive the 3-tuples 〈ART

i ,ATDD
T
j ,Gr

T
i 〉 required by the

ATDx approach.
As discussed in ‘The ATDx Approach’, the ATDx calculation relies on a portfolio of

software projects. Hence, in order to gather ATDx analysis results, in phase 2 we identify
the software portfolio(s) that will be used as experimental subject in our evaluation. The
focus on software portfolios, rather than a collection of unrelated software projects, allows
to focus on software projects that potentially share a similar context, and overlapping
contributors, and hence are closer to the envisioned usage scenario of ATDx. Accordingly,
in case of more than one portfolio is identified during this phase, the portfolios will
be analyzed via ATDx independently. Driving factors for the identification of software
portfolios is the availability of the software projects contained in the portfolio, and the
possibility to calculate ART values for the portfolio, according to the ART rule set identified
in the previous evaluation phase.

In phase 3 we automatically compute the values of ART and GrT for the software
projects in the identified portfolio(s). This process is carried out either by gathering the
source code of the projects, automatically extracting the GrT values, and executing the tool
implementing the ART rules locally, or by directly mining pre-computed ART and GrT

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 14/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

Figure 4 Example of ATDx radar-chart of the project Apache Groovy (https://github.com/apache/
groovy), generated by considering the SonarQube ARSQ

i rules utilized in the empirical evaluation.
Full-size DOI: 10.7717/peerjcs.833/fig-4

values made available remotely (e.g., if provided by contributors of the software portfolios,
or a cloud service of the tool implementing the ART rules).

In phase 4, we execute the ATDx analysis, and calculate the ATDDT (SUA) and
ATDxT (SUA) for each project of the identified portfolios.

In phase 5 we identify the relevant contributors of the selected software portfolio(s).
Such contributors will then be contacted, in a following evaluation phase, in order to
gather insights into the obtained ATDx analysis results. Specifically, we are interested in
contributors who are familiar with multiple software projects of the portfolio(s), in order
to enable them to compare ATDx results across different projects. Hence, we select out of
the all contributors of the software portfolio(s), the ones who contributed to at least two
projects of the portfolio in the past 12 months.

Once we obtained the ATDx analysis results for each project of the portfolio(s),
and established a curated set of contributors to be contacted, in phase 6 we generate a
personalized report for each contributor. Such report contains the ATDx summary results
of each project of the contributor. The ATDx summary presents radar-charts (see Fig. 4
for an example) and further insights into the obtained results, e.g., architectural elements

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 15/45

https://peerj.com
https://github.com/apache/groovy
https://github.com/apache/groovy
https://doi.org/10.7717/peerjcs.833/fig-4
http://dx.doi.org/10.7717/peerj-cs.833

Table 1 Survey questions.

Question ID Question text Response type Compulsory Targeted RQ

Q1 How many years have you been developing software? Integer Yes Demographics
Q2 How many open source software projects have you

contributed to in your career?
1, 2–5, 6–10,>10 Yes Demographics

Q3 On average, how familiar are you with the projects? 5-point Likert Scale Yes Demographics
Q4 By looking individually at each project: The radar-chart

values reflect the project’s current state of architectural debt
5-point Likert Scale Yes RQ1

Q5 By looking at all projects together: The radar charts reflect
the differences in architectural debt present in the projects

5-point Likert Scale Yes RQ1

Q6 The architectural debt types displayed in the radar-chart are
a good representation of architectural debt

5-point Likert Scale Yes RQ1

Q7 Do you miss any architectural debt type? If so, which
one(s)?

Open-ended No RQ1

Q8 The results displayed in the radar charts inspire me to take
action

5-point Likert Scale Yes RQ2

Q9 How would you use the radar-charts in your current
practice?

Open-ended No RQ2

most affected by ATD (refer to ‘Phase 6: ATDx Report Generation’ for more information
regarding the data provided in the ATDx reports).

In phase 7, the reports are shared with the contributors via a customized email, jointly
with an invitation to participate to an online survey.

Finally, in phase 8 we collect insights on the ATDx analysis results via an online survey.
The survey is designed in order to require a short amount of time to be filled (this helps
in terms of both response rate and participants fatigue). Moreover, various factors that
influence response rates of developers are considered while designing the survey, such
as authority, brevity, social benefit, and timing (Smith et al., 2013). An overview of the
questions composing the survey is reported in Table 1.

The survey is designed with a two-step approach. In the first step, a pilot version of the
survey is drafted and shared with 5 industrial practitioners within our personal network.
In the second step, the questionnaire is reviewed and finalized by taking into account the
collected feedback.

Questions Q1–Q3 assess the experience of the participants in terms of their experience
(Q1–Q2) and familiarity with the open source projects included in the personalized ATDx
report (Q3). To ensure the quality of the data gathered via the survey, survey responses
of contributors not familiar with the projects included in their personalized report will be
discarded. The subsequent 6 questions are designed to collect the data relevant to answer
our RQs. Specifically, Q4–Q7 aim at assessing the core RQ of our study (RQ1), namely if
the ATDx results are representative of the ATD present in the software projects. More in
detail, with Q4 and Q5 we aim at evaluating if the inter- and intra-relations of the ATD
present in software projects are preserved by the numerical relations calculated via ATDx
(Fenton & Bieman, 2014). With Q6 instead, we assess if the ATD dimensions (ATDDT)
identified during the building Step 2 of the ATDx approach (see ‘Step 2: Formulation of

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 16/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

3For the sake of clarity, in the survey, ATD
dimensions are simply referred to as ‘‘ATD
types’’.

3-tuples 〈ART
i 〉, ATDD

T
j , 〈Gr

T
i 〉’) are a faithful representation of the overall ATD present

in the software projects3. As a follow up to the previous question, Q7 investigates if any
prominent ATD dimensions are missing in the used instance of ATDx.We opted to include
two separate questions, Q6 and Q7, both focusing of ATD dimensions, in order to provide
participants with a swift mean to provide input via a closed-ended question, Q6, while
enabling them provide further details via the open-ended question, Q7. In order to evaluate
if the ATDx results stimulate the active management of ATD (RQ2), we use the final two
survey questions (Q8 and Q9). Specifically, with Q8, we directly assess the extent to which
contributors are inspired to take action based on the ATDx results. With Q9 we gather
further insights on the potential use of the ATDx in development practices. In addition to
the questions reported above, the closed-ended questions targeting RQs (Q4, Q5, Q6, Q8)
are supported by a complementary question (‘‘Comments? ’’), allowing participants to add
further detail into their closed-ended answer. In addition, the survey closes with a final
complementary question (‘‘Do you have any final comments or suggestions? ’’), designed to
gather any additional input the participants may like to provide. To ensure that participants
would be able to freely express themselves, an informative note is included in the survey
invitation text, to assure them that all collected data would be anonymous.

The complete survey, comprising the aforementioned questions and supporting text
clarifying terms and questions, is made available for review and replication in the publicly
available supporting material of the paper.

In the following section, we report the details of our empirical evaluation execution,
which was conducted by rigorously adhering to the evaluation design presented in this
section.

EMPIRICAL EVALUATION EXECUTION
As shown in Fig. 5, we executed the evaluation by following the nine phases discussed in
the previous section. In the following we give the details on the execution of each phase.

Phase 0: selection of the SonarQube tool
For this empirical evaluation we implement ATDx based on the (https://www.sonarqube.
org/) static analysis tool. The rationale behind the adoption of SonarQube to implement
the experimental ATDx instance is multifold: (i) SonarQube is widely used in industrial
contexts (Janes, Lenarduzzi & Stan, 2017), allowing us to have an ATDx instance potentially
with high industrial relevance (which could be used by practitioners independently of our
empirical evaluation), (ii) SonarQube was previously utilized in academic literature to
identify design issues, hence providing us a sound initial set for the identification of
ARSQ rules, (iii) SonarQube is open-source, hence the source code of each of its ARSQ

i
rules can be inspected and associated to its granularity level GrSQi with relatively low
effort, and(iv) the pre-computed SonarQube analysis results of several OSS projects are
publicly available via the SonarCloud (https://sonarcloud.io/) platform, hence easing the
ARSQ

i SUA measurement retrieval process; those projects are actively maintained by several
well-known organizations, such as the Apache Software Foundation (https://sonarcloud.io/

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 17/45

https://peerj.com
https://www.sonarqube.org/
https://www.sonarqube.org/
https://sonarcloud.io/
https://sonarcloud.io/organizations/apache/
https://sonarcloud.io/organizations/apache/
http://dx.doi.org/10.7717/peerj-cs.833

Ernst et al . (2017)

ARSQ Identification
and

Classification

Software Portfolios
Identification

ARSQ Dataset
Building

ATDx Analysis
(per Portfolio)

Identification of
Relevant

Contributors

Personalized ATDx
Report Generation

Report Distribution
and Survey
Invitation

Apache
Project
ATDx
Results

ONAP
Project
ATDx

Results

Online
Survey

GitHub

Identification of
Analysis Tool T

Phase 0 Phase 1 Phase 2

Phase 3 Phase 4

Phase 5

Phase 6 Phase 7 Phase 8

Figure 5 Overview of the empirical evaluation of ATDx conducted in this study.
Full-size DOI: 10.7717/peerjcs.833/fig-5

organizations/apache/), Microsoft (https://sonarcloud.io/organizations/microsoft/), and the
Wikimedia Foundation (https://sonarcloud.io/organizations/wmftest/).

Phase 1: ARSQ identification and classification
The goal of this phase is to establish the set of architectural rules ART from SonarQube.
As input to this phase, we use a set RSQ of Java-based SonarQube rules that were identified
as design rules in a previous research (Ernst et al., 2017). Those rules represent a sound
starting set of rules of potential architectural relevance, according to our definition of
architectural rule presented in ‘Definitions’.

To select the architectural rules among the ones presented by Ernst et al. (2017), we
carry out a manual inspection of the definition of each single rule. Such inspection
is based on the publicly-available official documentation of SonarQube (https://docs.
sonarqube.org/latest/user-guide/rules/). The identification process is carried out by (i)
analyzing the content of each rule description and (ii) evaluating it against the two
criteria presented in ‘Definitions’. To mitigate potential threats to construct validity, two
researchers independently carry out the identification. The identification process results in
a 72.2% of agreement between the two researchers, with a substantial inter-rater agreement
calculated via Choen’s Kappa (k = 0.62). Then, a third researcher with several years of
experience in software engineering takes over by (i) resolving possible conflicts and (ii)
reviewing the the final set of architectural rules ARSQ. From the initial set of 72 SonarQube
design rules presented by Ernst et al. (2017), we identify 45 architectural rules. As detailed in
‘Phase 3: ARSQ Dataset Building’, we further refine the set of identified rules during Phase
3 by removing the architectural rules which are not included in the SonarQube quality
profiles (https://docs.sonarqube.org/latest/instance-administration/quality-profiles/) of the

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 18/45

https://sonarcloud.io/organizations/apache/
https://sonarcloud.io/organizations/apache/
https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-5
https://sonarcloud.io/organizations/apache/
https://sonarcloud.io/organizations/microsoft/
https://sonarcloud.io/organizations/wmftest/
https://docs.sonarqube.org/latest/user-guide/rules/
https://docs.sonarqube.org/latest/user-guide/rules/
https://docs.sonarqube.org/latest/instance-administration/quality-profiles/
http://dx.doi.org/10.7717/peerj-cs.833

4In SonarCloud, an organization is a
space where a team or a whole company
can collaborate across many projects
(https://sonarcloud.io/documentation/
organizations/overview).

5In the context of OSS, portfolios of OSS
foundations like Apache are commonly
referred to as ‘‘ecosystems’’ (Manikas &
Hansen, 2013).

selected software portfolios, leading us to a final set of 25 included rules. An overview of
the final set of architectural rules used in this study is reported in Table 2.

Oncewe established the set of architectural rulesARSQ, we classify them in order to derive
their associated granularity level GRSQ and ATD dimensions ATDDSQ, i.e., we formulate
the ATDx 3-tuples 〈ARSQ

i 〉, Gr
SQ
i ,〈ATDDSQ

j 〉. This classification process is carried out
collaboratively by three researchers, who utilize open and axial coding to label ARSQ to
their respective GRSQ and ATDDSQ, and discuss potential divergences until a consensus is
reached among all researchers. Columns 1, 3, and 4 in Table 2 give an overview of the final
mapping between the rules ARSQ

i , their granularity GrSQi , and ATD dimensions ATDDSQ
j .

Regarding the granularity levels GrSQ, we identify the four levels of granularity reported
in column 3 of Table 2. The identified granularity levels are: Java non-comment lines of code
(NCLOC), Java method, Java class, and Java file.

As for ATD dimensions ATDDSQ, we elicited 6 core dimensions, namely Inheritance,
Exception, Java Virtual Machine Smell (JVMS), Threading, Interface, and Complexity (see
column 4 in Table 2). The Inheritance dimension (9 rules) clusters rules evaluating
inheritance mechanisms between classes, such as overrides and inheritance of methods or
fields. The Exception ATDDSQ (6 rules) groups rules related to the Java throwable class
‘‘Exception’’ and its subclasses. JVMS (5 rules) contains rules which assess potential misuse
of the Java Virtual Machine, e.g., the incorrect usage of the specific Java class ‘‘Serializable’’.
Rules associated with the Threading dimension (5 rules) deal with the potential issues
arising from the implementation of multiple execution threads, which could potentially
lead to concurrency problems. The Interface dimension (5 rules) encompassess rules
assessing fallacies related to the usage of Java interfaces. Finally, the Complexity dimension
(2 rules) encompasses rules derived from prominent complexity measures, e.g., McCabe’s
cyclomatic complexity (McCabe, 1976). This phase lasts approximately 1.5 h, and includes
both the ARSQ identification and classification.

Phase 2: software portfolio identification
Subsequent to Phase 1, we can proceed with the identification of software portfolios, i.e., the
experimental subjects of our empirical investigation. In order to collectARSQ values, we opt
to use the SonarCloud platform, which enables us to efficiently and effectively gather the
data required for the ATDx analysis (see also ‘Phase 0: Selection of the SonarQube Tool’).
Hence, wewant to identify portfolios that (i) are implemented in Java and (ii)make available
pre-computed ARSQ values via SonarCloud. In order to do so, we mine SonarCloud via its
web-based API and (i) collect information about all public projects hosted on SonarCloud
and (ii) identify the SonarCloud organizations4 having the highest number of Java-based
software projects. This leads us to identify two different software ecosystems, namely
(i) Apache (https://www.apache.org), covering general-purpose software components
like the well-known Apache HTTP server, Apache Hadoop, and Apache Spark, and (ii)
ONAP (https://www.onap.org), focusing on orchestration, management, and automation
of network and edge computing services. In this study we choose to target two different
ecosystems as experimental subjects5 in order to mitigate possible external threats to
validity. Indeed, focusing on Apache and ONAP allows us to study ATDx results for

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 19/45

https://sonarcloud.io/documentation/organizations/overview
https://sonarcloud.io/documentation/organizations/overview
https://peerj.com
https://www.apache.org
https://www.onap.org
http://dx.doi.org/10.7717/peerj-cs.833

Table 2 The architectural rules, granularity levels, and ATD dimensions used in the experiment.

SonarQube ID Short description Granularity level (GrSQ) ATDDimension (ATDDSQ)

java:S107 Methods should not have too many parameters Method Interface
java:S112 Generic Exceptions should never be thrown Java NCLOC Exception
java:S1104 Class variable fields should not have public accessibility Class Interface
java:S1113 The Object.finalize() method should not be overriden Class Inheritance
java:S1118 Utility classes should not have public constructors Class Interface
java:S1130 Throws declarations should not be superfluous Java NCLOC Exception
java:S1133 Deprecated code should be removed eventually Method Interface, Complexity
java:S1161 @Override annotation should be used on any method

overriding (since Java 5) or implementing (since Java 6)
another one

Method Inheritance

java:S1165 Exception classes should be immutable Class Exception
java:S1182 Classes that override ’’clone’’ should be ’’Cloneable’’ and

call ’’super.clone()’’
Class Inheritance

java:S1185 Overriding methods should do more than simply call the
same method in the super class

Method Inheritance

java:S1199 Nested code blocks should not be used Java NCLOC Complexity
java:S1210 ’’equals(Object obj)’’ should be overridden along with the

’’compareTo(T obj)’’ method
Method Inheritance, JVMS

java:S1217 Thread.run() and Runnable.run() should not be called
directly

Java NCLOC JVMS

java:S1610 Abstract classes without fields should be converted to
Interfaces

Class Interface

java:S2062 readResolve methods should be inheritable Class Inheritance
java:S2157 ’’Cloneables’’ should implement ’’clone’’ Class Inheritance, JVMS
java:S2166 Classes named like ’’Exception’’ should extend ’’Exception’’

or a subclass
Class Exception

java:S2222 Locks should be released Java NCLOC Threading
java:S2236 Methods ’’wait(...)’’ ’’notify()’’ and ’’notifyAll()’’ should

never be called on Thread instances
Java NCLOC Threading

java:S2273 ’’wait(...)’’ ’’notify()’’ and ’’notifyAll()’’ methods should
only be called when a lock is obviously held on an object

Java NCLOC Threading

java:S2276 ’’wait(...)’’ should be used instead of ’’Thread.sleep(...)’’
when a lock is held

Java NCLOC Threading

java:S2638 Method overrides should not change contracts Method Inheritance, JVMS
java:S2885 ’’Calendars’’ and ’’DateFormats’’ should not be static Class Threading
java:S2975 Clones should not be overridden Class Inheritance, JVMS

software portfolios developed for different contexts, and having different development
processes, cultures, and technical backgrounds.

Among all the Java projects in each ecosystem,we filter out thosewithout a corresponding
GitHub repository. This filtering steps allows us to (i) have full traceability towards the
source code of the system (useful for further inspections) and (ii) retrieve the names and
email addresses of projects’ contributors to be contacted for the survey (see ‘Phase 5:
Identification of Relevant Contributors’). In order to avoid potential selection bias, we do

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 20/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

Table 3 Summary statistics of the considered software projects.

Apache
Min. Max. Mean Mdn σ CV Total

Projects – – – – – – 126
Java NCLOC 90 383K 19.1K 2.9K 50.4K 2.6 2.3M
Java Files 5 4.4K 243.9 36 608.4 2.5 30.4K
Java Classes 3 4.6K 276.3 37 700.2 2.5 34.5K
Java Methods 21 34.9K 1.9K 241 5K 2.5 24.2K

ONAP
Min. Max. Mean Mdn σ CV Total

Projects – – – – – – 111
Java NCLOC 753 239.9K 12.4K 5K 28.1K 2.3 1.3M
Java Files 10 3.6K 199.4 79 440.5 2.2 22.1K
Java Classes 9 3.2K 189.2 76 394.2 2 21K
Java Methods 49 22K 1.3K 518 2.8K 2.2 14.1K

Total
Min. Max. Mean Mdn σ CV Total

Projects – – – – – – 237
Java NCLOC 90 383K 15.9K 3.7K 41.5K 2.6 3.6M
Java Files 5 4.4K 223 57 535.4 2.4 52.5K
Java Classes 3 4.6K 235.4 61 577.3 2.4 55.5K
Java Methods 21 34.9K 1.6K 352 4.1K 2.5 38.3K

Notes.
Mdn, Median; σ , standard deviation; CV , coefficient of variation.

not perform any other filtering step of the selected software projects, e.g., by removing
those with relatively low number of Java classes or few violations of the rules in ARSQ.

The final set of software projects is composed of 126 Apache projects and 111 ONAP
projects, for a total of 3.6millions of non-commenting lines of Java code across 237 software
projects. Table 3 and Fig. 6 show the summary statistics of the selected ecosystems. From
Table 3, we can observe that the smallest software project is included in the Apache
ecosystem, and is implemented by only 90 Java NCLOC. From Fig. 6, we can see that this
small project constitutes an outlier with respect to the other project of the ecosystem. In
the ONAP ecosystem instead, the smallest software project is constituted by 753 NCLOC.
The presence of small projects in the ecosystems is justified by the presence of ‘‘periferal’’
or ‘‘utility’’ software projects in the ecosystems, as further discussed in ‘Discussion’. The
largest software project considered is also present in the Apache ecosystem, and includes
383K Java NCLOC. By considering the distributions reported in Fig. 1, we observe that
both ecosystems present some software projects possessing a high outlier size, that will
considerably contribute to the total number of ARSQ violations of the two ecosystems (as
further detailed in the following section). Regarding the mean size of projects of the two
ecosystems, we note that the ONAP ecosystem possesses overall projects of bigger size (cf.
columns Mdn of Table 3). The median instead is higher in the Apache ecosystem, due to
the presence in the ecosystem of some projects of exceptionally high size, as previously

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 21/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

Java Classes Java Methods

Java NCLOC Java Files

10

100

1000

100

1000

10000

1e+02

1e+03

1e+04

1e+05

10

100

1000

lo
g1

0
va

lu
e

Ecosystem

Apache

ONAP

Figure 6 Overview of identified ecosystems demographics.
Full-size DOI: 10.7717/peerjcs.833/fig-6

discussed. The variability in size is overall higher in the Apache ecosystems (cf. columns σ
of Table 3), which is also reflected in the coefficient values (CV) of the two ecosystems.

Phase 3: ARSQ dataset building
After the identification of the software portfolios, we proceed with building the dataset
of ARSQ values for each portfolio. As a preliminary activity, we check the SonarQube
quality profiles used by Apache and ONAP in order to ensure that all rules in ARSQ are
included (see Phase 1). This activity led to the exclusion of 20 rules from the ARSQ set;
the final set of ARSQ rules is presented in Table 2. This quality assurance step is needed
only in the context of our empirical evaluation and it is necessary to ensure that all rules
in ARSQ rules contribute to the calculation of the ATDDSQ and ATDxSQ values. After the
consolidation of the ARSQ set we retrieve the ARSQ values for each project included in the
identified portfolios. This process is executed via automated queries to the SonarCloud
API. We obtained a total of 22.8 K ARSQ rule violations across the 237 projects. For each
rule violation, additional metadata is mined e.g., the Java class where the violation occurs,
the affected lines of code, and the textual description of the issue. Such information is

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 22/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-6
http://dx.doi.org/10.7717/peerj-cs.833

Table 4 Summary statistics of the mined ARSQ values per software project.

Tot. Min. Max. Mean Mdn σ CV

Apache 17.4K 0 3.2K 139.5 12 457.2 3.2
ONAP 5.4K 0 616 48.9 11 99.9 2
Total 22.8K 0 3.2K 96.9 12 342 3.5

then used for further analysis during the report generation phase (see ‘Phase 6: ATDx
Report Generation’), and is provided as complement to the ATDx report shared with the
contributors.

An overview of the mined ARSQ rule violations is reported in Table 4. As we can observe
from the table, the total number of ARSQ rule violations is much higher in the Apache
ecosystem if compared to the ONAP one. We attribute this result to the presence, in the
Apache ecosystem, to some large projects (cf. columns ‘‘Max.’’ of Table 3), which are also
characterized by a high number of ARSQ violations (see column ‘‘Max.’’ of Table 4). Both
ecosystems include projects that do not present ARSQ violations. The Apache and ONAP
ecosystems have a median number of ARSQ violations equal to 12 and 11, respectively.
The standard deviation (σ) of ARSQ violations instead results much higher for the Apache
ecosystem instead. As before, this result can be attributed to the presence of few projects of
considerable size in the Apache ecosystem (see Fig. 6). the same consideration can be made
for the coefficient of variation (CV), as the projects belonging to the Apache ecosystem
display a higher heterogeneity in sizes if compared to the ONAP projects.

Phase 4: ATDx analysis
By following our empirical evaluation design, the ATDx analysis is run independently for
each portfolio, i.e., the analysis is based on the intra-portfolio comparison ofARSQ values. As
detailed in ‘Empirical Evaluation Design’, this ensures that the clustering on which ATDx
relies is executed by considering exclusively software projects sharing a similar context,
hence reflecting the envisioned usage scenario of ATDx.

Figures 7 and 8 gives an overview of the ATDx analysis results. While the ATDD values
vary across the projects of the two ecosystems, both of them exhibit low ATDx values
(with a median of 0.28 for Apache, and 0.25 for ONAP). In order to gain further insights
into this finding, we consider the values of the various ATDDSQ dimensions, and observe
that none of the ATDDSQ values reaches the maximum of the scale (i.e., 5—see ‘ATDx
Formalization’). This has to be attributed to the potential empirically unreachable ATDDT

maximum values property of ATDx, which is further discussed in ‘Discussion’. While it
would be possible to convert the scale adopted in order to improve the presentation and
intuitiveness of the results (e.g., by converting local maxima to absolute ones), we refrain
to do so, in order to support the transparency and understandability of the results.

All together the ATDD values contribute in equal parts to the final ATDx value (as the
ATDx value is calculated as the average of all ATDD values). This means that the highest
ATDD values increase the most the overall value of ATDx. In particular, in our evaluation
Interface is the dimension that increases the most the ATDx value of both portfolios,
followed by the Exception dimension (see Figs. 7, 8). The other ATDDSQ dimensions

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 23/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

0.
0

1.
0

2.
0

3.
0

Interface Inheritance Exception JVMS Threading Complexity ATDx

ATDD

V
al

ue

Figure 7 ATDx analysis results for the Apache ecosystem.Overview of the ATDx analysis results, re-
porting the distribution of ATDDSQ and cumulative ATDx values of Apache

Full-size DOI: 10.7717/peerjcs.833/fig-7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Interface Inheritance Exception JVMS Threading Complexity ATDx

ATDD

V
al

ue

Figure 8 ATDx analysis results for the ONAP ecosystem.Overview of the ATDx analysis results, report-
ing the distribution of ATDDSQ and cumulative ATDx values of ONAP.

Full-size DOI: 10.7717/peerjcs.833/fig-8

increase less the ATDx value for both portfolios; nevertheless, some outliers are present,
specially in the Complexity and Exception dimensions, meaning that some projects present
an exceptional number of violations of rules belonging to such dimensions. Overall, the
obtained results are in line with previous studies on other software metric indexes, e.g., the
one byMalavolta et al., (2018).

Phase 5: identification of relevant contributors
In parallel to the ARSQ dataset building and ATDx analysis phases, we identify the relevant
contributors for our study, i.e., the contributors who will be invited to participate in our
survey. As detailed in ‘Empirical Evaluation Design’, we are interested in contributors who
contributed to at least two software projects of a portfolio in the past 12 months. In order
to identify such contributors, we first mine the GitHub repositories to identify contributors
who pushed commits to the master branches of the software projects in the past 12 months.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 24/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-7
https://doi.org/10.7717/peerjcs.833/fig-8
http://dx.doi.org/10.7717/peerj-cs.833

Figure 9 Report example: Snippet of the concise description of the ATDx approach and related back-
ground information (e.g., description of the ATDDSQ dimensions).

Full-size DOI: 10.7717/peerjcs.833/fig-9

Subsequently, we identity all overlapping contributors, i.e., contributors who resulted to be
active in two or more projects included in a portfolio in the past 12 months. This process
leads to the identification of 233 relevant contributors, 72 for the Apache ecosystem, and
161 for the ONAP ecosystem. No contributor is identified as a relevant contributor for
both the Apache and ONAP ecosystems. For each identified relevant contributor, we store
their contact information, along with the projects their contributed to, which will then be
used to generate their personalized ATDx report in the subsequent phase of the empirical
evaluation.

Phase 6: ATDx report generation
After the ATDx analysis, and the identification of the relevant contributors, we
proceed with the generation of a personalized report for each relevant contributor. In
total, 233 personalized reports have been generated. The generated reports follow the
Markdown format and are hosted in a dedicated GitHub repository (https://github.com/S2-
group/ATDx_reports). Using the Markdown format for the reports allows us to (i) show
the ATDx results in a familiar environment for the projects’ contributors and (ii) directly
link the personalized report in the email inviting the contributors to participate to the
survey.

An example of the content contained in a personalized report is shown in Figs. 9–11.
Each report is composed of three main parts, namely:
1. An introductory text providing the contributor with a concise explanation of the ATDx

approach, the related background information (e.g., a brief definition of the ATDDSQ

dimensions), and a summary of the report content (see Fig. 9);
2. An overview of the ATDx analysis results for all projects of the contributor, provided

in form of radar charts, to allow a swift comparison of ATDx analysis results across the
projects (see Fig. 10);

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 25/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-9
https://github.com/S2-group/ATDx_reports
https://github.com/S2-group/ATDx_reports
http://dx.doi.org/10.7717/peerj-cs.833

Inheritance

Complexity

JVMSInterface

Exception

Threading

apache_sling-org-apache-sling-api

Inheritance

ComplexityException

Interface JVMS

Threading

apache_sling-org-apache-sling-clam apache_sling-org-apache-commons-html

Inheritance

Threading

JVMS

ComplexityException

Interface

Figure 10 Report example: Snippet of an overview of the ATDx project analysis results.
Full-size DOI: 10.7717/peerjcs.833/fig-10

3. A documentation of the ATDx analysis results for each project, including the top-10
classes containing the highest ARSQ values, mapped to their ATDDSQ dimensions (see
Fig. 11).
Additionally, in order to provide the contributors with further context regarding

the projects included in the report, each radar chart is complemented with additional
information about the system under analysis, specifically: (i) a link to the original GitHub
repository of the software project, (ii) a link to its SonarCloud dashboard, and (ii) a link
to the complete raw data resulting from the ATDx analysis.

Phase 7: report distribution and survey invitation
After the generation of the reports, we share the results to the 233 relevant contributors
identified in Phase 5. In addition to the distribution of the personalized reports, during this
phase, we also invite contributors to participate to the online survey described in Table 1.
Striving for a high response rate, we kept the invitation email as short and engaging
as possible and customized its contents based on their receivers and the project they
contributed to. Two different rounds of invitation, executed in two subsequent weeks, are
used to stimulate the relevant contributors to participate in the survey.

Phase 8: online survey
In the last step of our empirical evaluation, we gather the data required to answer our
research questions via the online survey. This survey is implemented by rigorously adhering
to the structure presented in ‘Empirical Evaluation Design’. We stop the data collection
4 weeks after the last round of invites are sent out. This allows us to finalize the results

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 26/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-10
http://dx.doi.org/10.7717/peerj-cs.833

apache_sling-org-apache-sling-api

Threading

JVMS

Complexity

Inheritance

Exception

Interface

Figure 11 Report example: Snippet of a per-project report, including the top-10 classes in terms of
ATD violations.

Full-size DOI: 10.7717/peerjcs.833/fig-11

to be considered, while providing relevant contributors an adequate amount of time to
participate to the survey.

Empirical Evaluation Setup.

To evaluate ATDx, we implement an instance of the approach based on SonarQube,
and 25 architectural rules derived from the literature. We run the ATDx analysis on
two software ecosystems, namely Apache and ONAP (126, and 111 software projects,
respectively). The analysis results are then shared, via personalized reports, to 233 con-
tributors of the analysed project. Finally, we invited the 233 contributors to participate
in an online survey designed to answer our research questions.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 27/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-11
http://dx.doi.org/10.7717/peerj-cs.833

49% 11%

49% 13%

51% 21%

47% 28%

17%4%

9%2%

6%2%

6%2%

19%

28%

17%

19%

19%

28%

17%

19%Q8: The results displayed in the radar charts
inspire me to take action

Q6: The architectural debt types displayed in the
radar−chart are a good representation of

architectural debt

Q5: By looking at all projects together: The
radar charts reflect the differences in

architectural debt present in the projects

Q4: By looking individually at each project: The
radar−chart values reflect the project's current

state of architectural debt

100 50 0 50 100
Percentage

Reponse

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

Figure 12 Response distribution of Likert scale survey questions used to answer our research ques-
tions (Q4, Q5, Q6, Q8).

Full-size DOI: 10.7717/peerjcs.833/fig-12

RESULTS
In this section, we present the results of our empirical evaluation: ‘Participants
Demographics’ provides some demographic information regarding the participants of
our survey; ‘(RQ1) On ATDx Representativeness’ reports on the results for RQ1, i.e.,
the representativeness of the ATDx analysis results; and ‘(RQ2) On ATDx Actionability’
documents the results for RQ2, i.e., the extent to which the ATDx analysis results stimulate
developers to take action with respect to the ATD detected in their projects.

Participants demographics
In total, 47 out of 233 relevant contributors participated in our survey (i.e., ∼20% of the
contributors participated in the survey). Participants have a median (average) of 12 (12.3)
years of software development experience, with a minimum (maximum) of 2 (26). Most
participants (97%) declared to have contributed to more than one OSS project, with the
majority (38%) contributing to 6–10 OSS projects. All participants declared to be familiar
with the analyzed software projects, with (i) 50% of them being very familiar with the
projects (i.e., ‘‘occasional contributors’’), (ii) 40% of them being extremely familiar with
the projects (i.e., ‘‘regular contributors’’), and 4% of them being moderately familiar (i.e.,
‘‘have looked at its artifacts, read its code, and can contribute easily ’’). Based on the gathered
demographic data, we are reasonably confident that all participant have a good level of
development experience and enough familiarity with the projects to properly understand
the ATDx results shown in their personalized reports.

(RQ1) On ATDx representativeness
In order to assess the representativeness of our approach, we examine the responses to
questions Q4–Q7 of our survey (see Table 1). Figure 12 provides an overview of the
responses given by the participants.

Question Q4 regards the extent to which ATDx analysis results reflect the actual ATD
of a software project, by considering individually each project. The response distribution
of this question reveals that most participants find the ATDx results representative (72%),
with most participants agreeing with the statement formulated in Q4 (51%), or strongly

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 28/45

https://peerj.com
https://doi.org/10.7717/peerjcs.833/fig-12
http://dx.doi.org/10.7717/peerj-cs.833

agreeing with it (21%). Only a small portion of the participants does not find the ATDx
results representative to various extents (8%), with only one participant strongly disagreeing
with the statement. By considering the rather sporadic open-ended comments provided
by participants for this question (6 data points), we note a characteristic lack of awareness
of the ATD present in their projects, e.g., ‘‘Not sure how much technical debt we have’’ (4
data points), and a few acknowledgments of the results representativeness, e.g., ‘‘Results
match my expectations’’(2 data points). Overall, by considering the answers provided by
the participants, we conclude that ATDx is representative when individual projects are
considered.

Question Q5 focuses on comparing ATDx analysis results across all projects within each
personalized report. Based on the results gathered with this question, we note that most
participants find the ATDx results representative when compared across projects, albeit to
a lower extent than when considering the results of individual projects. In particular, while
the majority of participants agrees with the representativeness of ATDx results (62%),
answers are also characterized by a higher disagreement (11%), and the highest number of
neutral answers among all Likert-scale survey questions (28%). The few comments provided
by participants for this question (5 data points), point to difficulties in comparing the ATD
across different software projects. We conjecture that the lower agreement with respect to
Q4 could be attributed to inherent challenges in comparing the ATD present in different
software projects, that would also motivate the high number of neutral responses measured
for this question.

QuestionQ6 regards the representativeness of ATDDSQ dimensions used in the empirical
evaluation. By looking at Fig. 12, we observe that overall Q6 yields the highest agreement
rate (75%), and the lowest neutral (17%) and disagreement rates (8%). The participants (7
data points) suggest in the open-ended comments: (i) adding more dimensions, (ii) adding
specific dimensions (e.g., ‘‘tests’’, ‘‘cloned code’’), or (iii) adding more details about the
dimensions already included.

Main findings RQ1:.

To what extent are the ATDx results representative of the architectural technical
debt present in a software project? The survey results confirm the representativeness
of the ATDx analysis results. The representativeness of the dimensions used in
the ATDx instance implemented for this empirical evaluation present the highest
agreement rate (75%), followed by the representativeness of the analysis results within
individual projects (72%). The comparison of analysis results across different projects
is characterized by the (relatively) highest portion of disagreeing and neutral responses
(respectively 11% and 28%), potentially due to inherent difficulties in comparing
architectural debt present in different software projects.

The final question related to RQ1 (Q7 in Table 1) regards potentially-missing ATDDSQ

dimensions of the specific ATDx instance used in the empirical evaluation. This question
is optional and only three participants answered it. Nevertheless, the provided answers

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 29/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

6The low response rate for question (Q9)
might be due to the question being
formulated as optional, and asked at the
end of the survey.

are informative and propose the following additional dimensions: ‘‘duplicated classes’’,
‘‘testing’’, and ‘‘cloned code’’.

(RQ2) On ATDx actionability
With RQ2 we aim to assess the degree to which the ATDx analysis results stimulate
developers to take action towards addressing their ATD. In the survey, this RQ is covered
by two separate questions: a Likert scalequestion (Q8) and an open-ended question (Q9).

As shown in Fig. 12, participants generally agree with the statement that the results
displayed in the radar charts inspire them to take action (60%). The remaining participants
tend to either disagree with the statement (21%) or take a neutral stance (19%). By
considering the additional comments provided by the participants to support their answer
(6 data points), we observe the need for a finer-grained level of information in the
ATDx report to address the identified ATD, as the provided documentation may not be
sufficient to trigger concrete action on the analysis results. Examples of requested additional
information include: ‘‘Give more information on problems’’ and ‘‘Add more technical debt
aspects’’.

Based on this finding, we conclude that the current information documented in the
ATDx reports (namely ATDDSQ values, top classes with ART violations, and JSON files
containing the raw SonarQube analysis results) is perceived as actionable. Nevertheless,
participants also suggested interesting points for improvement, e.g., by providing (i)
the ability to zoom in and out of ATD hotspots at different levels of abstraction, (ii)
ATD visualizations, (iii) hints about ATD resolution strategies. Question Q9 is about
the scenarios in which the ATDx analysis can be used in practice. Even though only
10 participants answered this question6, participants mention some interesting usage
scenarios about visualization (e.g., ‘‘as a UI in SonarQube’’), refactoring (e.g., ‘‘find code
to fix ’’ code review), and communication (e.g., ‘‘talk about problems in issue tracker ’’).
Also, participants highlight the lack of a user interface to visualize the analysis results in
an interactive manner. Driven by the results collected for RQ2, we envision to improve
the reporting of ATDx analysis results, in order to improve its actionability, and directly
support a set of selected usage scenarios, e.g., by enabling the composition of the analysis
with continuous integration pipelines, issue trackers, and enabling a finer-grained scrutiny
of the result via a dedicated dashboard.

Main findings RQ2:.

To what extent do the ATDx results stimulate action of developers to address their
architectural technical debt? The ATDx results tend to be actionable, with usage sce-
narios including refactoring, code review, communication, and ATD evolution analy-
sis. Points for improvement include the need to provide more informative reports and
the lack of an interactive dashboard.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 30/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

DISCUSSION
With our empirical evaluation, we gathered different insights regarding the in vivo
application of ATDx . Overall, the empirical results demonstrated the representativeness of
the approach and, even if to a lower extent, its actionability. Regarding the empirical
evaluation, it is important to note that the results are bound to an experimental
implementation of ATDx, and hence have to be considered only as a proxy of the general
ATDx approach presented in ‘The ATDx Approach’. Nevertheless, implementing an ATDx
instance is an inevitable step required to evaluate the approach. This leads to a potential
threat to validity of our findings, as further discussed in ‘Threats to Validity’.

Implementing a concrete instance of ATDx allowed us also to gain further hands-
on knowledge of the characteristics of the approach. Specifically, when considering the
approach benefits, we took advantage of the (by design) tool independence of ATDx, allowing
us to use a readily available rule set provided by Ernst et al. (2017) and the pre-computed
measurements of SonarCloud.

The language independence property of ATDx instead allowed us to focus on the software
portfolios deemed best fitted for the empirical evaluation, rather than having to follow
potential constraints dictated by other analysis approaches.

As described byVerdecchia et al. (2020), the semanticmetric aggregation onwhich ATDx
is based, allows to providemulti-level granularity results. This characteristic of the approach
was used in the empirical evaluation by including in the ATDx report architectural ATDDT

dimension values at project-level, ART rule violations at class-level, and localization of
single ART rule violations at line-of-code-level.

Actionability of ATDx resulted to be lower with respect to its representativeness (see
‘(RQ2)OnATDxActionability’).We conjecture that this result did not depend considerably
on the adopted levels of granularity, but rather on how the analysis results were documented
in the ATDx report. As future work, we look forward to refine the ATDx report capabilities,
which were only marginally considered for this investigation, by providing enhanced
visualizations of analysis results (e.g., via dashboarding), and information on how to
resolve the identified ATD issues.

The empirical evaluation conducted in this study provided us also further insights on the
data-driven nature of ATDx, i.e., its reliance on inter-project measurement comparison,
rather than predefined metric thresholds. This led to the establishment of two severity
classification frameworks tailored ad-hoc for the two portfolios considered, implementing
different empirically-derived severity thresholds.

Some of the envisioned benefits of ATDx described by Verdecchia et al. (2020) could
instead not be assessed with our empirical evaluation design. Prominently, the ATDx
instance was based on a single tool, namely SonarQube. This did not allow us to study the
tool composability property of ATDx, i.e., the aggregation of analysis results gathered via
heterogeneous tools. As future evaluation of the ATDx methodology, we plan to assess the
effects of tool composition on the ATDx analysis results.

In addition to tool composability, we did not conduct any domain-specific customization
of ATDx, other than filtering out the ARSQ rules that were not included in the SonarQube

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 31/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

quality profiles of Apache and ONAP. While the Apache and ONAP ecosystems could be
deemed as oriented towards specific domains (namely web servers, and networking/edge-
computing respectively), upon further inspection we noted a high heterogeneity across
projects of the same ecosystem. The heterogeneity of projects belonging to the same
ecosystems has to be attributed to ‘‘periferal’’ and ‘‘utility’’ software project, that support
the general domain of the organizations, but focus on narrow use cases or implementation
concerns. As an example taken from the ONAP ecosystem, the ONAP SO project
(https://github.com/onap/so) implements a core functionality in the ONAP domain, namely
the orchestration of ONAP components. The ONAP SDC (https://github.com/onap/sdc)
instead is a ‘‘utility’’ project, which does not focus directly on networking or edge-
computing, as it implements a visual modeling and design tool. To carry out a fine-grained
domain customization of ATDx, a curated portfolio including exclusively software projects
belonging to a specific domain, e.g., safety-critical systems or mobile applications, should
be considered.

Regarding future customization of ATDx, in the version of ATDx used for the empirical
evaluation, the final value of ATDx is calculated by averaging the values of all ATDDT

dimensions. By considering a context where ATDDT dimensions possess different levels of
importance (e.g., ‘‘interface’’ in the networking context of ONAP), it could be possible to
assign different weights to the different ATDDT dimensions, rather than let them equally
contribute to the final ATDx value.

As further customization of ATDx, we note that the categorization of severities
into the range [0,...,5] was dictated by a design choice, rather than a limitation of
the utilized clustering algorithm, namely CkMeans (Wang & Song, 2011). The adopted
severity discretization was selected as it was deemed intuitive, while providing sufficient
expressiveness on the severity of ATDDT dimensions. Nevertheless, according to the
specific context considered, it would be possible to tune the range of severity of ATDDT

dimensions by considering fewer or more severity levels, hence reflecting the desired level
of severity granularity.

Regarding other characteristics of ATDx presented by Verdecchia et al. (2020), in this
work we directly addressed the emphasis on outlier values, characteristic of the previous
version of ATDx. To overcome this limitation, we substituted the outlier function used to
calculate the constituent values of ATDDwith the severity function (see Formula ??), which
is based on the CkMeans clustering algorithm. This adjustment allowed us to calculate
ATDD values at a refined level of granularity, by determining the severity of each ART

violation of software project, rather than focusing on a Boolean characterization of its
outlier violations.

For this research, we also carried out an ATDx implementation validation, required to
assess the representativeness of an implemented instance of ATDx. Rather than utilizing
focus-groups, as envisioned in the publication this research builds upon Verdecchia et al.
(2020), we leveraged personalized reports and follow-up surveys (see ‘Empirical Evaluation
Design’): this allowed us to contact in an efficient way a considerable number of developers
who contributed to the analyzed software projects.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 32/45

https://peerj.com
https://github.com/onap/so
https://github.com/onap/sdc
http://dx.doi.org/10.7717/peerj-cs.833

The ATDx approach is dependent, by definition, on a portfolio of software projects.
Hence, while numerous ATD analysis approaches require exclusively the SUA (Verdecchia,
Malavolta & Lago, 2018), our approach needs a portfolio of software projects to calculate the
severity of ART violations. This implies that the ATDx results of a SUA are only ‘‘relative’’
to the other projects included in the portfolio, and are not representing an absolute result.
As a consequence, the ATDx analysis results are not directly comparable across different
portfolios. For example, by considering the distribution of ATDD violations of Figs. 7 and
8 it is important to remember that the results are intrinsically dependent on the portfolios
considered. As a consequence, the distributions presented in Figs. 7 and 8 are not directly
comparable. The ATDx dependency on a portfolio can be considered as both a benefit
and a drawback of the approach. On one hand, ATDx resolves potential threats related
to statically defined metric thresholds and debt values via severity clustering, allowing to
fine-tune the ATDx analysis based on the specific portfolio and context considered. On the
other hand, the approach can be utilized exclusively if a portfolio of software projects is
available. The need of a portfolio to run ATDx might be considered as a steep requirement,
as in numerous contexts a portfolio of software is not available. Nevertheless, it has to be
considered that (i) ATDx is mostly targeted towards managers and developers who need
to evaluate ATD across their software portfolio,(ii) ‘‘generic’’ datasets can be established
and reused to efficiently run ATDx without domain-specific customization (iii) readily
available datasets, such as the ones we provide in the replication package, can be utilized as
starting sets, (iv) a business case can be made, where the ATDx analysis, and the underlying
dataset, can be established and tailored by consultants according to the specific needs of an
analysis customer. In addition, as further hinted to in our future work (‘Conclusions and
Future Work’), we envision to implement a ‘‘light’’ version of ATDx, which leverages the
semantic clustering of ART rules of ATDx, but does not use the severity clustering logic
presented in this paper, and hence will not require a portfolio of software projects as input.

Numerous state-of-the-art ATD identification tools and indexes provide a
‘‘monetization’’ of the identified ATD issues, either by considering as units of measurement
refactoring time, refactoring cost, or other similar measurement units. This ATD principal
quantification is generally based on the multiplication of violations’ recurrence times
the effort required to fix the violations, rather than relying on a data-driven and inter-
project comparison-based severity calculation. For example, the index provided by CAST
(https://www.castsoftware.com/products/code- analysis- tools) is calculated by multiplying
the number of rule violations times the criticality of the rules violated times the effort
required to fix the rule violations. With ATDx, we distantiate from a priori defined
rule severity and remediation effort, as recent literature pointed towards their potential
inaccuracy and subjectivity (Baldassarre et al., 2020). In a sense, ATDx is designed to
quantify the principal of ATD via the objective classification of architectural rule violation
severities, but without attaching any arbitrary mapping between of architectural rule
violations to their remediation times. To the best of my knowledge, such potential fallacy
is also avoided by Arcan (Arcelli Fontana et al., 2017), which further mitigates potentially
lossy aggregations by separately reporting the dependency issues it is designed to identify.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 33/45

https://peerj.com
https://www.castsoftware.com/products/code- analysis- tools
http://dx.doi.org/10.7717/peerj-cs.833

A characteristic inherent to the ATDx design is the potential empirically unreachable
ATDx maximum values. While reaching a maximum value in a certain dimension ATDDT

is by definition theoretically possible, it is empirically extremely improbable. By design, a
software project reaches themaximum inone dimension if andonly if it possessesmaximum
severity values in all ARs mapped to a ATDDT dimension. If the software project possesses
a maximum value of ATDDT , this would indicate that the project is characterized by
exceptionally severe and recurrent issues in that dimension. In our empirical evaluation,
such project was not present for any dimension. As reported in ‘Phase 4: ATDx Analysis’, a
possible heuristic to improve this characteristic of ATDx would be to rescale the values of
a dimension i to the [0,maxi] range, where maxi is the maximum value in the dimension i
across all rules in ART mapped to i. Nevertheless, we refrained from such solution in order
to support the transparency and interpretability of the results.

Building an ATDx instance entails a human-in-the-loop (as implied in the second
building step of ATDx, see ‘Step 1: Identification of the ART set’). In fact, the classification
of 3-tuples relies onmanual classification, and hence is inherently characterized to a certain
extent by subjectivity. Despite our best efforts to document a systematic classification
process, mitigation mechanisms should be adopted in order to reduce potential sources of
bias during the execution of this step (e.g., by involving different individuals in this step,
and systematically tracking inter-rater agreement levels).

Finally, a last characteristic of ATDx is its reliance on a predefined set of ART . As detailed
by Verdecchia et al. (2020), ATDD values are computed by considering distinct sets of ARs.
It is necessary that the number of rules across the different sets is balanced as, if the
distinct sets exhibit notable differences in cardinality, the weight of under-represented sets
could lead to their unfair representation. In the ATDx instance utilized in our empirical
evaluation, this characteristic was meticulously considered and mitigated by carefully
selecting ART from existing academic literature provided by Ernst et al. (2017), and by
considering the ART recurrence, relevance, and the cardinality of the mapped ATDDs.
Regarding the predefined set ofART , a consideration has to bemade regarding the potential
need to update the set as time passes by. In fact, the tools on which ATDx relies can be
regarded as e-type programs according to the Lehman classification (Lehman, 1980), i.e.,
these tools are change-prone, and may evolve according to context and environment
changes. As tools evolve, new ART rules may be introduced, removed, or deprecated. This
led numerous tool producers to implement custom profiles, e.g., the SonarQube quality
profiles, to allow users to utilize ad-hoc configurations. ATDx is designed with modifiability
and extensibility in mind, allowing to change the rule set ART according to the rule changes
in the utilized tools T , provided that time is invested in creating the 3-tuples (see ‘The
ATDx Approach’) for new rules. As documented in our empirical evaluation execution
section (see ‘Phase 1: ARSQ Identification and Classification’), the 3-tuple creation process
requires a rather negligible amount of time, allowing to update an ATDx implementation
with only marginal effort.

Overall, our empirical evaluation shows how ATDx can be a valuable approach to gain
awareness of the ATD present in a software-intensive system. The approach can be tailored
to the specific context one considers, by utilizing measurements gathered via the tools

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 34/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

available, and relate the severeness of architectural rule violations with respect to other
similar projects included in a software portfolio. The ATDx report results provide an
intuitive yet meaningful overview of ATD, which can be enhanced via further visualization
techniques to provide actionable guidance of ATD hotspots and their resolution.

THREATS TO VALIDITY
Despite our best efforts, the presented results could suffer from potential threats to validity.
Following the classification ofWohlin et al. (2012), we consider four different threat types.

Conclusion validity
Conclusion validity regards if the experimental measurements aremeasuring the theoretical
constructs they are intended to measure. As the results of our empirical evaluation are
gathered via a survey, a possible thread to conclusion validity is the face validity of the
survey (Weiner & Craighead, 2010), i.e., the extent to which the survey conveys the concept
it purports to measure. In order to mitigate potential threats to face validity, supporting
text explaining the goal of the survey, concepts related to ATD, and the ATDx approach
purpose and functioning, were integrated in all material shared with the survey participants,
namely the survey invitation message, the ATDx report, and the survey itself. Additionally,
to ensure that the survey questions were sufficiently clear to participants, and no important
aspect was missing in the questions, each closed-ended question was accompanied by an
open-ended question(‘‘Comments? ’’), were participants could add clarifications to their
answers, doubts, and remarks.

To avoid potential threats related to the extent to which the survey answers are fitted
to answer our RQs, we designed the survey questions by deriving them directly from the
RQs and the goal of our empirical investigation. This led to the formulation of different
survey questions, covering the various aspects the RQ purported to assess. To ensure
full traceability of the mapping between survey questions and RQs, the complete process
leading to the formulation of each survey question is documented in ‘Empirical Evaluation
Design’, while the explicit mapping between survey question and RQ is also schematically
reported in Table 1.

Potential threats related to low statistical power are mitigated by documenting separately
the distributions of answers to each single question of the survey, allowing for independent
scrutiny and interpretation of the gathered results. Additionally, the 20% response rate
results to be aligned with other survey-based software engineering investigations (Malavolta
et al., 2020). Hence, we are confident that this threat may have only marginally influenced
our results, if at all.

Internal validity
Internal validity regards if the observed results are actually due to the treatment. Regarding
the experimental subject utilized for the ATDx analysis, i.e., the Apache and ONAP
ecosystems, we note that the projects considered may also contain non-Java source code,
even if tagged as ‘‘Java’’ software projects on SonarCloud. To mitigate potential threat to
internal validity, we consider for the ATDx analysis exclusively SonarQube rules pertaining

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 35/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

to Java. To avoid instead potential bias when selecting theARSQ rules, three researchers were
involved in Step 1 of the ATDx building process, their level of agreement was measured
statistically, and disagreements were jointly discussed with the help of a third researcher.
The same mitigation strategy was also applied for the definition of the Java-based 3-tuples
in step 2.

Regarding the survey adopted, an internal threat to validity regards the potential
influence that the invitation, ATDx report, and survey text may have had on survey
answers. In order to mitigate this threat, all text was kept as neutral and formal as possible.
Additionally, survey participants were informed that the surveywas completely anonymous,
so to allow them to freely express themselves.

A threat to validity which could have affected our results regards maturation (Wohlin
et al., 2012). Specifically, the positioning of optional open-ended questions towards the
end of the survey may have influenced their response rate. Nevertheless, we prioritized
clarity and flow of the survey over this potential threat, and mitigated it by ensuring that
answering all survey questions would require as little time as possible.

An incorrect understanding by the participants of the notion of ATD, and its difference
from TD, might have negatively influenced the internal validity of our study. To mitigate
this threat, we shared with the participants an intuitive definition of ATD at the beginning
of both the invitationmail, the ATDx report, and the survey. Such definition was supported
by the description of the different architectural technical debt dimension (ATDD) we used,
in order to provide the participants with further context on the multiple facets of ATD
considered in the study.

Finally, potential selection biases were mitigated by defining a priory a rigorous selection
process to identify the portfolios and survey participants used in our empirical evaluation
(see ‘Empirical Evaluation Design’). Additionally, to ensure the soundness of the selected
participants, a set of demographic questions, including the familiarity with the shared
software projects, was included in the survey.

Construct validity
Construct validity regards if our empirical evaluation is appropriate to answer the RQs. A
prominent threat to construct validity, presented in ‘Discussion’, regards the evaluation of
a specific instance of ATDx in order to evaluate the approach. As this step is required, we
could not completely avert this threat, which has to be considered while interpreting the
results. To mitigate its influence, we based our ATDx implementation on a widely popular
static analyser, a starting set of design-related rules presented in the academic literature
(Ernst et al., 2017), and two prominent OSS ecosystems, one of which was already adopted
in various other TD studies (Digkas et al., 2017; Lenarduzzi, Saarimaki & Taibi, 2019; Tan,
Lungu & Avgeriou, 2018; Li et al., 2020).

Another potential threat to construct validity is constituted by the adoption of OSS
software ecosystems as portfolios for the ATDx analysis. To mitigate potential threats
related to the selection of the portfolios, we ensured that they included a considerable
number of software projects (237 in total), belonged to established OSS organizations
(Apache and ONAP), and utilized SonarQube in their continuous integration pipeline.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 36/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

Additionally, for our survey we selected exclusively participants who contributed to at least
two software projects of the portfolios, hence allowing them to compare ATDx analysis
results across different projects.

A related threat regards the use of the Apache ecosystem as one of the two portfolios
considered for our experimental evaluation. In fact, the Apache portfolio covers
heterogeneous application domains and is maintained by many different contributors.
Similarly, industrial portfolios can comprise hundreds or even thousands of projects (Jeffery
& Leliveld, 2004), and hence display a similar variety in terms of project heterogeneity and
distribution of developers across projects. Nevertheless considering the Apache ecosystem
inhibits us to study one specific characteristic of ATDx, namely the possibility to tailor the
results to a specific business domain. This threat was partially mitigated by considering also
the ONAP ecosystem, which specifically focuses on network and edge computing services.
In any case we note that the lower agreement rate to RQ5 (see Fig. 12) might be partially
due to the heterogeneity of projects considered, leading to difficulties in comparing the
ATD across the projects the participants contributed to.

In order to mitigate potential threats to mono-operation and mono-method bias
described by Wohlin et al. (2012), in our survey design, we formulated it as a mix of
open-ended and closed-ended questions, with different questions mapped to each RQ.

External validity
External validity regards whether and to what extent our observations can be generalized.
A potential threat to external validity concerns the representativeness of the portfolios
selected for our empirical evaluation. As reported in the previous section, we mitigated
potential threats to external validity by ensuring that only relevant portfolios, and their
contributors, were considered. In addition, the tool on which our experimental instance of
ATDx is based, namely SonarQube, is one of the most frequently used static analysis tools
for Java-based software projects (Janes, Lenarduzzi & Stan, 2017), making us reasonably
confident about the relevance of its rules in real-world projects. Despite our best efforts
to mitigate external validity threats, such could potentially influence our obtained results,
especially if proprietary portfolios or other source code analysis tools are considered. Future
research will naturally further strengthen the external validity of the results reported in
this research, e.g., by experimenting with ATDx in industrial settings, and by considering
additional source code analysis tools.

RELATED WORK
In this sectionwe discuss the academic and industrial work related to this study. Specifically,
we consider as related work approaches aimed at detecting ATD, approaches aimed at
providing indexes of ATD and TD, and additional work that share conceptual similarities
with ATDx.

To the best of our knowledge, ATDx is the first approach designed to take as input results
of other TD identification approaches (e.g., SonarQube in our experimental evaluation)
to provide an overview of ATD. In this regard, we can consider ATDx as positioned at a
higher level of abstraction than the other state-of-the-art ATD identification approaches.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 37/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

7http://www.intooitus.com/, which
evolved in the tool AI Reviewer http:
//www.aireviewer.com

In fact, current ATD-related approaches with similar goals to ATDx are based on the
static and/or dynamic analysis of source code. In contrast, ATDx builds on the analysis
of precomputed software measures provided by third-party analysis tools, which can be
considered as black-box components in ATDx.

Regarding approaches aimed at identifyingATD, numerous software analysis approaches
have been proposed during the years. Among the most prominent and current ones, the
approach of Arcelli Fontana, Roveda & Zanoni (2016); Martini et al. (2018), and Roveda
et al. (2018) focus on the identification of ATD by analyzing dependency architectural
smells, which could lead to the emergence of an additional ATDD dimension, namely
‘‘Dependency’’. Similarly, Kazman et al. (2015); Xiao et al. (2016), and Cai & Kazman
(2017) analyzed ATD by inspecting antipatterns of semantically related architectural
components, e.g., by the analysis of bug-prone components. Building on the notions
presented in such previous studies, in a follow-up research,Cai & Kazman (2019) introduce
DV8, a tool designed tomeasure softwaremodularity, detect architecture anti-patterns, and
quantify the maintenance cost of each anti-pattern instance. Among the most prominent
differences, ATDx deviates methodologically from the approaches presented in studies
reported above by utilizing inter-project severity clustering and semantic aggregation
of violations into different ATD dimensions. Another related study of Nord et al. (2012),
differentiating from ATDx for the same reasons, presented an ATDmetric based on rework
associated to changing dependencies of architectural components and values of features
delivered. Among the studies considered so far, the most closely related one is the work of
Roveda et al. (2018) as it presents another ATD index. Differently from ATDx, this index
focuses on architectural smells, notably related to dependency violations.

Le et al. (2018) instead reported an empirical investigation of architectural decay via
the analysis of 8 architectural smells of different nature. Interestingly, in such study, smell
violation severity is evaluated by adopting interquartile analysis (Tukey, 1977), similar to
the first iteration of ATDx (Verdecchia et al., 2020). As a further difference with ATDx, the
analysis proposed by Le et al. utilizes intra architectural rule level analysis and values are
not normalized per system-size.

More ATD identification approaches are reported in a secondary study of Verdecchia,
Malavolta & Lago (2018), albeit none of the included primary studies present an ATD
index, with exception of the work of Roveda et al. (2018) previously discussed. In
another related survey study, Fontana, Roveda & Zanoni (2016) present a preliminary
discussion on technical debt indexes provided by tools. In contrast to the other
studies considered so far, the work of Arcelli Fontana et al. focuses on proprietary
tools. Among these, the tools that share most commonalities with ATDx are CAST
(http://structure101.com/products/workspace/), inFusion7, Sonargraph (https://www.
hello2morrow.com/products/sonargraph), and Structure101 (https://structure101.com/).
While such tools focus to various extents on ATD and provide indexing capabilities,
they are conceptually different with respect to ATDx. In fact, the calculation of the indexes
implemented in such tools is generally based on the multiplication of violations’ recurrence
times the effort required to fix the violations, rather than relying on a data-driven and
inter-project comparison-based severity calculation. For example, the index provided by

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 38/45

http://www.intooitus.com/
http://www.aireviewer.com
http://www.aireviewer.com
https://peerj.com
http://structure101.com/products/workspace/
https://www.hello2morrow.com/products/sonargraph
https://www.hello2morrow.com/products/sonargraph
https://structure101.com/
http://dx.doi.org/10.7717/peerj-cs.833

CAST is calculated by multiplying the number of rule violations times the criticality of the
rules violated times the effort required to fix the rule violations. With ATDx, we distantiate
from a priori defined rule severity and remediation effort, as recent literature pointed
towards their potential inaccuracy (Baldassarre et al., 2020). An additional proprietary tool
is the Software Analysis Toolkit (SAT) developed by the Software Improvement Group
(SIG) (Kuipers & Visser, 2004). Such tool, similar to ATDx, is intended to carry out software
portfolio quality monitoring. Nevertheless, the implementation details, internal workings,
and metrics used do not appear to be disclosed to the public. To the best of our knowledge,
SAT differentiates from ATDx in multiple ways, e.g., it is not a tool-agnostic approach
(as it implements its own quality metrics and rules), and does not consider clustering for
dynamic issue severity classification.

Regarding the identification of metrics thresholds, similarly to the first version of ATDx,
Alves, Ypma & Visser (2010) adopt an interquartile strategy to identify the severity of metric
values. As additional differences, such study does not focus on ATD and, while adopting
a system-size normalization strategy, it considers only one level of granularity (NCLOC).
Finally, in a recent work, Ulan et al. (2019) proposed a software metric aggregation
approach based on their distribution. Our approach is different by (i) adopting a clustering
algorithm to determine violation severity, (ii) considering sizes according to distinct
granularities, and (iii) clustering results into different semantic dimensions.

From a methodological standpoint, to the best of our knowledge only a handful of
approaches related to ATD identification and management were empirically evaluated.
In the study of Martini & Bosch (2016) AnaConDebt, a decision-making tool for ATD
refactoring is presented. The tool was developed iteratively in collaboration with industrial
parties, and was evaluated by applying it 11 times, after which several architects provided
feedback based on a survey comprising 6 different questions. The questions of the survey
focused primarily on the efficacy of the tool, in terms of usefulness and ATD management
support. In contrast to this research ATDx was not developed iteratively, and the empirical
evaluation of the approach, focusing on the meaningfulness and actionability of the results,
relied on the experience of 47 OSS contributors (for further discussion regarding threats
related to the adoption of OSS as experimental subject, refer to ‘Construct validity’). Mo
et al. (2018) evaluated DV8, a tool focusing on architecture anti-patterns identification
and architectural degradation management, by analyzing 8 industrial projects, presenting
the results to 5 practitioners, and follow up with telephone conferences and interviews. A
total of 6 questions were posed to the practitioners, focusing on the representativeness of
the analysis results, their usefulness, and actionability. While the evaluation goal of DV8 is
similar to the of this study, differences can be noted from an evaluation methodology point
of view. In fact, the evaluation of DV8 was based on industrial projects, relied on interviews,
and comprised a rather small set of participants,. The evaluation of ATDx instead was based
on OSS projects, was conducted by utilizing an online survey, and comprised a wider pool
of participants. In the work of Arcelli Fontana et al. (2017) the tool Arcan, focusing on
architectural smells detection, was validated by analyzing two OSS software projects and
presenting the analysis results to 3 professional software designers for each project. The
practitioners reported on (i) whether Arcan uncovered known or unknown architectural

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 39/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

issues, (ii) whether the issues were actually issues, and (iii) whether refactoring was needed
or planned following the analysis results. In this case the validation of ATDx resembles the
one of Arcan, as both considered on OSS projects, and evaluated the representativeness of
the results. As a rather minute difference, the ATDx evaluation focused on the actionability
of the analysis results, while the Arcan evaluation on the plan of action based on the analysis
results. As further discussed on the secondary study of Mumtaz, Singh & Blincoe (2020),
Arcan results to be the only tool focusing on architectural smells detection that has been
empirically validated.

CONCLUSIONS AND FUTURE WORK
Over the years, numerous approaches have been proposed to detect ATD instances present
in software intensive-systems. Such methods rely on the analysis of symptoms through
which ATD is manifested, and consider ad-hoc definitions of technical debt and software
architecture, in order to best fit the conceived analysis processes. When ATD indexes
are provided by approaches and proprietary tools, they are most commonly based on
formulae considering a priori defined values, such as severity, remediation cost, and
metric thresholds, that are potentially prone to human estimation and approximation
inaccuracies, and disregard the context of the analyzed software. Furthermore, to the best
of our knowledge, such indexes do not aim at providing an encompassing view of the
(potentially highly heterogeneous) ATD present in a software-intensive system, but rather
focus on a specific facet of ATD.

To fill this gap, in this research we presented ATDx, an approach leveraging the analysis
of a software portfolio, pre-computed architectural rule violations, and granularity levels,
to compute severity levels of ATD violations via a clustering-based algorithm. Results of
ATDx are aggregated into a purely data-driven index, which is composed of different ‘‘ATD
dimensions’’, providing information on the facets of the ATD measured.

In order to evaluate the representativeness and actionability of ATDx, we implemented
an instance of the approach based on SonarQube, and run the analysis on two software
ecosystems, Apache and ONAP. We then shared the results with targeted contributors, and
invited them to participate in a survey designed to collect their feedback on ATDx.

The gathered answers showed that ATDx analysis results are representative, especially
when considered for each project individually, and that the used ATD dimensions are an
indicative representation of ATD. Results also showed the actionability of the approach,
although to a lower extent when compared to the ATDx representativeness.

The collected results are promising, but we deem this investigation as a preliminary step
towards the consolidation of ATDx. As future research activities, we envision to mitigate
potential threats to validity associated to our results by conducting further empirical
experimentation by considering also e.g., proprietary portfolios, different programming
languages, source-code analysis tools, and software domains. Additionally, based on our
findings, we envision to enhance the reporting capabilities of results, in order to strengthen
its actionability, and directly support a set of selected usage scenarios, e.g., by enabling
the composition of the analysis with continuous integration pipelines, issue trackers, and
providing a finer-grained scrutiny of the results via a dedicated dashboard.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 40/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

As an evolution of ATDx, we plan to implement a ‘‘light’’ version of ATDx. Such version,
simply referred to as ‘‘ATDx light ’’, will move away from the ART severity calculation via
clustering, in order to eliminate the requirement of having at disposal a software portfolio
to analyze a single SUA. More specifically, ATDx light will still leverage the semantic
clustering of ART rules into different ATDDD dimensions but, in contrast to ATDx, will
derive severities based on the ones provided by the utilized tool(s) T or, if not available,
on the simple cumulative values of ART violations.

In conclusion, with ATDx we do not aim at providing a ‘‘silver bullet’’ to identify the
ATD present in a software-intensive system: the multifaceted nature of ATD comprises
a plethora of different ATD items, symptoms, causes, and consequences, which hinders
a holistic general-purpose approach. Rather, with ATDx we strive for the establishment
of a sound, comprehensive, and intuitive architectural view of the ATD detectable via
source-code analysis, which helps facilitate conversations, understanding, and awareness
of the current state of ATD in software-intensive systems.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This article is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center. There
was no direct funding.

Grant Disclosures
The following grant information was disclosed by the authors:
The Department of Defense under Contract No. FA8702-15-D-0002.
Carnegie Mellon University for the operation of the Software Engineering Institute.
A federally funded research and development center DM21-0997.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Roberto Verdecchia conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Ivano Malavolta conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.
• Patricia Lago and Ipek Ozkaya conceived and designed the experiments, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 41/45

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.833

The complete replication package is available at GitHub: https://github.com/S2-
group/ATDx_replication_package

REFERENCES
Alves TL, Ypma C, Visser J. 2010. Deriving metric thresholds from benchmark data. In:

2010 IEEE international conference on software maintenance. Piscataway: IEEE, 1–10.
Ampatzoglou A, Arvanitou E-M, Ampatzoglou A, Avgeriou P, Tsintzira A-A,

Chatzigeorgiou A. 2021. Architectural decision-making as a financial invest-
ment: an industrial case study. Information and Software Technology 129:106412
DOI 10.1016/j.infsof.2020.106412.

Arcelli Fontana F, Pigazzini I, Roveda R, Tamburri D, Zanoni M, Di Nitto E. 2017.
Arcan: a tool for architectural smells detection. In: IEEE international conference on
software architecture workshops (ICSAW). Piscataway: IEEE, 282–285.

Arcelli Fontana F, Roveda R, Zanoni M. 2016. Tool support for evaluating architectural
debt of an existing system: an experience report. In: Annual ACM symposium on
applied computing. New York: ACM, 1347–1349.

Avgeriou P, Kruchten P, Ozkaya I, Seaman C. 2016. Managing technical debt in
software engineering (Dagstuhl Seminar 16162). In: Dagstuhl reports. volume 6.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Avgeriou PC, Taibi D, Ampatzoglou A, Fontana FA, Besker T, Chatzigeorgiou A,
Lenarduzzi V, Martini A, Moschou A, Pigazzini I, Saarimaki N, Sas D, de Toledo
S, Tsintzira A. 2020. An overview and comparison of technical debt measurement
tools. IEEE Software 38(3):61–71 DOI 10.1109/MS.2020.3024958.

Baldassarre MT, Lenarduzzi V, Romano S., Saarimäki N. 2020. On the diffuseness
of technical debt items and accuracy of remediation time when using SonarQube.
Information and Software Technology 128:106377 DOI 10.1016/j.infsof.2020.106377.

Basili VR, Rombach HD. 1988. The TAME project: towards improvement-oriented
software environments. IEEE Transactions on Software Engineering 14(6):758–773
DOI 10.1109/32.6156.

Cai Y, Kazman R. 2017. Detecting and quantifying architectural debt: theory and
practice. In: 2017 IEEE/ACM 39th international conference on software engineering
companion. Piscataway: IEEE, 503–504.

Cai Y, Kazman R. 2019. DV8: automated architecture analysis tool suites. In: 2019
IEEE/ACM international conference on technical debt (TechDebt). Piscataway: IEEE,
53–54.

Digkas G, LunguM, Chatzigeorgiou A, Avgeriou P. 2017. The evolution of technical
debt in the apache ecosystem. In: European conference on software architecture.
Springer, 51–66.

Ernst NA, Bellomo S, Ozkaya I, Nord RL. 2017.What to Fix? Distinguishing between
design and non-design rules in automated tools. In: IEEE international conference on
software architecture (ICSA). Piscataway: IEEE, 165–168.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 42/45

https://peerj.com
https://github.com/S2-group/ATDx_replication_package
https://github.com/S2-group/ATDx_replication_package
http://dx.doi.org/10.1016/j.infsof.2020.106412
http://dx.doi.org/10.1109/MS.2020.3024958
http://dx.doi.org/10.1016/j.infsof.2020.106377
http://dx.doi.org/10.1109/32.6156
http://dx.doi.org/10.7717/peerj-cs.833

Fenton N, Bieman J. 2014. Software metrics: a rigorous and practical approach. CRC press,
33–40.

Fontana FA, Roveda R, Zanoni M. 2016. Technical debt indexes provided by tools:
a preliminary discussion. In: 2016 IEEE 8th international workshop on managing
technical debt (MTD). Piscataway: IEEE, 28–31.

Frigge M, Hoaglin DC, Iglewicz B. 1989. Some implementations of the boxplot. The
American Statistician 43(1):50–54.

Givens GH, Hoeting JA. 2012. Computational statistics. Vol. 703. John Wiley & Sons,
325–341.

Hassan AE. 2008. The road ahead for mining software repositories. In: 2008 frontiers of
software maintenance. Piscataway: IEEE, 48–57.

Janes A, Lenarduzzi V, Stan AC. 2017. A continuous software quality monitoring
approach for small and medium enterprises. In: 8th ACM/SPEC on international
conference on performance engineering companion. New York: ACM, 97–100.

Jeffery M, Leliveld I. 2004. Best practices in IT portfolio management.MIT Sloan
Management Review 45(3):41.

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D. 2016. An
in-depth study of the promises and perils of mining GitHub. Empirical Software
Engineering 21(5):2035–2071 DOI 10.1007/s10664-015-9393-5.

Kazman R, Cai Y, Mo R, Feng Q., Xiao L, Haziyev S, Fedak V, Shapochka A. 2015. A
case study in locating the architectural roots of technical debt. In: 2015 IEEE/ACM
37th IEEE international conference on software engineering, volume 2. Piscataway:
IEEE, 179–188.

KeelingM. 2017.Design! Raleigh: Pragmatic Bookshelf.
Kruchten P, Nord RL, Ozkaya I. 2012b. Technical debt: from metaphor to theory and

practice. IEEE Software 29(6):18–21 DOI 10.1109/MS.2012.167.
Kuipers T, Visser J. 2004. A tool-based methodology for software portfolio monitoring.

In: Software audit and metrics. 118–128.
Le DM, Link D, Shahbazian A, Medvidovic N. 2018. An empirical study of architectural

decay in open-source software. In: IEEE international conference on software architec-
ture (ICSA). Piscataway: IEEE, 176–185.

LehmanMM. 1980. Programs, life cycles, and laws of software evolution. Proceedings of
the IEEE 68(9):1060–1076 DOI 10.1109/PROC.1980.11805.

Lenarduzzi V, Saarimaki N, Taibi D. 2019. On the diffuseness of code technical debt in
java projects of the apache ecosystem. In: 2019 IEEE/ACM international conference on
technical debt (TechDebt). Piscataway: IEEE, 98–107.

Li Z, Yu Q, Liang P, Mo R, Yang C. 2020. Interest of defect technical debt: an exploratory
study on apache projects. In: 2020 IEEE international conference on software mainte-
nance and evolution (ICSME). Piscataway: IEEE, 629–639.

Lidwell W, Holden K, Butler J. 2010.Universal principles of design. Rockport Pub.
Malavolta I, Lewis G, Schmerl B, Lago P, Garlan D. 2020.How do you architect

your robots? State of the practice and guidelines for ROS-based systems. In: 2020

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 43/45

https://peerj.com
http://dx.doi.org/10.1007/s10664-015-9393-5
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.7717/peerj-cs.833

IEEE/ACM 42nd international conference on software engineering: software engineering
in practice (ICSE-SEIP). Piscataway: IEEE, 31–40.

Malavolta I, Verdecchia R, Filipovic B, BruntinkM, Lago P. 2018.How maintainability
issues of android apps evolve. In: 2018 IEEE international conference on software
maintenance and evolution (ICSME). Piscataway: IEEE, 334–344.

Manikas K, Hansen KM. 2013. Software ecosystems–A systematic literature review.
Journal of Systems and Software 86(5):1294–1306 DOI 10.1016/j.jss.2012.12.026.

Martini A, Arcelli Fontana F, Biaggi A, Roveda R. 2018. Identifying and prioritizing
architectural debt through architectural smells: a case study in a large software
company. In: European conference on software architecture. New York: Springer,
320–335.

Martini A, Bosch J. 2016. An empirically developed method to aid decisions on architec-
tural technical debt refactoring: AnaConDebt. In: 2016 IEEE/ACM 38th international
conference on software engineering companion (ICSE-C). Piscataway: IEEE, 31–40.

Martini A, Sikander E, Madlani N. 2018. A semi-automated framework for the identifi-
cation and estimation of Architectural Technical Debt: a comparative case-study on
the modularization of a software component. Information and Software Technology
93:264–279 DOI 10.1016/j.infsof.2017.08.005.

McCabe TJ. 1976. A complexity measure. IEEE Transactions on Software Engineering
4:308–320.

MoR, SnipesW, Cai Y, Ramaswamy S, Kazman R, Naedele M. 2018. Experiences
applying automated architecture analysis tool suites. In: 2018 33rd IEEE/ACM
international conference on automated software engineering (ASE). Piscataway: IEEE,
779–789.

Morgenthaler JD, GridnevM, Sauciuc R, Bhansali S. 2012. Searching for build debt:
experiences managing technical debt at Google. In: 2012 third international workshop
on managing technical debt (MTD). Piscataway: IEEE, 1–6.

Mumtaz H, Singh P, Blincoe K. 2020. A systematic mapping study on architectural
smells detection. Journal of Systems and Software 110885.

Nord RL, Ozkaya I, Kruchten P, Gonzalez-Rojas M. 2012. In search of a metric for
managing architectural technical debt. In: Joint Working IEEE/IFIP conference on
software architecture and european conference on software architecture. Piscataway:
IEEE, 91–100.

Pérez B. 2020. A semiautomatic approach to identify architectural technical debt from
heterogeneous artifacts. In: Muccini H, ed. Software Architecture. ECSA 2020.
Communications in Computer and Information Science. Cham: Springer, 5–16
DOI 10.1007/978-3-030-59155-7_1.

Procaccianti G, Lago P, Vetro A, Fernández DM,Wieringa R. 2015. The Green Lab:
experimentation in software energy efficiency. In: International conference on software
engineering, volume 2. Piscataway: IEEE, 941–942.

Roveda R, Fontana FA, Pigazzini I, Zanoni M. 2018. Towards an architectural debt
index. In: Euromicro conference on software engineering and advanced applications.
Piscataway: IEEE, DOI 10.1109/SEAA.2018.00073.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 44/45

https://peerj.com
http://dx.doi.org/10.1016/j.jss.2012.12.026
http://dx.doi.org/10.1016/j.infsof.2017.08.005
http://dx.doi.org/10.1007/978-3-030-59155-7_1
http://dx.doi.org/10.1109/SEAA.2018.00073
http://dx.doi.org/10.7717/peerj-cs.833

SamarthyamG,MuralidharanM, Anna RK. 2017. Understanding test debt. In:
Mohanty H, Mohanty J, Balakrishnan A, eds. Trends in Software Testing. Singapore:
Springer DOI 10.1007/978-981-10-1415-4_1.

Smith E, Loftin R, Murphy-Hill E, Bird C, Zimmermann T. 2013. Improving developer
participation rates in surveys. In: 2013 6th International workshop on cooperative and
human aspects of software engineering (CHASE). Piscataway: IEEE, 89–92.

Tan J, LunguM, Avgeriou P. 2018. Towards studying the evolution of technical debt in
the python projects from the apache software ecosystem. In: BENEVOL. 43–45.

Tukey JW. 1977. Exploratory data analysis. London: Pearson.
UlanM, LöweW, EricssonM,Wingkvist A. 2019. Towards meaningful software metrics

aggregation. In: Proceedings of the 18th Belgium-Netherlands software evolution
workshop.

Verdecchia R, Kruchten P, Lago P, Malavolta I. 2021. Building and evaluating a theory
of architectural technical debt in software-intensive systems. Journal of Systems and
Software 176:110925 DOI 10.1016/j.jss.2021.110925.

Verdecchia R, Lago P, Malavolta I, Ozkaya I. 2020. ATDx: building an Architectural
Technical Debt Index. In: Ali R, Kaindl H, Maciaszek LA, eds. Proceedings of the
15th international conference on evaluation of novel approaches to software engineering,
ENASE. 531–539 DOI 10.5220/0009577805310539.

Verdecchia R, Malavolta I, Lago P. 2018. Architectural technical debt identification:
the research landscape. In: IEEE/ACM international conference on technical debt
(TechDebt). Piscataway: IEEE, 11–20.

Wang H, SongM. 2011. Ckmeans.1d.dp: optimal k-means clustering in one dimension
by dynamic programming. The R Journal 3(2):29 DOI 10.32614/RJ-2011-015.

Weiner IB, CraigheadWE. 2010. The corsini encyclopedia of psychology, volume 4, volume
2. Hoboken: John Wiley & Sons, 637–638.

Wohlin C, Runeson P, Höst M, OhlssonMC, Regnell B, Wesslén A. 2012. Experimenta-
tion in software engineering. Springer Science & Business Media.

Xiao L, Cai Y, Kazman R, Mo R., Feng Q. 2016. Identifying and quantifying architectural
debt. In: Proceedings of the 38th international conference on software engineering. New
York: ACM, 488–498.

Verdecchia et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.833 45/45

https://peerj.com
http://dx.doi.org/10.1007/978-981-10-1415-4_1
http://dx.doi.org/10.1016/j.jss.2021.110925
http://dx.doi.org/10.5220/0009577805310539
http://dx.doi.org/10.32614/RJ-2011-015
http://dx.doi.org/10.7717/peerj-cs.833

