Architectural
Technical Debt:
ldentification

and Management

Roberto Verdecchia

UNIVERSITY

AMSTERDAM

GRAN SASSO
G NCE INSTITUTE VRIJE
I SCHOOL OF ADVANCED STUDIES -m‘:) SUSIVERSLTELY
AMSTERDAM

PH.D. IN COMPUTER SCIENCE - DOCTORAL THESIS

Architectural Technical Debt:
Identification and Management

ROBERTO VERDECCHIA

Doctoral Committee

Promotors
Prof. Dr. Patricia Lago Prof. Dr. Jan Bosch
Prof. Dr. Rocco De Nicola Dr. Antonio Martini
Dr. Damian A. Tamburri
Co-Promotors)
Dr. Eoin Woods
Dr. Ivano Malavolta)
Prof. Dr. Henri Bal

Dr. Catia Trubiani

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy at the

Gran Sasso Science Institute

Viale Francesco Crispi 7, 67100, L’Aquila, Italy
and the

Vrije Universiteit Amsterdam

De Boelelaan 1105, 1081HV Amsterdam, The Netherlands

September 10, 2021

@

SIKS Dissertation Series No. 2021-19

The research reported in this thesis has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.
Promotiecommissie:

Prof. Dr. Jan Bosch (Chalmers University of Technology, Gothenburg, Sweden)

Dr. Antonio Martini (University of Oslo, Oslo, Norway)

Dr. Damian A. Tamburri (Eindhoven University of Technology, Eindhoven, The Netherlands,
and Jheronimus Academy of Data Science, s’'Hertogenbosch , The Netherlands)

Dr. Eoin Woods (Endava, London, United Kingdom)

Prof. Dr. Henri Bal (Vrije Universiteit Amsterdam, The Netherlands)

ISBN 978-94-6423-368-1

Copyright © 2021, Roberto Verdecchia

All rights reserved unless otherwise stated
Cover design by Silvia Agozzino, MUTTNIK
Cover image credits to Pawel Czerwinski
Published by ProefschriftMaken

Typeset in IATEX by Roberto Verdecchia

VRIJE UNIVERSITEIT

Architectural Technical Debt:
Identification and Management

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van Doctor of Philosophy
aan de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. V. Subramaniam,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Betawetenschappen

op vrijdag 10 september om 9.45 uur

in de online bijeenkomst van de universiteit,
De Boelelaan 1105

door

Roberto Verdecchia

geboren te Bagno a Ripoli, [talié

promotoren: prof.dr. P. Lago
prof.dr. R. De Nicola

copromotoren: dr. I. Malavolta
dr. C. Trubiani

Declaration

I, Roberto Verdecchia, declare that this thesis titled “Architectural Technical Debt:
Identification and Management” and the work presented in it are my own.
I confirm that:

* This work was done wholly or mainly while in candidature for a research degree
at this Universities.

* Where any part of this thesis has previously been submitted for a degree or any
other qualification at these Universities or any other institution, this has been
clearly stated.

e Where I have consulted the published work of others, this is always clearly
attributed.

* Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

* Thave acknowledged all main sources of help.

* Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

10 September 2021

At Vadoo

“We build our computers the way
we build our cities: over time,
without a plan, on top of ruins.”
— Ellen Ullman

Abstract

Architectural technical debt (ATD) in a software-intensive system is the sum of all
design choices that may have been suitable or even optimal at the time they were
made, but which today are significantly impending progress: structure, framework,
technology, languages, etc. Unlike code-level technical debt which can be readily
detected by static analysers, and can often be refactored with minimal or only in-
cremental efforts, architectural debt is hard to detect, and its remediation rather
wide-ranging, daunting, and often avoided. The objective of this thesis is to develop
a better understanding of architectural technical debt, and determine what strategies
can be used to identify and manage it. In order to do so, we adopt a wide range
of research techniques, including literature reviews, case studies, interviews with
practitioners, and grounded theory. The result of our investigation, deeply grounded
in empirical data, advances the field not only by providing novel insights into ATD
related phenomena, but also by presenting approaches to pro-actively identify ATD
instances, leading to its eventual management and resolution.

Sommario

Architectural technical debt (ATD) in un sistema ad uso intensivo di software & la
somma di tutte quelle scelte progettuali che risultavano adeguate o addirittura otti-
mali al momento in cui sono state fatte, ma che oggi rallentano significativamente il
progresso del sistema: struttura, framework, tecnologia, linguaggi, etc. A differenza
del technical debt a livello di codice, che puo essere facilmente rilevato tramite
I'analisi statica del codice e spesso puo essere risolto via refactoring con sforzi minimi
o solamente incrementali, I’ architectural technical debt & difficile da rilevare, e la sua
riparazione & ampia, scoraggiante, e spesso evitata. Lobbiettivo di questa tesi & svilup-
pare una migliore comprensione dell’ architectural technical debt, e determinare quali
strategie possono essere utilizzate per identificarlo e gestirlo. Per raggiungere il nos-
tro obbiettivo, adottiamo un’ampia gamma di tecniche di ricerca, tra cui revisioni
della letteratura, casi di studio, interviste con professionisti, e grounded theory. 11
risultato della nostra indagine, profondamente fondata su dati empirici, avanza il
campo di ricerca non solo fornendo nuova conoscenza sui fenomeni correlati all’ATD,
ma anche presentando approcci per identificare in modo proattivo le istanze di ATD,
portando alla sua eventuale gestione e risoluzione.

vii

Samenvatting

Architectural technical debt (ATD) in een software-intensief systeem is de som van alle
ontwerpkeuzes die mogelijkerwijs geschikt of zelfs optimaal waren op het moment
dat ze werden gemaakt, maar de geschiktheid van die keuzes is zeer onderhevig
aan de voortgang binnen het domein: structuur, frameworks, technologie, talen,
enz. Technical debt op het niveau van programmeercode kan gemakkelijk worden
gedetecteerd door analyses gebaseerd op statistische methoden. Deze code kan
vaak worden aangepast met minimale inspanningen. ATD daarentegen is moeilijk te
detecteren, en de aanpassing ervan is erg arbeidsintensief en wordt daardoor vaak
vermeden. Het doel van dit proefschrift is om een beter begrip te krijgen van ATD, en
te bepalen welke strategieén kunnen worden gebruikt om deze te identificeren en
te beheren. Om dit te doen, passen we een breed scala aan onderzoekstechnieken
toe, waaronder literatuuroverzichten, case studies, interviews met praktijkmensen
en grounded theory. Het resultaat van ons onderzoek, dat diepgeworteld is in em-
pirische data, draagt niet alleen bij aan vooruitgang in het veld door nieuwe inzichten
te verschaffen in ATD-gerelateerde fenomenen, maar ook door benaderingen te pre-
senteren om ATD-instanties proactief te identificeren, wat leidt tot het uiteindelijke
beheer en de oplossing ervan.

ix

Contents

1 Introduction 1
1.1 Backround 2
1.2 TypesofTechnicalDebt 6
1.3 Overview of Technical Debt Research Trends 8

1.3.1 Technical DebtResearchGaps 9
1.3.2 Further Technical Debt Research Opportunities 10
1.4 Stateofthe ArtOverview, 10
1.5 Architectural Technical Debt 11
1.6 Research Goal and Research Questions 13
1.7 ResearchMethodology 15
1.8 Outline and Contribution 16
1.8.1 ThesisataGlance. 16
1.8.2 Authorshipoverview 18
1.8.3 Othercontributions 19

I Architectural Technical Debt in Software-Intensive Systems 23

2 Architectural Technical Debt Identification: The Research Landscape 25
2.1 Introduction 28
22 Relatedwork L 29
23 StudyDesign. 30

23.1 ResearchGoal, 30
2.3.2 ResearchQuestions. 31
2.3.3 Searchandselection 31
2.3.4 DataExtraction 34
23,5 DataSynthesis. 34
2.3.6 StudyReplicability 35

Xi

Contents

3

xii

2.4 Results - Publication trends (RQ1.1) 35
2.4.1 Publicationyear. 35
2.4.2 Publicationtypes e 36
2.4.3 PublicationVenues, 36

2.5 Results - Research focus (RQ1.2) 37
25.1 Levelofabstraction. 38
252 ATDIDefinition 38
253 AnalysisType 40
254 AnalysisInput L 42
2.5.,5 TemporalDimension. 43
256 ATDResolution 44
2.5.7 ToolSUppOIt. o i e e 44

2.6 Results - Potential for Industrial adoption (RQ1.3) 46
2.6.1 ToolAvailability, 46
2.6.2 IndustryInvolvement 46
2.6.3 Rigor and Industrial Relevance 47

2.7 Threatstovalidity 50

2.8 Conclusions 51

ATDx: An Architectural Technical Debt Index 53

3.1 Introduction 56

3.2 TheATDxApproach 58
321 Definitions e 58
3.2.2 ATDxFormalization 59
3.2.3 ATDxBuildingSteps 62

3.3 Empirical Evaluation Planning 67
3.3.1 Goaland ResearchQuestions 67
3.3.2 Empirical Evaluation Design 68

3.4 Empirical Evaluation Execution 73
3.4.1 Phase 0: Selection of the SonarQube Tool 73
3.4.2 Phase 1: ARS? Identification and Classification 73
3.4.3 Phase 2: Software Portfolio Identification 77
3.4.4 Phase3: ARS? DatasetBuilding 80
3.4.5 Phase4: ATDxAnalysis. 81
3.4.6 Phase 5: Identification of Relevant Contributors 83
3.4.7 Phase 6: ATDx Report Generation 83
3.4.8 Phase 7: Report Distribution and Survey Invitation 85
349 Phase8:OnlineSurvey. 85

35 Results e 86

Contents

3.5.1 Participants Demographics 86
3.5.2 (RQI) On ATDx Representativeness 86

3.5.3 (RQ2) On ATDx Actionability 89

3.6 Discussion e 90
3.7 ThreatstoValidity 94
3.7.1 Conclusionvalidity 94
3.7.2 Internalvalidity 95
3.73 Constructvalidity oo L. 96
3.74 Externalvalidity o 97

3.8 RelatedWork. 97
3.9 ConclusionsandFutureWork 99
4 Architectural Technical Debt: A Grounded Theory 101
4.1 Introduction 103
4.2 ResearchMethod 105
421 GroundedTheory. 106
4.2.2 Grounded Theory Design and Execution 109
4.2.3 Theory Evaluation via Focus Groups: Design and Execution . . . 114

4.3 ATheory of Architectural Technical Debt 117
43.1 ATDItems e 121
432 CauSesSot e e e 129
433 COonSEqUENCES v v v vt et e e e e 135
434 Symptoms e e e 140
4.3.5 Management Strategies 147
43.6 Tool e 152
4.3.7 Artifact 153
4.3.8 Prioritization Strategies 154
439 Person e 155
4.3.10 Communication 158

44 RelatedWork. 160
4.5 TheoryEvaluationResults 163
4.5.1 C1: Theory Fitto UnderlyingData 163
4.5.2 C2: Theory Workability 164
4.5.3 C3:TheoryRelevance. 164
4.5.4 C4: Theory Modifiability 165

4.6 Verifiability and Threatsto Validity 165
47 Conclusion e 166

Xiii

Contents

II

5

Xiv

Architectural Technical Debt in Android Applications

How Maintainability Issues of Android Apps Evolve

5.1 Introduction

52 Background

53 StudyDesign.
5.3.1 Goaland ResearchQuestions
5.3.2 ContextandDataset
5.3.3 DataExtraction,
534 DataAnalysis

54 Results
5.4.1 RQA4.1. Which are the most recurrent types of maintainability

5.4.2 RQA4.2. How does the density of Android maintainability issues
evolveover time?

5.4.3 RQA4.3. What are the development activities in which maintain-
ability hotspotsoccur?o

55 Discussion
5.5.1 ODbServationst
5.5.2 Best Practices for Android Developers

5.6 ThreatstoValidity
5.7 RelatedWork
5.8 Conclusionand FutureWork

Identifying Architectural Technical Debt in Android Applications

through Compliance Checking

6.1 Introduction

6.2 ApproachOverview
6.2.1 Step 1: Android architecture guideline extraction
6.2.2 Step 2: Android reference architecture establishment.
6.2.3 Step 3: Reverse engineering of implemented architecture
6.2.4 Step 4: Compliancechecking
6.2.5 Step 5: Quantitative assessment of compliance violations

6.3 Guidelines for architecting Androidapps
6.3.1 StudyDesign
6.3.2 Researchquestions
6.3.3 ResearchMethod
6.3.4 Results
6.3.5 ThreatstoValidity

Contents

6.3.6 RelatedWork 240

6.3.7 Conclusionsand FutureWork 242

III Conclusions 243
7 Discussion 245
7.1 Research QuestionsRevisited 245
7.2 ThreadstoValidity 249
7.2.1 ExternalValidity., 249

722 InternalValidity 250

7.2.3 ConstructValidity 250

7.24 Conclusionvalidity Lo oL 250

7.3 Research Implications 251
7.4 Replicability 253

8 Conclusions, Future Work, and Outlook 255
Bibliography 259

|} Introduction

It always takes longer than you expect,
even when you take into account
Hofstadter’s Law.

Douglas Hofstadter, “Gddel, Escher,
Bach: An Eternal Golden Braid”

This chapter is based on ®[3) R. Verdecchia, Identifying Architectural Technical Debt: Moving Forward,
IEEE International Conference On Software Architecture (ICSA), 2018 [1].

Chapter 1. Introduction

1.1 Backround

In software development processes, a high number of heterogeneous (and from
time to time even conflicting) goals have to be considered. Fulfillment of functional
requirements, adherence to quality standards, time to market (TTM) and budget
management are among the constraints that steer the administration of develop-
ment processes. This leads to the establishment of a set of tradeoffs that have to be
considered in order to deliver software products by meeting all the prefixed goals. To
have a more clear picture, think of the development of a software product that has to
be delivered by a hard deadline. The development team wants to ensure the highest
quality of the product possible, but the timeframe available is too short. Developers
hence decide to lower a bit their quality standards in order to deliver in time a final
product that fully adheres to the contracted specifications, even if it is of a slightly
lower quality of the one envisioned. In particular, under pressure of constraints such
as budget or TTM developers tend to introduce in code bases workarounds, shortcuts,
or “hacks” in order to implement as fast as possible a functional requirement of the
software product. While such implementation solutions can support developers in
achieving their short-term goals, the presence of such artifacts tends to incrementally
deteriorate the quality of code bases, to the point to which a refactoring process is
required.

In 1992 Cunningham coined the term fechnical debt (TD). Such metaphor, relating a
software engineering phenomena to economical debt, is used to describe a design
or construction heuristics chosen as expedients in the short short term, but which
creates a technical context that increases complexity and cost in the long term [2]. By
quoting Cunningham’s work:

“Shipping first time code is like going into debt. A little debt speeds de-
velopment so long as it is paid back promptly with a rewrite. Objects
mabke the cost of this transaction tolerable. The danger occurs when the
debt is not repaid. Every minute spent on not-quite-right code counts as
interest on that debt. Entire engineering organizations can be brought to
a stand-still under the debt load of an unconsolidated implementation,
object-oriented or otherwise” [3].

In software intensive systems technical debt is hence a metaphor utilized to describe
sub-optimal software design solutions (usually adopted to speed up the develop-
ment process) which increase the effort required to modify the software-intensive
system in the long run. In particular, internal software quality attributes such as

1.1. Backround

maintainability and evolvability seem to be drastically effected by technical debt
related issues. Instances of technical debt in a software-intensive system are usually
referred to as TD Items (TDI). The characterization of such elements entails different
concepts. Starting from the economical viewpoint, each TDI is associated to two
costs: the principal and the interest amount. The principal cost of a TDI represents
the investment required, in monetary or temporal terms, to eliminate the item. The
interest amount instead represents the penalty incurred if a TDI is not solved in the
present [4]. This second definition of TD cost entails the growing cost associated to
an unmodified TDI during the evolution of a software-intensive system. In general
terms, similarly to software maintainability, if no effort is put in refactoring processes,
the overall TD of the systems tends to grow in a monotonic fashion [5].

Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent

“ , - “Now we know how we
What's Layering! should have done it”

Figure 1.1 - Characterization of TD [6]

Flower [6] further characterized TDIs by introducing an additional characteristic
connected to the knowledge that developers have w.r.t. the items. In particular, a
design shortcut can be taken deliberately, i.e. with the intention of introducing a new
TDI, or inadvertently, i.e. without the knowledge of the developer of the insertion of a
new TDI. Another important distinction that Flower makes is between reckless and
prudent TDIs. A reckless TDI is characterized by a prohibitive interest payment or a
long time span that is required to pay down the principal. In contrast, a prudent TDI
is characterized by a very low interest rate, that in many cases is not even worth to
be repaid, e.g., if the item appears in a portion of the code base that is only seldom
modified. Such attributes of TDIs makes it possible to classify them in four distinct

Chapter 1. Introduction

categories, associated to the four quadrants depicted in Figure 1.1.

McConnell in his taxonomy [7], considers instead some different aspects of TDI
characterization, namely debt repayment time and TD size. More in detail, debt
repayment time can be of two different types: short-term and long-term. Short-term
debt refers to debt that has to be paid off frequently as a reactive tactical decision,
e.g., alate-stage measure to timely respect a deadline release. Long-term debt instead
encompasses strategic decisions, such as the (ab)use of a technology, leading to an
anchoring bias that negatively influences the evolution of a software-centric system
in terms of internal and external quality. 7D size instead considers the relative size
of TDI items. In particular, some TDIs can be taken on in large chuncks, e.g. by
deciding to ship a software product with a missing functionality that will be patched
later. Other TDIs can instead be accumulated through time with only a small gradual
increment of the overall TD. Such TDIs are usually code related, and reperesent
small shortcuts, suc as generic variable names, sparse comments, not following code
conventions etc.

Kruchten et al. [8] further characterize the TD ecosystem by providing an additional
organization of the landscape, as depicted in Figure 1.2. In particular, the proposed
landscape organization outlines the possible software improvements of a system
from a given state. In particular, a first distinction is made between visible elements
(e.g. additional functionality and low external quality) and invisible ones (e.g. doc-
umentation debt and code complexity). In addition, on the left hand side of Figure
1.2 we have clustered TDIs related to software evolution and related challenges. On
the right hand side instead, we have issues related to the quality of software-centric
systems.

In general, the TD research field is characterized by a set of heterogeneous research
activities [9], namely:

1. Identification: This activity concerns the theoretical and practical aspects of
identifying TDIs through the inspection of software related artifacts (e.g. code
bases, commit logs, and documentation);

2. Measurement: This activity, tightly coupled with the first one, entails the con-
ceivement and evaluation of metrics to measure the impact or overall presence
of TDIs in a software-intensive system;

3. Management: Once TDIs are identified and quantified in terms of number and
impact, prioritization and prevention techniques can be deployed in order to

1.1. Backround

GINN) CGEEEETTTEE) G

g architecture code
New features = Architectural debt Low internal quality Defects
8
Additional functionality g Structural debt Code complexity Code smells Low external quality
2
§ Test debt Coding style violations
= Documentation debt
Evolution issues: evolvability Quality issues: maintainability

Figure 1.2 — The technical debt landscape. On the left, evolution or its challenges; on
the right, quality issues, both internal and external. [8]

keep under control the overall TD of a software-intensive system. This activity
relates to the management of known TDIs.

4. Evolution monitoring: By considering the evolution of software systems through
time, assertions can be made on the future behavior of TDIs and their trigger-
ing causes. This activity concerns getting a deeper understanding of TD by
considering historical data of software-intensive systems.

5. Representation\documentation: In order to keep track of the TD of a software-
intensive system it is important to represent and document the identified (and
eventually measured) TDIs. This activity concerns the means through which
TD can be represented and documented uniformly.

6. Perception of TD: This activity concerns the communication of TD related
topics to the stakeholders. While the negative economical impact of TD on
software systems is well known [5], effort has to be spent in order to convey
information regarding the relevance of TD to stakeholders unfamiliar with the
topic.

As will be further discussed in the following section, from an inspection of the related
literature, not all activities of the TD research result to be studied with the same
intensity. In particular, several gaps of research can be identified by considering the
secondary studies concentrating on TD [10, 11, 9, 4, 5, 12]. From such studies several
TD related activities result to be lacking the required depth and in some cases remain

Chapter 1. Introduction

unexplored. This trend is confirmed by experts of the field, and is generally accepted
in the most prominent TD workshops and symposiums [13, 14]1.

1.2 Types of Technical Debt

In addition to the research activities carried out on TD, studies related to this area
are also characterized by the different types of TD considered. Each of this TD types
has its own level of abstraction and artifact(s) as input. Several coarse-grained types
of TD can be identified in the literature, as reported in the second studies available
onTD [11, 9, 4]. Some among the most prominent TD types that can be found in the
literature are reported in Table 1.1.

The classification of TD into types reported in Table 1.1 provides an eagle-eye overview
of the most common TDIs considered in the literature. Such brief classification eases
the reasoning on the multifaceted aspects that are entailed by the TD metaphor. In the
following sections such classification will be adopted to report the most prominent
research trends according to the TD body of literature.

ISupported by the growing interest of researchers and practitioners, the first conference focusing on
TD was recently announced, and will be co-located with the 40th International Conference on Software
Engineering (ICSE) in 2018 [15]

1.2. Types of Technical Debt

‘(L€ ‘9¢] SurdoInosino

10 UO0MD9[as spoyraw J[i3e 39 ‘SUOISIIAp [edIUYdal-0100s [ewndod-qns woiy 3uIALIOp L
'sa110315s0da1 90D UT $H10] ATessadauun 39 ‘SUIUOISISA 9P0I 3IINOS JO JUSWIFBUBW 1091100U]
‘[g] "uonisodurod 9d91A19S PAaNY-[[I 10 ‘UONIJ[IS

9OIAIAS 1991100UT “*3°3 ‘S91IN109)YITY PAJUSLIQ IIAIS 01 PIIe[aI Sad10Yd ugdisap rewrndo-qng
*[#€] waIsAs a1eM1JOS B UT S3Nq PaIIajJap 10

Ppa19A02un Jo 9ouadsaid ay} "3-9 ‘sSuralsAs aremijos ur s3nq Jo 9duasaid ay) 03 anp 3ULLINIJ0 (],
‘[g€] sassaoo1d pajeai-yuswdojoaap

pue 221042 A30]0U29] SB YINS ‘[9AJ] [BINIONIISBIJUT JB Ude) suonnjos udisap ewndo-qng
‘[eg ‘1€l

SJITOUIWIOD IPOD JO MOB[0} UONBIUIWINIOP [EINIINIYIIR PIZIUL3IOUN Wolj ‘UoTIeIISqe Jo
S[OAQ] JUSIAJIP e Juasald aq UBD SWAI (1], SAYL, "WIISAS STBMIJOS B JO UONIBIUIWNIOP JO YIB'T

'[0€ ‘62] @wm pIIng 1e pa1ajunodus swaqoid 10 sampadoid Jurpmq xajduwod
AJ19n0 U1 3unnsal ‘walsAs aremijos e Jo aseyd urping ay) SurNp paIduNodIU SANMIYJIQ

*[82 ‘22] 8unsal jo yoe[39 ‘soonoeid Sunsal 100d wrory unmsar (1,

*[92] 'Te 10 umo1g Aq PaIUaWNIOP SIB SUId)

-Jednue paje[a1-apod jo sajdurexy ‘sadnoerd Surpod jusurwold 3une[olA 9pod UsNIM A[1004
*[GZ ‘CT] WI9ISAS QATSUIIUT-TEMIJOS B JO (I I, [[BIOAO

Jo asearoul ue ur 3unnsal [9A9] u3Isop uonejuaWIdWI Pa[IeIdp Y} Je Uaye) ,SINJII0YS,,
"[¥2 ‘€2 ‘22 ‘T2 ‘02 ‘6T ‘QT ‘L1] WIAISAS AISUIUI-TBMIJOS B JO SjuawaImbaix

[eUOnOUNJ-UOU d1]) 199)Je A[9ATIE39U 01 J[NSI B} SUOISINap USISap [e1nidalrydre ewndo-gng
*[91] syuswaxmbai rewndo si1 pue walsAs

JAISUIIUI-2IBMIJOS B JO UOTIRIUaWA[dWI [ENIOL) U9aM]aq PUNO] 3q UBD JBY]) SAIIUIISISU0IU]

ayordodg
(1 Suruorsiap

(L 31AI1S

aL93Rd

.1 dImonnseryuy

(1 uoneuawndoq

darLping
ALISAL

alLapo)
al udisaq
AL [eIMINYITY

a1 syusdwdambay

uondrsaq

adAL aL

9INJBISN[Y} Ul pajuawndop sadAy (1], yuaururoid Jo MIIAIdAQ — T 9[qeL

Chapter 1. Introduction

1.3 Overview of Technical Debt Research Trends

From the eagle-eye overview of the types of TD and by considering the data reported
in the secondary studies, we can draw some summary conclusions on the most
noticeable trends of the TD research field. In particular, a first consideration can
be made on the research areas that result to be more active, and which instead
result to be only marginally investigated. From the results reported by Li et al. [20]
we can notice that Code TD results to be the most studied subject, appearing in
approximately 40% of the total number of researches they took into account (38 out
of 94). As further conjectured by Alves et al. [4] this trend can be attributed to the
ease of Code TD assessment, for which many tool supported metrics are already
established. Another possible explanation of such trend relies on the growing body of
knowledge of TD. In fact, while Code TD has been studied for many years [38], other
types of TD result to date to be fairly young research fields, that were only studied in
the most recent years [4]. Nevertheless, as pointed out by all the secondary studies
on TD present in the literature [10, 11, 9, 4, 5] TD related analysis cannot be carried
out at code level alone, as some TDIs can be identified exclusively by considering
higher levels of abstraction.

Based on the data of the secondary studies, the second most studied type of TD results
to be the Architectural TD (ATD). From the analysis of some of the most prominent
studies related to this topic [18, 19, 20, 21, 11, 22, 23, 39, 17, 24] a common trend can
be noticed: how to identify, measure and manage Architectural TDIs (ATDI) is still an
open question. While the remainder of this section is dedicated to the presentation
of TD related research trends, further considerations on ATD research activities are
reported in Section 1.5. Following ATD, the remaining of the research activities focus
mostly on Desing TD and Test TD, which according to Li et al. correspond respectively
to the 26% (24 out of 94 studies) and 24% (23 studies) of the totality of the literature
selected for their mapping study. These trends confirm again the current focus of TD
related research, which entails mostly activities considering code bases as the main
artifact to gather empirical data. The remaining of the TD types reported in Section
1.2 result generally to be less studied, and are in most of the cases reported to appear
in less than the 10% of the total body of the TD literature. Further insights on the
current research gaps are documented in the following section.

1.3. Overview of Technical Debt Research Trends

1.3.1 Technical Debt Research Gaps

Regarding the current research gaps of TD, a first consideration has to be made
on understudied or inexplored TD types. Fortunately, from the secondary studies
considered, we can evince that the results regarding the less explored areas of TD
are consistently reported in the literature [10, 11, 9, 4, 5]. From such results, we can
evince that the following areas of research result to date to be only mentioned or
marginally explored: People TD, Requirements TD, Documentation TD, Service TD,
and Versioning TD.

A refined level of granularity can be considered by examining the decomposition of
TD types into subdomains (as described by Li et al. [9]). By following this additional
decomposition it is possible to assess which subdomains of the most studied research
categories result to be understudied or exhibit research gaps. Regarding Code TD,
such TD type results to date to be the most explored, and all of its subdomains,
e.g. code duplication and coding violations, result to be considered in a relative
high number of papers (between 7 and 20 researches per subcategory [9, 11]). By
considering instead Design TD, several subcategories result to be only marginally
explored. In particular, dealing with incomplete design specification and its relative
impact on TD results to be a topic that, while mentioned in the literature, remains to
date unexplored. Similarly, architectural antipatterns are known to have a negative
impact on the TD of a software-intensive system, but their precise identification,
measurement and management remains to date unknown. Finally, in the context of
testing, deferring testing® results to be cited in the literature as a source of TD, but no
studies focusing on such aspect can (to the best of our knowledge) be found.

By considering the most active TD research topics, we can identify also some common
subcategories that result to be explored the least for each type of TD. If we consider
the top three researched TD types, i.e. Code TD, Design TD and Architecture TD, we
can notice that all of these categories lack prioritization methods aimed to rank TDI
items according to their relevance. In addition, monitoring of TD items throughout
the evolution of software-intensive systems results to date to be a vastly understudied
topic at both code, design and architectural level. Finally, as pointed out by Alves et
al. [4], the TD research filed severely lacks studies focusing on representation and
documentation of TDIs. Such lack of research can be found at each of the previously
introduced levels of abstraction, and results to have a deep impact on researchers
and practitioners. In fact, without means to comprehensively report and present TDI
analyses, it is hard to convey TD related information to people that are unfamiliar

2i.e. a bug fixing process that results to be associated to a negative return of investment (ROI)

Chapter 1. Introduction

with the topic. This results in a reduced awareness of researchers and practitioners
alike, leading to the unconscious introduction of TDIs throughout the life cycle of a
software product.

1.3.2 Further Technical Debt Research Opportunities

From a more careful inspection of the literature several other shortcomings of the
TD research can be consistently spotted in the literature. A common trend that
emerges is the lack of efficient tools with which TDIs can be identified, measured,
monitored and eventually refactored. This demonstration of lack of tools can be
found in a number of heterogeneous TD related researches, spanning over different
TD activities and TD types. The problem emerging from the lack of TD related tools is
particularity rooted in industry, where a steep-learning curve and upfront investment
often discourages practitioners into investigating TD related issues.

In addition to the lack of tools, another recurrent topic throughout the literature is the
scarcity of industrial case studies. In fact, most of the empirical researches focus on
synthetic artifacts measured in controlled environments. This could potentially lead
to a major threat to external validity, which could cause a divergence of the gathered
results from the actual ones that could be collected by considering software-systems
“in the wild”. In addition, most of such “toy” artifacts are code based, as other artifacts
(such as documentation) is harder to create artificially. To date only a few studies
were base on actual documentation [40, 20]. This is also due to the fact that, as hinted
to in Section 1.3.1, most of the studies building up the TD body of literature consider
source code as measurand for their experiments.

Another aspect of TD research that requires to be further investigated is the accurate
estimation of TD principal and interest values. In fact, while these concepts are
widely accepted in the research community, to date no accurate method has been
conceived in order to precisely calculate these two values. Hence it is difficult to
estimate the concrete impact of a TDI and the ROI associated to refactoring a TDI in
the present or future time.

1.4 State of the Art Overview

From the inspection of the TD body of literature the following take away messages
can be evinced:

10

1.5. Architectural Technical Debt

e TD results to be an active research field, characterized by a growing interest of
researches and practitioners;

* The researchers focus on different types of TD; 12 such types were identified in
the literature, as reported in Table 1.1;

* The vast majority of TD studies focuses on source code related TD;

e Architectural TD and Design TD result to be the second and third most studied
levels of abstraction;

* Several types of TD, e.g. Requirements and Documentation TD, result to be only
marginally explored;

* Many sub-fields of the most studied TD types result to be only mentioned in
the literature;

* Prioritization, monitoring, visualization and documentation of TDIs result to
be understudied TD activities;

* TDrelated research seem to severely lack tools for automated TDI identification,
measurement and monitoring;

* Only very seldom researches are supported by industrial case studies: The vast
majority considers synthetic artifacts measured in a controlled environment;

e An accurate model to calculate principal and interest values is currently not
available.

1.5 Architectural Technical Debt

As described in the previous section, several types of TD and potential research op-
portunities can be identified in the literature. A particularly interesting and promising
research area result to be architectural technical debt, i.e., debt incurred at the ar-
chitectural level. As described by Van Vliet [41], between 50% and 70% of resources
of a software project are allocated to maintenance processes. If such processes are
neglected or not correctly carried out, software-intensive systems tend to slowly
deteriorate through time, potentially leading to an obsolete or even failing system.
During the development phases, software architecture plays a crucial role in the
implementation of software systems [8]. Hence, if debt at the architectural level is
neglected, it can introduce TDIs that have a tremendous impact on the overall TD

11

Chapter 1. Introduction

of software-centric systems. Hence, guided by industrial relevance and research
potential, we opt to focus the studies reported in this thesis on investigating ATD
phenomena. In general terms, ATD is referred to sub-optimal decision taken at the
architectural level, which usually result in the conceivement of immature software
architectural artifacts [11]. Such ill-suited architectural decisions can be of different
types, e.g. they can be implicit or explicit [42], and can be made consciously or un-
consciously [43]. In the literature, ATDISs are classified in four main categories [11],
namely:

e Architectural dependencies: 1ll-suited dependencies between software compo-
nents of a system, including module dependencies, external dependencies,
and external team dependencies [44];

* Non-uniformity of patterns and policies: ATDIs related to violations of naming
conventions, non-uniform design, and violation of architectural patterns [45];

e Code related: Some authors associate various code related issues to ATDIs
[44, 46, 47, 48], e.g., lack of code documentation, high code complexity and
code duplication.

* Quality Attribute (QA): ATDIs which are strongly related to the implementation
or test of non-functional properties, especially maintainability and evolvabil-
ity [45, 49].

To date, the question regarding how to accurately identify and measure the magnitude
and impact of ATDIs is still open. In particular, many ATD related studies result to be
characterized by threats of external validity. This leads in many cases in the output
of context specific results, which are difficult to apply to other case studies. While
it might be difficult to totally abstract from some context specific aspects, e.g., the
implementation language adopted, documentation format utilized etc., some level
of abstraction is required in order to identify commonalities between different ATD
instances. In such a way;, it is possible to detect common trends that might be at the
root of the identification of ATDIs.

Due to its abstract nature, and scarcity of tools available, ATD is regarded by Kruchten
et al. as one of the most challenging TD types to be undercovered [8]. Most of the
current methods aiming to identify ATDIs rely on interviews with software architects,
or summary code dependency analyses (e.g., violation of modularity). In order to
further advance the identification of ATDIs it is crucial to carefully evaluate what

12

1.6. Research Goal and Research Questions

information of software systems is already available, and how this can be used to
detect ATDIs.

1.6 Research Goal and Research Questions

In this thesis, we aim at progressing the knowledge on Architectural Technical Debt,
with the precise intent of understanding if, and in affirmative case how, we can
conceive accurate approaches to identify and measure architectural technical debt
items present in software-intensive systems.

Specifically, we formulate the “master” research question (RQ) of this thesis as follows:

RQ: What strategies can be used to identify and manage architectural technical
debt?

To answer comprehensively this research question, we divide it into a set of sub-
research questions (referred from now on as “research questions” for the sake of
conciseness, also depicted in Figure 1.3).

Specifically, in order to devise strategies aimed at identifying and managing ATD, we
require a sound knowledge of the approaches conceived to identify ATD which have
been designed so far. Hence, we formulate our first research question as follows:

RQ1: What is the state of the art of architectural technical debt identification?

The answer to RQ1 enables us to gain knowledge on ATD in order to devise techniques
to identify ATD. Specifically, we can leverage and combine existing methodologies,
tools and findings, in order to obtain a high-level overview of the ATD present in
software-intensive systems. Among the different dimensions of ATD, we opt to focus
this work on one of the most explored dimensions, namely source code related ATD,
in order to leverage already established findings in the field. Our second research
question is hence formulated as follows:

RQ2: How can design issues detectable by tools be used to gain an overview of the
architectural technical debt residing in a software system?

Answering RQ1 allows us to identify which ATD-related research topics with industrial
relevance are only marginally investigated. We hence involve in our investigation

13

Chapter 1. Introduction

industrial practitioners, bringing closer the often mentioned gap between academic
research and industrial practices. Ultimately, we aim at building a theory, grounded
on the knowledge of experienced practitioners, gravitating around the concept of
ATD. The research questions which guides this research topic states:

RQ3: What is architectural technical debt according to software practitioners?

The research outlined in research questions RQ1-RQ3 results to be (to a vast extent)
technology agnostic, and adopts a “top-down", observatory, research strategy. Nev-
ertheless, it is also possible to steer our endeavors to investigate ATD of specific
development contexts, by utilizing a “bottom-up", data-driven, research approach.

From RQ1, we evince that, despite its current relevance, to date no study has been
conducted on ATD present in the Android ecosystem, the most popular mobile
ecosystem to date®. In addition, from RQ2 and RQ3 we also note that ATD can vary
greatly according to the specific technological context considered. In order to gain
further insights into the ATD phenomenon, we hence decide to focus in the second
part of this thesis on the Android ecosystem. Specifically, we open this research topic
by assessing the evolution of one of the most prominent quality attributes impacted
by TD, namely maintainability. This provided us a better understanding of the context
at hand, on which Android-specific ATD studies could be based. The RQ which marks
the beginning of this research topic states:

RQ4: How are maintainability issues of Android applications characterized?

The next step following RQ5 is to conceptualize a methodology targeting the detection
of ATD in Android applications. This research consists in the formulation of a high-
level approach conceived for the automatic or semi-automatic detection of ATD of
Android applications. The research question leading such project is formulated as
follows:

RQ5: How can architectural technical debt items be identified in Android
Applications?

In the next chapter, we briefly present the research methodologies utilized to an-
swer our research questions. Such methodologies, and their specifics, are further
documented in the section regarding the study design of the subsequent chapters.

3https://gs.statcounter.com/os-market-share/mobile/worldwide

14

https://gs.statcounter.com/os-market-share/mobile/worldwide

1.7. Research Methodology

1.7

Research Methodology

Given the multifaceted nature of the research questions documented in the previous
section, we adopt for this thesis distinct research techniques. Specifically, we use
as foundation for our investigations empirical methodologies applied to the field of
software engineering, which are presented in Table 1.2 and further detailed in the
remainder of this section.

Table 1.2 — Overview of research method per study

Quantitative Qualitative Ppractitioners

Study Chapter Method Analysis Analysis Involvement
ATD state of the art 2 SLR (4 v

ATD index 3 EE, S v 4

ATD theory 4 GT, FG v v
Android issues 5 CE (4

Android guidelines 6 MMES v v 4

Methods. SLR: Systematic Literature Review; CE: Controlled Experiment; EE: Empirical
Evaluation; S: Survey; GT: Grounded Theory; FG: Focus Group; MMES: Mixed-Method
Empirical Study.

Systematic Literature Review (SLR): This research method is evidence-based technique
which de-facto constitutes one of the most adopted techniques to systematically inspect
the literature on an already established research topic. This approach enables us to
gain an objective stance in order to systematically filter the existing academic literature,
conduct data extraction and analysis, and draw conclusion on the obtained data. The
systematic literature review is adopted in order to answer RQ1.

Controlled Experiment (CE): This method entails the investigation of a particular phe-
nomenon observed in a controlled environment. This technique, utilizing both qualita-
tive and quantitative analyses, is best fitted to carry out studies with a narrow focus, and
provides detailed results which are often used to validate previous findings or lay the
groundwork for future research endeavors. We take advantage of case studies in order
to answer RQ4.

Grounded Theory (GT): This technique, borrowed from the sociology research field,
constitutes an established process to build a theory revolving around a specific topic.
The resulting theory is established by grounding its concepts in evidence-based data
gathered from sources of various nature. Specifically, we choose to ground our theory
on the personal knowledge of experienced software engineering practitioners. We adopt
this approach in order to answer RQ3.

15

Chapter 1. Introduction

» Focus Group (FG): This method concisely entails conducting interviews with groups
of individuals sharing a common background knowledge. In contrast to individual
interviews, FGs allow participants to compare their experiences, jointly discuss opinions
on it, and release potential inhibitions with respect to a discussed phenomenon. In
this thesis, we used FG to evaluate our grounded theory by leveraging the criteria
characteristic of the Glaserian GT method, i.e., the method that was used to construct
the theory.

* Mixed-method empirical study (MMES): In certain instances, it is possible to leverage
and combine different empirical methodologies in order to achieve a comprehensive
answer for a research question. In our case, we use a blend of research methods,
namely a multivocal literature review, semi-structured interviews with practitioners,
and grounded theory techniques, in order to answer our last research question, RQ5.

1.8 Outline and Contribution

1.8.1 Thesis at a Glance
An overview of the research reported in this thesis is documented in Figure 1.3.

The first step consists of a systematic literature review on ATD, which was presented at the first
edition of the ICM/IEEE International Conference on Technical Debt (TechDebt) in 2018 [50].
Among other results, from the literature study (RQ1) we are able to collect data in order to (i)
gather intelligence on which software artifacts and methodologies can be leveraged to identify
and manage ATD, and (ii) compare the state of the art of academic research with industrial
practices.

After a comprehensive review of the state of the art of academic research, we progress with
the formulation of an index, ATDx, which leverages statically detected SonarQube* issues in
order to gain a high-level overview of the health of software systems w.r.t. ATD (RQ2), and the
establishment of a grounded theory on ATD (RQ3).

Subsequently, we conduct a deep dive into Android-related ATD. This topic opens with a
“bootstrap" study investigating maintainability issues of Android applications [51]. This study,
blossoming from the industrial partnership with the Software Improvement Group (SIG),
characterizes the maintainability issues in which Android developer incur, and is carried out by
conducting a large-scale analysis of real-world Android applications (RQ4). The results of such
study lay the groundwork for our future endeavors. Subsequently, we present an approach,
based on guideline extraction, architecture reverse-engineering, and compliance checking,
targeting the automatic identification of Android specific ATD hotspots (RQ5) [52, 53], which

4https:/ /www.sonarqube.org/

16

https://www.sonarqube.org/

LT

PART I - ATD in Software-Intensive Systems

Systematic ~ TechDebt 2018
Literature

Review

RQI

What is the state of the art of
ATD identification?

Under Journal
ENASE 2020 bmissi

4| detectable by tools be used to
"] gain an overview of the ATD
residing in a Software System?

How can design issues @ !

JSS 2021

» What is the underlying
theory of ATD?

ECSA 2020

Empirical
Evaluation

Grounded
Theory

Focus
Groups

Rescarch
Topic

Research
Question (RQ)

Q
RQ number

Research
Methodology

®

Publication
Venue

Part I1 - ATD: A Deep Dive into Android

RQ4
How are maintainability issues

How can ATD items be

of Android applications
characterized?

Controlled
Experiment

ICSME 2018

> identified in Android
Applications?

MobileSoft 2018

&

Mixed-Method
Empirical Study

ICSA 2019

Figure 1.3 - Thesis at a glance: Research questions, methodologies and publication venues

uonNqLIUO pue JUINQ ‘T

Chapter 1. Introduction

constitutes the closing chapter of the the ongoing research presented in this thesis.

1.8.2 Authorship overview

In this section, we provide an overview of the contributions presented in each chapter of the
thesis.

18

e Chapter 1:

® (3] R.Verdecchia “Identifying Architectural Technical Debt: Moving Forward, Interna-
tional Conference On Software Architecture (ICSA), 2018 [1].
The candidate was the sole contributor of the work and paper writing.

e Chapter 2:

[@ R.Verdecchia, .Malavolta, and PLago “Architectural Technical Debt Identification:
The Research Landscape”, International Conference on Technical Debt (Techdebt),
2018 [50].

The candidate was the main contributor of the work and paper writing. The
remaining authors edited and supervised the written work.

e Chapter 3:

[3 R.Verdecchia, PLago, .Malavolta, and 1.Ozkaya “ATDx: Building an Architec-
tural Technical Debt Index”, International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), 2020. [54].

The candidate was the main contributor of the work and paper writing. The
remaining authors edited and supervised the written work.

[@ R.Verdecchia, I.Malavolta, PLago, and 1.0zkaya “Empirical Evaluation of an Archi-
tectural Technical Debt Index in the Context of the Apache and ONAP Ecosystems”,
Journal article under submission [55].

The candidate was the main contributor of the work and paper writing. The
remaining authors edited and supervised the written work.

e Chapter 4:

[3) R.Verdecchia, PB.Kruchten, and PLago “Architectural Technical Debt: A grounded
Theory”, European Conference on Software Architecture (ECSA), 2020 [56].
The candidate was the main contributor of the work and paper writing. The
remaining authors edited and supervised the written work.

[3) R.Verdecchia, PB.Kruchten, PLago, and .Malavolta “Building and Evaluating a
Theory on Architectural Technical Debt in Software Intensive Systems”, Journal of
Systems and Software (JSS), 2021 [57].

The candidate was the main contributor of the work and paper writing. The
remaining authors edited and supervised the written work.

1.8. Outline and Contribution

¢ Chapter 5

[3 1.Malavolta, R.Verdecchia, M.Bruntink , B.Filipovic and PLago“How Maintain-

ability Issues of Android Apps Evolve”, International Conference on Software Main-
tenance and Evolution (ICSME), 2018 [51].
The candidate worked on the design of the study, data extraction, data analysis,
and paper writing. .M. participated across all phases of the study. M.B. provided
the tool and the infrastructure for the execution of the study. B.E is the Master
student who built the dataset and piloted the first version of the study under the
supervision of .M. PL. edited and supervised the written work.

¢ Chapter 6

®[3) R.Verdecchia “Identifying Architectural Technical Debt in Android Applications
through Compliance Checking”, International Conference on Mobile Software
Engineering and Systems (MobileSoft), 2018 [52].
The candidate was the sole contributor of the work and paper writing.

[2 R.Verdecchia, I.Malavolta, and PLago “Guidelines for Architecting Android Apps:
A mixed-method Empirical Study”, International Conference on Software Archi-
tecture (ICSA), 2019. [53].

R.V. was the main contributor of the work and paper writing. The remaining
authors edited and supervised the written work.

1.8.3 Other contributions

In this section we provide a brief overview of other studies, not part of this thesis, which
were carried out during the years of the Ph.D. devoted to research activities, and the relative
publications such studies let to.

Technical Debt
Researches investigating topics related to technical debt not included in the thesis.

* [3 S.Ospina, R. Verdecchia, 1. Malavolta, P. Lago, ATDx: A tool for Providing a Data-
driven Overview of Architectural Technical Debt in Software-intensive Systems, European
Conference on Software Architecture (ECSA), 2021 [58]

+ [211. Bogner, R. Verdecchia, I. Gerostathopoulos, Characterizing Technical Debt and
Antipatterns in AI-Based Systems: A Systematic Mapping Study, International Conference
on Technical Debt (TechDebt), 2021 [59]
¥ Best Presentation Award

o [3 R. Verdecchia, P. Lago, 1. Malavolta, I. Ozkaya, ATDx: Prototype Implementation
Technical Report, VU Technical Reports, 2020 [60]

19

Chapter 1. Introduction

Software Energy Efficiency
Researches studying the identification and alleviation of energy-greedy portions of source
code present in software-intensive systems.

[2R. Verdecchia, A. Guldner, Y. Becker, E. Kern, Code-Level Energy Hotspot Localiza-
tion via Naive Spectrum Based Testing, Advances and New Trends in Environmental
Informatics - Managing Disruption, Big Data and Open Science, 2018 [61]

[2R. Verdecchia, R. A. Saez, Giuseppe Procaccianti, and P. Lago, Empirical Evaluation of
the Energy Impact of Refactoring Code Smells, International Conference on Information
and Communication Technology for Sustainability, (ICT4S), 2018 [62]

¥ Runner-Up Best Paper Award

[EIR. Verdecchia, Giuseppe Procaccianti, I. Malavolta, P. Lago, and J. Koedijk, Estimat-
ing Energy Impact of Software Releases and Deployment Strategies: The KPMG Case
Study, ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2017 [63];

[P Lago, R. Verdecchia, N. Condori-Fernandez, E. Rahmadian, J. Sturm, T. van Nij-
nanten, R. Bosma, C. Debuysscher, and P. Ricardo, Designing for Sustainability: Lessons
Learned from Four Industrial Projects, Advances and New Trends in Environmental
Informatics, 2020 [64]

[2R. Verdecchia, P. Lago, C. de Vries, The LEAP Technology Roadmap: Lower Energy
Acceleration Program (LEAP) Solutions, Adoption Factors, Impediments, Open Problems,
and Scenarios, VU Technical Reports, 2021 [65]

Software Testing
Researches proposing scalable approaches based on clustering and ranking techniques to
solve prominent regression testing problems.

20

* [3R. Verdecchia, E. Cruciani, B. Miranda, A. Bertolino, Know Your Neighbor: Fast Static

Prediction of Test Flakiness, IEEE Access, 2021 [66]

[E Cord, R. Verdecchia, E. Cruciani, B. Miranda, A. Bertolino, JTeC: A Large Collection

of Java Test Classes for Test Code Analysis and Processing, International Conference on
Mining Software Repositories (MSR), 2020 [67]

+ [3 E. Cruciani, B. Miranda, R. Verdecchia, A. Bertolino, Scalable Approaches for Test

Suite Reduction, ACM/IEEE International Conference on Software Engineering (ICSE),
2019 [68]
¥ ACM SIGSOFT Distinguished Paper Award.

+ [3 B. Miranda, E. Cruciani, R. Verdecchia, A. Bertolino, FAST Approaches to Scalable

Similarity-based Test Case Prioritization, ACM/IEEE International Conference on Soft-
ware Engineering (ICSE), 2018 [69]

1.8. Outline and Contribution

Software Architecture Education and Training
Studies proposing serious-games to educate and train in software architecture concepts and
principles.

« [3 P Lago, J. E Cai, R. C. de Boer, P. Kruchten, and R. Verdecchia, DecidArch: Playing
Cards as Software Architects, Hawaii International Conference on System Sciences
(HICSS), 2019 [70]
¥ Best Paper Award. ¥ ISSIP-IBM-CBA Student Paper Award for Best Industry Studies
Paper.

« [3] P Lago, Jia E Cai, Remco C. de Boer, P. Kruchten, and R. Verdecchia, DecidArch v2: An
improved Game to teach Architecture Design Decision Making, International Workshop
on decision Making in Software ARCHitecture (MARCH), 2019 [71]

21

Technical Debt
in Software-Intensive
Systems

23

Architectural Technical Debt

Identification: The Research
Landscape

The good news about computers is
that they do what you tell them to do.
The bad is that they do what you tell
them to do.

Ted Nelson

This chapter is based on [S] R. Verdecchia, I. Malavolta, and P. Lago, Architectural Technical Debt: The
Research Landscape, International Conference on Technical Debt (TechDebt), 2018 [50].

25

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

This chapter targets the first research question of this thesis (RQ1). Specifically, in this chapter
we document a Systematic Literature Study (SLR) on architectural technical debt identification.
The SLR is specifically conceived to lay the sound basis necessary in order to answer the
subsequent research questions of this thesis. The goal of the investigation presented in this
chapter is to identify, classify, and evaluate the state of the art on ATD identification from the
following three perspectives: publication trends, characteristics, and potential for industrial
adoption. Specifically, starting from a set of 509 potentially relevant studies, we systemat-
ically selected 47 primary studies and analyzed them according to a rigorously predefined
classification framework. The analysis of the obtained results will support both researchers
and practitioners by providing (i) an assessment of current research trends and gaps in ATD
identification, (ii) a solid foundation for understanding existing (and future) research, and (iii)
arigorous evaluation of its potential for industrial adoption.

26

Contents

2.1

2.2

2.3

2.4

2.5

2.6

2.7
2.8

Introductionottt ittt i e e 28
Relatedwork0 29
StudyDesign ot ittt e i e e 30
231 ResearchGoal 30
2.3.2 ResearchQuestions. 31
2.3.3 Searchandselection 31
234 DataBxtraction, 34
235 DataSynthesis. 34
2.3.6 StudyReplicability, 35
Results - Publicationtrends (RQ1.1) o v v v v v v v v v v 35
24.1 Publicationyear. 35
2.4.2 Publicationtypeso 36
2.4.3 PublicationVenues 36
Results - Researchfocus (RQ1.2) ¢c00eeenn. 37
251 Levelofabstraction. 38
252 ATDIDefinition, 38
253 AnalysisType 40
254 AnalysisInput 42
255 TemporalDimension. 43
2.5.6 ATDResolution 44
2.5.7 ToolSupport. 44
Results - Potential for Industrial adoption (RQ1.3) 46
2.6.1 ToolAvailability, 46
2.6.2 IndustryInvolvement 46
2.6.3 Rigor andIndustrial Relevance 47
Threatstovalidityo v i i v ittt 50
Conclusionsttt ineneonenenns 51

27

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

2.1 Introduction

In order to bootstrap our investigation on architectural technical debt identification, a required
first step is to gain a rigorous overview of the state of the art. Hence, in this opening chapter,
we present a systematic literature review specifically studying the existing body of knowledge
on architectural technical debt identification. While some studies have been conducted to
provide an overview of the state of the art on ATD in general [11, 72], none of these focused
specifically on ATD identification. The goal of this study is to fill this gap by providing an
evidence-based overview of the existing ATD identification research landscape. This study has
been carried out by adopting a well-established methodology called systematic mapping [73,
74], and we applied it on peer reviewed papers focusing on ATD identification in software-
intensive systems. Through our systematic mapping process, we selected 47 primary studies
among 509 potentially relevant studies, fitting at best a set of rigorously-defined inclusion
and exclusion criteria. Then, we created a dedicated classification framework composed of 13
different parameters for comparing techniques for ATD identification, and we applied it to all
primary studies. We analyzed and discussed the obtained data under three complementary
perspectives: publication trends, characteristics, and potential for industrial adoption.

The main contributions of this study are the following:

an objective map of the state of the art in ATD identification;

a rigorously-built classification framework for past, present, and future techniques for
ATD identification;

an evaluation of publication trends, characteristics, and potential for industrial adop-
tion of existing research on ATD identification;

* adiscussion of the emerging research trends, patterns, and gaps, and their implications
for future research on ATD identification.

The audience of this study is composed of both (i) researchers willing to contribute to the
area of ATD identification (ii) practitioners willing to understand existing research on ATD
identification and adopt the most appropriate solutions for their technical, business, and
organizational needs.

The remainder of this chapter is organized as follows. Section 2.2 discusses related work and
compares it to this study. Section 2.3 presents the design of this study from a methodological
perspective, whereas Sections 2.4, 2.5, and 2.6 discuss obtained results. Finally, Section 2.7
describes threats to validity and Section 2.8 closes the chapter.

28

2.2. Related work

2.2 Related work

A number of secondary studies focusing on TD exist to date. In Table 2.1 we give a schematic
overview of those studies and in the following we discuss each of them.

Table 2.1 — Secondary studies on TD

Secondary study title Year Focus #Studies Time frame
Tom et al. [10] 2013 TD 35 N/A
Lietal. [9] 2015 TD 94 1992-2013
Alves et al. [4] 2015 TD 100 2006-2014
Ampatzoglouetal. [5] 2015 TD (financial) 69 2009-2013
Besker et al. [11] 2016 ATD 26 2012-2015
Besker et al. [72] 2017 ATD 42 2011-2016
This study 2018 ATD identification 47 2009-2017

Most of the secondary studies on TD consider it only from a general perspective (i.e., they are
not specific to architectural TD). For example, Li et al. [9] consider a set of 94 primary studies,
with the goal to provide a comprehensive understanding of the notion of TD and the related
research activities. This was achieved by thematically classifying the primary studies into 10
coarse-grained TD types, among which ATD results to be the second most studied subject
(together with test TD and design TD), appearing in 25 different researches.

In a similar research carried out by Alves et al. [4], the TD literature was inspected to charac-
terize the types of TD, their indicators, management strategies, maturity level, and possible
visualization techniques. The authors analyzed 100 studies published between 2010 to 2014,
which resulted in the conception of a preliminary taxonomy of TD types and an overview of
the current research trends of TD. While, as reported also in the research by Li et al. [9], ATD
resulted to be the second most frequent TD type, no in-depth analysis was reported for such
topic.

In an earlier research, Tom et al. [10] present a literature review considering 35 primary studies.
The focus in this case is to identify the nature of TD and its impact on software development
activities. From the results, the authors derived a theoretical framework illustrating the dimen-
sions of TD, attributes, precedents and outcomes. As compared to the previously-mentioned
literature studies, the focus of this research is to gain understanding of the current research
activities related to TD; accordingly, it does not concentrate on any specific aspect of TD.

In their systematic literature review, Ampatzoglou et al. [5] considered a more detailed overview
of a specific TD topic, namely the economic implications of TD. In their work, the authors

29

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

analyzed 69 primary studies to understand how financial aspects are defined in the TD context
and how these are related to various aspects of software engineering. Their results show that
financial approaches for TD management lack consistency in their applications, as the same
approach is utilized differently in different studies. In [5], ATD is considered exclusively from a
financial point of view.

The secondary study of Besker et al. [11] is the closest to ours by focusing exclusively on
ATD-related literature. The authors inspect 26 primary studies to conceive a descriptive model
aimed to provide a comprehensive interpretation of the ATD phenomenon. Their model
identifies the main characteristics of ATD in four clusters: ATD Identification, ATD Checklist,
ATD Impediments, and ATD Management. Each cluster is further decomposed into Focus areas
(e.g. Relevance, Challenges, Methods/Tools), which are characterized by different aspects (e.g.
Methods/tools is composed of Measuring, Tracking and Evaluating). This study was extended
in a later publication [72] presenting a more comprehensive investigation of the literature and
an in-depth analysis of the results. Our study differs from theirs by zooming into a specific
challenge they identify, namely ATD identification.

In conclusion, by inspecting the TD secondary studies, we can observe that none of the studies
aims directly at the characterization of existing approaches for ATD identification. We therefore
conducted this research, focusing exclusively on the research landscape of ATD identification,
in order to fill this gap and complement the existing literature.

2.3 Study Design

In this section we report the study design that was strictly followed while planning and con-
ducting research reported in this chapter. The study design was concieved by following a set of
well-established guidelines for software engineering literature studies [73].

2.3.1 Research Goal

The research was designed with the goal of characterizing comprehensively the current state of
the art of ATD identification research. More specifically, by following the Goal-Question-Metric
approach [75], our goal can be formalized as follows:

Purpose Identify, classify, and evaluate

Issue publication trends, characteristics, and potential for indus-
trial adoption

Object of existing techniques for ATD identification

Viewpoint from the researcher’s and practitioner’s point of view.

30

2.3. Study Design

2.3.2 Research Questions

From our research goal, we can derive the following three research questions underlying our
study:

RQ1.1: What are the publication trends about techniques for ATD identification? By answer-
ing this research question we aim to assess the ongoing trends of scientific interest on ATD
identification techniques in terms of publication frequency, most prominent venues where
academics are publishing their results on the topic and most recurrent venue types.

RQ1.2: What are the characteristics of existing techniques for ATD identification? By answering
this research question we aim at providing (i) a solid framework for examining and classifying
existing (and future) research on ADT identification techniques, and (ii) an understanding of
current research trends and gaps in the state of the art of such techniques.

RQ1.3: What is the potential for industrial adoption of existing techniques for ATD identifica-
tion? By answering this research question we aim at assessing to what extent the current ATD
identification research results are ready to be transferred and adopted in an industrial context.

2.3.3 Search and selection

The search and selection process was designed as a multi-stage process, as depicted in Figure
2.1. This enabled us to rigorously control on the number and characteristics of the studies
considered during the various stages. A description of each process followed is provided in the
remainder of this section.

47
Validation o
N
Initial Impurlty 509 | Application | 40 through
of selection Snowballing
search removal . comparison
criteria
with Scopus

TOTAL
‘

Figure 2.1 - Overview of the search and selection process

2.3.3.1 Initial search

To identify the initial set of studies we performed an automatic search query on one of the
largest and most complete scientific database and indexing system, namely Google Scholar.

31

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

We selected such digital library for the following reasons: (i) it resulted to provide the highest
number of potentially relevant studies compared to other four relevant libraries (Scopus, ACM
Digital Library, IEEE Explore, and Web of Science), (ii) as reported in the set of guidelines
by Wholin et al. [76], the adoption of such indexer results to constitute a sound choice to
identify the initial set of literature for snowballing processes, (iii) the query results could
be automatically extracted from the indexer. The research query utilized was conceived to
encompass as much relevant studies as possible and is as follows:

Listing 2.1 — Search Query

TITLE: (architecture OR architectural OR architect OR
architecting OR TD OR "technical debt" OR ATD)

AND (architecture OR architectural OR architect

OR architecting) AND ("technical debt")

T

The query selects studies containing either a keyword referring to “architecture” or “technical
debt” and related acronyms in their title (Listing 6.1, lines 1-2). Additionally, the full-text of
the studies must contain both on of the keywords referring to “architecture” and the phrase
“technical debt” (Listing 6.1, lines 3-4). The exclusive presence of related acronyms, i.e. “TD”
and “ATD” in the full-text is not considered as a valid hit. The considered timeframe end was
delimited by when the query was first executed (November 2017), in order to avoid potential
discrepancies of results due to different query execution times. The start date was not set, in
order to a void the introduction of a potential bias, even if it could have been set to when the
term “technical debt” was first referenced [3].

2.3.3.2 Impurity removal

From the initial execution of the search query, a number of elements resulted not to be research
papers (e.g. patents, standards etc.). Such occurrences were manually removed from the initial
set of potentially relevant studies.

2.3.3.3 Application of selection criteria

Subsequent to the impurity removal process, we filtered all the remaining research papers
according to a set of rigorously defined selection criteria. A research paper was included in
the set of primary studies exclusively if it satisfied all of our inclusion criteria and none of
the exclusion ones. Several exclusion rounds were adoptive by utilizing an adaptive reading
depth [77], in order to thoroughly examining the literature in a time-efficient and objective
manner. The inclusion and exclusion criteria utilized were:

I1- Studies focusing on TD identification in software-intensive systems. This inclusion

32

2.3. Study Design

criterion is utilized to select exclusively studies considering TD.

I2- Studies focusing on the architecture of software-intensive systems. This inclusion
criterion is utilized to filter out studies considering other levels of abstraction, such as
specific code implementation details.

13- Studies presenting or using a technique aimed to the identification of ATD in software-
intensive systems. With this inclusion criteria, we ensure that only papers discussing
the identification of ATD are included.

El- Secondary or tertiary studies (e.g., systematic literature reviews, surveys, etc.). This
exclusion criterion is adopted in order to exclude studies which do not report the desired
level of detail of ATD identification techniques.

E2- Studies in the form of editorials and tutorial, short papers, and poster, as they are
deemed to not provide the required level of detail and information.

E3- Studies that have not been published in English language, as their analysis would result
to be too time consuming.

E4- Studies that have not been peer reviewed, in order to ensure the high quality of the
studies considered.

E5- Duplicate papers or extensions of already included papers, in order to avoid possible
threats to conclusion validity.

E6- Papers that are not available, as we cannot inspect them.

2.3.3.4 Snowballing

In order to mitigate potential biases w.r.t. the construct validity of this study, the automatic
search was complemented by a snowballing process [78]. Specifically, a closed recursive
backward and forward snowballing activity was conducted [76]. During this process, researches
either citing and cited by the ones selected in the previous stages were examined, in order to
enlarge the set of potentially relevant studies.

2.3.3.5 Validation through Scoups

In order to further mitigate the potential threats to validity resulting from the selection of a
specific digital library, we conducted an supplementary search query execution on Scopus. We
chose this additional database as it is defined as the largest abstract and citation database of
peer-reviewed literature [79]. From the query execution, most of the paper indexed resulted
to be either primary studies or papers excluded in the previous selection stages. Only 3 new
papers were identified. After the application of the selection criteria, all were discarded.

33

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

2.3.4 Data Extraction

The purpose of this process was to (i) create a classification framework for the primary studies
and (ii) extract the data from each primary study. The classification framework consists of
three parts, each addressing one of the research questions (see Section 2.3.2).

2.3.4.1 Publication Trends (RQ1.1)

In order to assess the trends of ATD identification research, three attributes were considered,
namely publication year, publication type andpublication venue.

2.3.4.2 Research Focus (RQ1.2)

To characterize the focus of the primary studies a systematic keywording process [80] was
adopted to define some of the parameters of our comparison framework. This process is
constituted of two distinct steps: (i) collection of keyword and concepts, i.e. the identifica-
tion of keywords and concepts by inspecting the full-text of all primary studies, and the
subsequent combination of these to clearly identify the context, nature, and contribution
of the research (ii) keyword clustering, i.e. the clustering the identified keywords and con-
cepts into categories, in order to build up a classification framework. The output of this stage
will be the classification framework containing all the identified parameters (each of them
having a specific type and possible values), representing a specific aspect of ATD identifica-
tion. The parameters considered in order to answer RQ2 were: architectural level (key-
worded), ATDI definition (keyworded), analysis type (keyworded), analysis input
source (keyworded), temporal dimension, ATD resolution, and tool support. For a
definition of each attribute we refer to Section 6.3.4.2.

2.3.4.3 Potential for industrial adoption (RQ1.3)

To assess the potential for industrial adoption, four distinct facets were considered, namely:
tool availability, industry involvement, rigor and industrial relevance. The
data of the last two attributes were collected by adopting an ad-hoc data extraction process
[81].

2.3.5 Data Synthesis

Through a data synthesis process we aggregated and summarized the data extracted from
the primary studies [82, §6.5] in order to understand, analyze, and classify the landscape of

34

2.4. Results - Publication trends (RQ1.1)

ATD research. In particular, we adopted content analysis (to categorize and code the primary
studies in broad thematic categories) in combination with narrative synthesis (used to describe
details and interpret the findings resulting from the content analysis).

2.3.6 Study Replicability

In order to provide the ability to fully replicate the research, a replication package of the study is
publicly available!. The package includes (i) the protocol describing comprehensively the study
design details, (ii) a detailed description of all the parameters composing the classification
framework, (iii) the raw data extracted in each phase (iv) the scripts utilized for the data
processing, and (v) the list of primary studies.

2.4 Results - Publication trends (RQ1.1)

In the remainder of this section we report the results of the analysis of publication year, type,
and venue of each primary study. In the tables reported in this and the following sections
(Section 2.4-2.6) the recurrence of concepts across primary studies is reported in both numbers
and the proportional sizes of the pink horizontal bar charts (see Columns “#Studies” of Tables
2.2-2.10).

2.4.1 Publication year

Figure 2.2 shows the number of primary studies appearing each year, clustered by venue type.
Primary studies span from 2009 to 2017, i.e., the year in which the search query was executed.
While the term TD was first coined in 1992, we can observe that several years passed before
the TD metaphor was explicitly considered in software architecture. Interestingly, the paper
published in 2009 (P41) does not explicitly refer to “ATD” but considers “architectural bad

smells” instead.
In general, a growing trend can be identified through the years, demonstrating the recent

interest of researchers and practitioners in the subject. As an outlier, a drop of number of
primary studies can be noticed for the year 2017. Such occurrence should be attributed to the
fact that the search query used to select the primary studies was executed before the end of
2017, leading to partial results for this year.The reported publication trend is confirmed also in
the recently published study by Besker et al. [72], focusing on the main ATD characteristics
and relations among them.

Thttp:/ /www.s2group.cs.vu.nl/techdebt-2018-replication-package

35

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

oo O
Jouma ® oo @

SO VS e W s W g“ ®

Figure 2.2 - Primary studies publication year and venue type

2009
2010
2011
2012
2013
2014
2015
2016
2017

2.4.2 Publication types

From the distribution depicted in Figure 2.2 we observe that the majority of primary studies is
published in conferences (28/47), followed by a non-negligible number of workshops (12/47).
Only a modest number of studies (7/47) is published in journals. We can conjecture that such
trend is due to the relatively recent interest in ATD identification by the software engineering
research community. We can expect a growth in the number of more scientifically-rewarding
publication types (like journals) in the future. This conjecture is partially confirmed by the 3
journal publications only in 2017.

2.4.3 Publication Venues

Table 2.2 reports on the number of studies appearing in the most recurrent venues. There
we can observe that ICSE is the most frequent venue (9/47) followed by MTD (6/47) and
ICSA/WICSA? (6/47). The presence of MTD as second most recurrent venue highlights the
importance that such workshop has in the TD research area. In general, due to the nature
of the most recurrent venues, we can conjecture that the primary studies are characterized
by being of high quality and have potentially high interest and resonance in the scientific
community.

Table 2.2 shows that a relatively high number of primary studies (18/47) have been published
in different venues, spanning different research areas like software maintenance and evolu-

2From 2017, WICSA has been renamed as ICSA.

36

2.5. Results - Research focus (RQ1.2)

Table 2.2 — Publication venues

Venue acronym #Studies Studies

International Conference on Soft- | 9 P1, P6, P10, P15, P20, P25, P32, P42, P45
ware Engineering (ICSE)

Managing Technical Debt workshop 6 P2, P21, P24, P30, P35, P40

(MTD)

International Conference Software 6 P7, P9, P11, P19, P22, P36

Architecture (ICSA) / Working IEEE-
IFIP Conference on Software Archi-
tecture (WICSA)

European Conference on Software 3 P41, P46, P47
Maintenance and Reengineering

(CSMR)

Information and Software Technol- 2 P4, P23

ogy (IST)

International Conference on the 2 P5, P31
Quality of Software Architectures

(QoSA)

International Conference on Agile | 2 P8, P28
Software Development (XP)

Other 18 P43, P39, P27, P18, P38, P14, P17, P12, P29, P33,

P34, P37, P3, P44, P16, P13, P26

tion (P14), software architecture erosion and architectural consistency (P3), and dependency
and structure modeling (P27). This might indicate that the TD research community is still
undergoing a consolidation phase.

Main findings (RQ1). ATD identification is attracting a growing scientific interest
in the last years. The research landscape is quite fragmented, with ICSE, MTD, and
ICSA as most targeted venues. So far, researchers mostly targeted conferences and
workshops, but it is expected that journal publications will raise in the coming years.

2.5 Results - Research focus (RQ1.2)

Here we report the characteristics of ATD identification techniques as they emerged from our
keywording process (see Section 2.3.4).

37

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

2.5.1 Level of abstraction

We uncovered four distinct and incremental levels of abstraction during our keywording pro-
cess, namely: Source Code Classes, Source Code Files, Source Code Packages, and Components
and Connectors.

As shown in Table 2.3, source code packages, defined as related files implementing the same
functionality, are the most recurrent building blocks of the considered architectures (13/47).
Components and Connectors are adopted by a similar number of studies (12/47), while Source
Code Classes and Source Code Files are used in a lower number of studies.

Table 2.3 — Architecture level

Architecture keywording #Studies Studies

Source Code Packages 13 P3, P4, P5, P7, P9, P14, P27, P28, P30, P38, P39, P40, P47
Components and Connectors | 12 P10, P11, P18, P21, P22, P23, P24, P34, P36, P41, P46, P47
Source Code Classes 9 P9, P24, P26, P28, P30, P31, P44, P45, P47

Source Code Files 8 P1, P15, P19, P20, P25, P32, P33, P42

Not specified 11 P2, P6, P8, P12, P13, P16, P17, P29, P35, P37, P43

A considerable number of primary studies (11/47) does not report explicitly the considered
abstraction level. Those primary studies commonly rely on human knowledge (P6, P8, P12, P13,
P29), self-admitted ATDI (P2, P16), and tools in which the architecture definition is implicit
(P17, P35, P37, P43).

The obtained results suggest that as of today there is no common agreement in the literature
about which level of abstraction should be considered when dealing with ATD identification.
We can conjecture that this phenomenon may be a consequence of the fact that (i) a unique and
well-accepted definition of software architecture is also missing in the state of the art and (ii)
the level of abstraction in the proposed techniques is strongly influenced by the types of ATD
sources, such as system source code, its architecture documentation, etc. (see Section 2.5.4 for
the details on ATD sources).

2.5.2 ATDI Definition

Among the current definitions of technical debt, a widely adopted one was formulated by a
group of experts during Dagstuhl seminar 16162 [83]. Simply referred to as the 16162 definition
of technical debt, it specifies technical debt as “design or implementation constructs that are
expedient in the short term, but set up a technical context that can make a future change more
costly or impossible”. In this section we study ATD at a finer-grained level, by considering the
definitions of ATD provided in the primary studies.

38

2.5. Results - Research focus (RQ1.2)

The keywording process resulted in four recurrent categories of ATDI (see Table 2.4): Depen-
dency Violations among architectural components (27/47), Non-modularity (26/47), Compli-
ance Violations (18/47) and Change Proneness (9/47). Dependency Violations describe archi-
tectural violations resulting from unfit dependencies among architectural components. Such
type of ATDI is usually caused by unsound architectural design choices, incorrect implementa-
tion, or architectural deterioration. Non-modularity refers to the sub-optimal modularization
of architectural components. Lack of modularity often causes small changes to propagate
to other portions of a system, lowering the maintainability and evolvability of software sys-
tems. Compliance violations refer to the deviation w.r.t. a certain architectural pattern (e.g.
model-view-controller) affecting the quality of the system. Change Proneness, instead, refers
to architectural components that are modified with high frequency.

Table 2.4 — ATDI definition

ATDI keywording #Studies | Studies

Dependency Violations 27 P1, P2, P7, P8, P9, P10, P11, P12, P14, P16, P17, P19, P20, P21, P22,
P23, P27, P28, P30, P32, P34, P35, P38, P40, P41, P45, P46

Non-Modularity 26 P1, P2, P4, P5, P8, P9, P10, P11, P12, P14, P15, P16, P17, P18, P19, P20,
P28, P29, P30, P32, P34, P35, P41, P42, P45, P46

Compliance Violations 18 P3, P4, P6, P7, P11, P12, P13, P21, P23, P24, P26, P31, P36, P37, P39,
P43, P45, P47

Change Proneness 9 P1, P9, P14, P19, P20, P29, P32, P33, P45

Custom 18 P5, P8, P11, P16, P18, P19, P20, P22, P25, P28, P29, P30, P35, P37, P39,
P41, P42, P44

In 25 primary studies more than one type of ATDI is used. In most of the cases this is due to
the definition of more than one ATDI in the paper. For example, in P19 five different ATDIs
related to change proneness, dependency violations, and non-modularity of source code files
are defined. Additionally, a considerable number of papers (18/47) is based on a custom
definition of ATDI that could not be mapped onto any specific category. Such occurrences
focus on an ad-hoc definitions of ATD, e.g. lack of reusability (e.g., P9) or non-uniformity of
package name patterns (e.g., P39).

From the high heterogeneity of the gathered data we can conclude that there is no common
agreement on what defines an ATDI. We can hence conclude that, while different types of
ATDI are required in order to comprehensively model ATD, the literature is still lacking in a
comprehensive taxonomy for a sound classification of ATDIs.

Interestingly, while some papers mention the 16162 technical debt definition [83], we note
that the definition of ATDI in the primary studies is never directly compared to such definition.
In fact, the definition of ATD itself in primary studies is mostly implicitly defined via the
description of the identification approaches. We conclude that more effort should be spent in
clearly documenting the adopted definition of ATD and ATDI, and relate such definition with
the other ones present in the literature for the sake of clarity and completeness.

39

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

2.5.3 Analysis Type

In Table 2.5 the most recurrent analysis types are reported. From the extracted data we can
observe that a large number of analysis types are performed in the literature.

Table 2.5 — Analysis type

Analysis keywording #Studies Studies

Architectural Antipatterns 25 P3, P4, P5, P7, P9, P10, P14, P15, P17, P19, P20, P24, P25, P26, P27,

and smells P28, P30, P32, P35, P37, P38, P41, P42, P46, P47

Modularity Analysis 19 P4, P5, P9, P10, P15, P17, P19, P20, P24, P28, P32, P33, P34, P35, P37,
P41, P42, P45, P46

Evolution Analysis 16 P1, P4, P5, P6, P10, P15, P19, P20, P25, P26, P31, P32, P34, P38, P42,
P45

Dependency Analysis 15 P14, P15, P22, P24, P27, P28, P30, P32, P33, P34, P35, P37, P40, P42,
P43, P46

Cost Analysis 14 P4, P6, P8, P10, P17, P20, P21, P22, P27, P29, P30, P33, P34, P38

Human knowledge based 10 P6, P8, P11, P12, P13, P18, P21, P23, P29, P36

Compliance Checking 6 P3, P7, P31, P39, P43, P47

Change Impact Analysis 6 P9, P10, P11, P18, P21, P22

OO0 Relation Analysis 6 P1, P25, P26, P31, P44, P47

Visualization 5 P10, P21, P27, P40, P43

Manual Classification 4 P16, P39, P40, P41

Self Admitted 2 P2, P16

The majority of the ATD identification techniques are based on the identification of archi-
tectural antipatterns and smells among architectural components. Examples of identified
architectural antipatterns include cyclic dependencies between architectural components
and unstable Interfaces. In particular, such techniques usually entail (i) the identification of
architectural components (usually achieved by clustering source code artifacts) and, (ii) the
assessment of properties of/among the components, usually carried out through modularity
analyses (19/47), dependency analyses (15/47), or a combination of the two3.

Modularity analysis consists in assessing if system functionalities are separated into indepen-
dent, self-contained modules [84]. Modularity resulted the second most recurrent type of
analysis (19/47). Such approaches commonly entail the identification of architectural compo-
nents and functional requirements of a software system, the evaluation of the modularization
of components, and the eventual cost analysis of the rework cost required to carry out a
refactoring process.

Dependency analysis is based on the evaluation of dependencies between architectural com-
ponents in order to identify irregularities (e.g., circular dependencies). The use of Design

3We are aware that modularity and dependency analyses can be considered as particular types of
architectural antipattern. Given their high frequency in the primary studies, we considered them as a
separate categories.

40

2.5. Results - Research focus (RQ1.2)

Structure Matrices (DSM) for dependency analysis results to be quite widespread for ATDI
identification (P1, P10, P15, P19, P20, P22, P27, P32, P42, P45).

In order to discover and understand ATD related phenomena, many studies rely on analyses
of the evolution of software systems through time (16/47). Such approaches take as input
historical data such as architectural documentation and version history. We observe that our
primary studies adopt a heterogeneous set of approaches to identify ATD. For example, in P1
a technique based on locating co-changing files in order to identify “architectural roots” of
systems is presented, while in P5 relates modularity metrics to the average number of modified
components per commit. From the variety of approaches utilizing evolution analysis we can
evince the high potential that historical data has for ATD identification.

Arelatively high number of studies considers the financial aspect of managing ATD through cost
analyses (14/47). Such studies range from risk analyses (e.g., P34) to methods aiding decisions
on if and when ATD should be refactored (e.g., P6). The presence of numerous studies focusing
on cost implications of ATD is a meaningful indicator. In fact this demonstrates how the
ATD problem is rooted in practice and furthermore shows that the importance of effectively
understanding ATD issues and planning future maintenance activities is not neglected in
current research activities.

Human knowledge based analyses are frequently adopted in the primary studies (10/47). Such
types of analyses are conceived to identify ATDIs in systems by extracting human knowledge
through structured- or unstructured processes such as surveys, interviews, and questionnaires.
We can conjecture that the reason of the high adoption of human knowledge based analyses
is twofold: (i) some types of ATDIs need insights that are not documented (e.g., rationale
behind a design decision, P11), and (ii) human knowledge provides validation to comple-
ment (semi-)automated ATD identification analyses (e.g., gathering feedback by presenting to
stakeholders a visualization of the automatically identified ATDIs, P21).

Analyses based on compliance checking assess the discrepancy between intended and imple-
mented architecture, and the deterioration of the architecture in time [85]. In most of the cases
such approaches are tool supported (P3, P7, P43, P47). One of the studies (P3) relies on an
uncommon technique to discover architectural compliance in software systems, namely a
genetic algorithm.

Change impact analysis is about the evaluation of different design alternatives and/or the
calculation of the effort required to resolve or avoid ATD in the future [86]. In many cases
this typology of studies involves also cost analyses (P10, P21, P22). Approaches considering
different alternative results are not common in our dataset (P9, P10, P11, P18, P21, P22). We
can conjecture that this is due to the fact that only few papers consider ATD resolution, as
reported in Section 2.5.6.

Few studies report analyses based on the object-oriented (OO) paradigm. In most of the cases

41

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

such approaches adopt consolidated software metrics and transfer the gathered results to the
architectural level. For example, in P26 architecturally relevant classes are identified through
code smells and the change history of the classes, while in P44 architecture quality is assessed
by analyzing code smells among related OO classes. In general, the presence of such studies
indicates that a portion of ATD analyses is rooted in code analysis, highlighting the thin line
that separates software architecture and the source code of the system in this research area.

Only few studies focus on ATD visualization techniques. This observation is confirmed by
Alves et al. [87] in their secondary study on TD. This result shows that this research area is
only marginally considered by current research activities and requires to be further explored,
especially considering its potential efficacy in the communication of ATD issues.

A minority of analyses involve a manual classification processes. For example P40 presents
a visualization approach to highlight ATD-prone dependencies, based on which architects
can manually select the most significant to be considered for refactoring. We can conjecture
that the low presence of such type of analysis is due to the high effort required to carry out
manual processes and their relative low scalability, which makes difficult their application to
large software systems.

Only two studies focusing on self-admitted ATD were found in the primary studies. Such studies
rely on code and commit comments where developers “self-admittedly” identify ATDIs. Such
technique is commonly used to identify code related TD [88]. The low number of studies focus-
ing on self-admitted ATD might indicate that it is still emerging and under-explored, or simply
that architectural aspects of software systems are not frequently discussed in repositories (e.g.
in commit messages, issue trackers).

2.5.4 Analysis Input

Our analysis identified five categories of ATD analysis inputs, namely: Source Code, Evolu-
tionary Data, Architectural Documentation, Survey and Issue Tracker. As shown in Table 2.6,
Source Code is the most recurrent analysis input (32/47). From this result we can observe that
the majority of ATD identification techniques relies to a certain extent on the inspection of
code-related properties. A smaller number of studies requires Evolutionary Data (16/47), such
as commit history or measurements taken over time. Interestingly, two papers that utilize
evolutionary data do not require source code as additional source, but rely on data extracted
from human knowledge (P6), or use pre-existing architectural documentation (P10).

A lower number of studies takes Architectural Documentation as input (11/47). We conjecture
that this is due to the difficultly to get access to industrial documentation, which is most
often out of date, when available [89]. In line with the results reported in Section 2.5.3, 10
studies report approaches that require human knowledge as input source. Finally, a minority
of studies takes Issue Trackers as additional input to source code (7/47). This latter typology of

42

2.5. Results - Research focus (RQ1.2)

Table 2.6 — Analysis input source

Input source #Studies Studies

Source Code 32 P1, P2, P3, P4, P5, P7, P9, P14, P15,
P16, P17, P19, P20, P24, P25, P26, P28,
P30, P32, P33, P34, P35, P37, P38, P39,
P40, P41, P42, P43, P44, P45, P46, P47

Evolutionary Data 16 P1, P4, P5, P6, P10, P15, P16, P19, P20,
P25, P26, P32, P34, P38, P42, P45

Architectural Documentation 11 P7, P10, P11, P13, P18, P22, P23, P24,
P27, P31, P36

Human knowledge 10 P6, P8, P11, P12, P13, P18, P21, P23,
P29, P36

Issue Tracker 7 P1, P15, P19, P20, P25, P32, P42

studies associate ATD to bug-related issues in source code. For example, in P20 the number of
architectural flaws in a file is correlated to number of bugs in it, its change frequency, and the
total amount of effort spent on it.

2.5.5 Temporal Dimension

Table 2.7 provides an overview of the papers taking into account the temporal dimension. In
order to identify ATD, almost half of the papers considers the evolution of software systems
through time (22/47). Here we can observe a discrepancy between the studies considering
software evolution and the ones adopting Evolutionary Data as input (see Table 2.6). This
difference is due to the studies relying on human knowledge extraction. In fact, those studies
rely on human knowledge instead of evolutionary software artifacts in order to reason about
the evolution of software systems.

Table 2.7 — Temporal dimension

Temporal dimension #Studies Studies

Not considered 25 P2, P3, P7, P8, P9, P11, P14, P16, P17, P21, P22, P24, P28, P30, P31,
P33, P35, P37, P39, P40, P41, P43, P44, P46, P47

Considered P2 P1, P4, P5, P6, P10, P12, P13, P15, P18, P19, P20, P23, P25, P26, P27,
P29, P32, P34, P36, P38, P42, P45

Surprisingly, from the gathered data we can observe that the majority of the studies does not
consider the temporal dimension. Nevertheless we have to remark that this aspect is analysis-
specific, and hence not required per se in order to identify ATD in a system. For example, P2

43

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

considers self-admitted TD in source comments of a single software release, and hence can
pinpoint ATDI in source code without inspecting the entire version history of a system.

2.5.6 ATD Resolution

ATD resolution refers to refactoring strategies aimed to partially or completely remove identified
ATDIs. Table 2.8 gives an overview of which studies consider ATD resolution. From the results
we can observe that only a limited number of studies reports ATD resolution strategies (15/47).
This could be a symptom of the relative young age of the ATD research field, where most of
the research effort is still devoted to processes aimed at understanding the ATD phenomenon,
rather than at resolving the identified ATD.

Table 2.8 — ATD resolution

ATD resolution #Studies Studies

Not considered 32 P42, P22, P41, P48, P24, P47, P2, P21, P31, P44, P45, P3, P14, P16, P30,
P36, P38, P8, P40, P46, P27, P17, P5, P18, P43, P19, P35, P15, P20, P26,
P33, P29

Considered 15 P11, P7, P28, P34, P9, P25, P10, P13, P1, P23, P37, P39, P6, P12, P4

2.5.7 Tool Support

Finally, from the studies we extracted which tool were utilized in order to carry out the ATDI
identification processes. This attribute is meaningful both for (i) researchers who want to
conceive new tool-based ATD identification techniques and (ii) practitioners needing tools
to get further insights in their projects. A comprehensive list of the most recurrent tools is
reported in Table 2.9.

Titan results to be the most used tool in our primary studies. Conceived by Xiao et al. [90],
Titan introduces a new architecture model referred to as “design rule space”, intended to
capture both the architecture and the evolutionary structure of systems in order to identify
architectural issues. The second most used tools are Structure101% and SonarGraph®. These
two commercial tools are static analyzers implementing functionalities to support software
architects through dependency and modularity analysis at various levels of abstraction.

4http://structure101.com
Shttp://www.hello2Zmorrow.com/products/sonargraph

44

2.5. Results - Research focus (RQ1.2)

Table 2.9 — Tool supported

Tool supported #Studies Studies

Titan 6 P1, P15, P19, P20, P33, P43
Structurel01 4 P7, P28, P36, P47
SonarGraph 4 P7, P36, P38, P48
Understand 3 P25, P32, P48
inFusion 3 P28, P36, P38
SonarQube 33 P28, P36, P38
Arcan 2 P9, P14

CAST 2 P17, P36
ARAMIS 1 P44

CLIO 1 P46

Call Graph Extractor 1 P34

HUSACCT 1 P3

Hotspot Detector 1 P19

Lattix 1 P10
ModularityCalculator 1 P5
CommitAnalyer 1 P5

Ref-Finder 1 P26

Organic 1 P26

JSpIRIT 1 P26

SA4) 1 P28

iPlasma 1 P39

In total, a considerable number of primary studies (24/47) presents ATD identification ap-
proaches that require tool support. Nevertheless, this result has to be evaluated with caution.
In fact, as further detailed in Section 2.6.1, only a subset of ATD identification techniques
feature a publicly-available tool.

Main findings (RQ2). ATD identification is strongly rooted into TD techniques work-
ing at the source code level (this is evident when considering the abstraction level,
input, and ATDI definitions of the proposed techniques).

Different interpretations of software architecture and ATDIs are proliferating in the
state-of-the-art.

The literature proposes a large and heterogenous set of analysis types, ranging from
the identification of architectural antipatterns, to dependency analysis, change impact
analysis, and even manual classification of software artifacts.

ATD resolution is considered in less than one-third of the primary studies, indicating
a promising research direction for the future. Similarly, the temporal dimension of
ATD identification has been considered only in less than half of the primary studies.
A large number of tools for ATD identification are being proposed and used, but only
a small portion of them is publicly available.

45

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

2.6 Results - Potential for Industrial adoption (RQ1.3)

In this section we report on the results regarding the potential of the studies for industrial
adoption.

2.6.1 Tool Availability

The availability of a tool that implements a proposed ATD identification approach is required
in order to enable the efficient adoption of such approach in industry.

Table 2.10 — Tool availability

Tool availability #Studies Studies

Not available 35 P1, P2, P4, P6, P8, P10, P11, P12, P13, P15, P16, P17, P18, P19, P20,
P21, P22, P23, P24, P25, P27, P29, P30, P31, P32, P33, P34, P36, P39,
P40, P41, P42, P43, P44, P47

Available 12 P3, P5, P7, P9, P14, P26, P28, P35, P37, P38, P45, P46

As shown in Table 2.10, only a small number of studies is implemented in an available tool.
In particular, most of such studies makes use of a novel tool created ad-hoc for the ATD
identification described in the paper or integrates tools that were already developed by the
authors. For example, in P5 two publicly available tools developed by the authors are utilized:
one to calculate modularity metrics (ModularityCalculator) and the other to calculate the
average number of modified components per commit (CommitAnalyzer).

From these results we evince that, while some approaches are available in the form of a tool,
this is not true for most of the studies (35/47). This might indicate that (i) numerous researches
provide theoretical results and proof of concepts, and/or (ii) more effort is needed to ease the
application of ATD identification approaches.

2.6.2 Industry Involvement

In order to assess the involvement of industry in the research related to ATD identification, we
categorize the primary studies into three partially overlapping categories, namely: academic,
industrial and mixed. A study is classified as academic if all authors are affiliated to universities
or research institutes, industrial if all the authors are affiliated to industrial companies and,
mixed if co-authors are from both academia and industry. The distribution of the primary
studies according to this classification is reported in Figure 2.3.

As shown in Figure 2.3 the majority of the researches were conducted from an academic-only
perspective (38/47), some studies emerged from a mixed perspective (7/47) and industry-

46

2.6. Results - Potential for Industrial adoption (RQ1.3)

Academia and industry (7)

Academia-only (38) .
Academia

(45)

Industry
©)

Industry-only (2)

Figure 2.3 - Distribution of industry involvement

only studies are rare (2/47). From these results we can observe that the research topic is still
addressed mostly from an academic perspective; more partnerships between industry and
academia are necessary in order to enable beneficial knowledge exchanges and acquire a more
comprehensive understanding of the problems and applicable solutions.

2.6.3 Rigor and Industrial Relevance

To gain further insights into the potential for industrial adoption of the ATDI identification
approaches, we evaluated the rigor and industrial relevance of the studies. This process was
carried out by applying the well-defined classification model introduced by Ivarsson et al. [81].
Accordingly, Rigor refers to the accuracy or exactness of the research method used, and is
subdivided into three categories: Context, Study design and Validity. These categories assume
values “0”, “0.5”, and “1” reflecting the quality of their description. Industrial relevance, instead,
considers experimental Subjects, Context, Scale, and Method, which assume values “0” or “1”.

2.6.3.1 Rigor

Figure 2.4 shows the distribution of the primary studies among the three rigor categories. We
observe that the context considered in the studies is in most of the cases reported but described
schematically (24/47). This indicates that potential impediments could be encountered when
contexts different from the ones reported in the studies are considered. The study design is
generally characterized by a medium or strong description (19/47 and 23/47, respectively),
enabling the reader to clearly understand the variables considered, the treatments adopted, etc.
Concerning validity, a relatively low number of studies discusses threats to validity (10/47). In
most of the studies validity is only mentioned (19/47) or fully neglected (18/47). This suggests
that more effort should be spent in documenting the validity of the researched approaches,

47

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

50
| 0
40 - O 05
> o 1
c
S 30
g 24 23
‘@ 19 18 19
o 20
§ 15
(9] 10
10 8 5
O -

Context described ~ Study design described Validity discussed

Figure 2.4 — Rigor of primary studies

necessary to increase their potential for industrial adoption.

2.6.3.2 Industrial relevance

As shown in Figure 2.5, most of the studies consider representative industrial subjects (33/47)
and utilize evaluation methods that could be efficiently applied in an industrial setting (37/47).
From the data we can observe that, the fact that ATD is a problem rooted in practice is not
neglected by researchers. In fact, the studies present approaches that can be easily applied in
practice as well as industrial case studies utilized for their evaluation. Naturally, the size of the
systems considered is in the majority of the cases of industrial scale, too (35/47).

On a less positive note, the context is not always representative of the intended usage of the
researched approach, as evaluations are often preformed in an academic setting instead of
an industrial one (19/47). This is reflected also in the high number of academic-only authors
reported in Section 2.6.2.

2.6.3.3 Combined analysis of rigor and industrial relevance

By jointly considering the rigor and industrial relevance distributions of primary studies, we
can sketch which future steps should be taken in order to increase the potential for industrial
adoption of the research results in ATD identification. As illustrated in Figure 2.6, the practical
roots of ATD research seem to deeply influence the industrial relevance of the primary studies,
the vast majority of which has high cumulative scores for such attribute. A higher variability
and lower scores can instead be noticed if rigor is considered. We can hence conclude that in
future research more effort should be put into rigorously describing the context and the threats

48

2.6. Results - Potential for Industrial adoption (RQ1.3)

50
| o
_ O A1
> 40 . a5 37
C
S 30 28
Qo
g 20 - . 19
S
@ 12 10
10
0 -
Subjects Context Scale Method

Figure 2.5 — Industrial relevance of primary studies

to validity, in order to increase rigor quality.

Main findings (RQ3). The lack of available tool support for the majority of the pro-
posed ATD identification approaches hinders knowledge transfer and industrial adop-
tion.

To date, most research is academic-only; to further the field more collaboration be-
tween academia and industry would accelerate knowledge transfer and tuning the
research focus on the most-critical industrial problems.

Research rigor (in terms of reusable study designs) and industrial relevance (in terms
of targeted industrial subjects and scale, and used methods) are potentially ready for
industrial adoption. However, the limitations of the majority of the primary studies
(in terms of context description and discussion of the validity threats) represent a
potential risk to their successful industrial application.

49

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

301 @
251 ®

2.01

Rigor
@
©)

©
ORORORC

O
®
®
®

0.01 @

@

©
-l @ 0 6 ®

2 3 4
Industrial relevance

Figure 2.6 — Rigor and relevance of primary studies

2.7 Threats to validity

In this section we discuss the threats to validity of our research. In general, in order to ensure
the high quality of the data extracted, a well-defined research protocol was established before
carrying out the data collection. In addition, all research activities were designed and carried
out by adhering to a set of well-accepted guidelines for systematic mapping studies [80, 74, 73].
By formalizing such guidelines we established the protocol that was strictly followed through-
out the study, as documented in Section 6.3.1 and further detailed in the provided replication
package. In addition, in order to lower potential sources of bias, crucial considerations that
emerged during the research were discussed jointly by all the authors. Despite adhering to
a systematic literature review approach, potential threats to validity are still unavoidable, as
discussed in the remainder of this section along with how we mitigated them.

External validity. The most significant threat to external validity consists of the potentially low
representativeness of the primary studies. In order to mitigate this threat, we adopted for the
identification of potentially relevant studies the most encompassing digital library® (Google
Scholar) and search query. Another threat to external validity is the adoption of a specific set of
query keywords. To mitigate this threat the results of the automated search query were further
extended by executing a backward and forward snowballing process. In order to have control
over the quality of the primary studies, we exclusively considered peer-reviewed papers, and
hence excluded “grey literature”, e.g. white papers, editorials, etc. We deem that this does not

6Selected after a preliminary execution of the search query on: Google Scholar, Scopus, IEEE Explore,
ACM Digital Library, and Web of Science.

50

2.8. Conclusions

constitute an additional threat, as peer-review processes are a standard requirement of high
quality publications. Finally, we utilized a set of well-defined inclusion and exclusion criteria,
which rigorously guided our manual selection of the literature.

Internal validity. To mitigate potential threats to internal validity, we established a priori a
rigorous research protocol that guided all the research activities. In addition, the classification
framework utilized was defined iteratively by strictly adhering to the keywording process [80].
For the synthesis of the collected data, simple and well-established descriptive statistics were
adopted. In addition, sanity tests on the extracted data were used by cross-analyzing different
parameters of the established classification framework.

Construct validity. In order to ensure that the primary studies were suited to answer our
research questions, we manually carried out the selection of primary studies according to
a predefined set of well-documented inclusion and exclusion criteria. The results of such
process were further expanded by conducting an additional iterative backward and forward
snowballing process. In addition, as advised by Wholin et al. [73], a random sample of 10
studies were selected and analyzed independently by all 3 researchers in order to guarantee
the alignment of the analyses.

Conclusion validity. Potential sources of bias resulting from the data extraction and analy-
sis processes were mitigated by strictly adhering to an a priori defined protocol, explicitly
conceived to gather the data required to answer our research questions. To further mitigate
threats to conclusion validity, best practices from several well known guidelines for systematic
literature reviews [80, 74, 73] were followed. These guidelines were strictly adhered to through-
out the entirety of our research activities, and are thoroughly documented to ensure that our
research approach is transparent and replicable.

2.8 Conclusions

This chapter presents a systematic mapping study on ATD identification, the first and fore-
most building block of ATD management. Starting from 509 potentially relevant studies, we
rigorously analyzed 47 primary studies via a classification framework dedicated to ATD identi-
fication. Our analysis provides a characterization for ATD identification techniques in terms of
publication trends, their characteristics, and their potential for industrial adoption.

Furthermore, our analysis unveils a series of promising trajectories for future research on
ATD, such as (i) the possibility leverage existing source-code analysis tools to conduct ATD-
specific analyses, (ii) the current need to further involve industrial parties when studying ATD
identification phenomena, and (iii) a lack of technology-specific ATD identification approaches.
We explore the research opportunities emerging from this first research step in the following
chapters. Specifically, in Chapter 3, we present an ATD index based on architectural design
rule violations. The need to further involve practitioners in academic research is tackled in

51

Chapter 2. Architectural Technical Debt Identification: The Research Landscape

Chapter 4, where we present a theory of ATD grounded in the knowledge of technical leaders.
The possibility to conceive technology-specific analysis approaches is presented in Part II
of this thesis, were we concentrate on ATD specific to the Android ecosystem, and present a
methodology targeting the identify of ATD in such context.

52

+J ATDx: An Architectural Techni-
cal Debt Index

Inside every large problem is a small
problem struggling to get out.

Charles Hoare

This chapter is based on:

[3) R. Verdecchia, P. Lago, I. Malavolta, and I. Ozkaya, ATDx: Building an Architectural Technical Debt Index,
International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), 2020 [54].
[3 R. Verdecchia, P. Lago, I. Malavolta, and I. Ozkaya, Empirical Evaluation of an Architectural Technical
Debt Index in the Context of the Apache and ONAP Ecosystems, Under Journal Submission [55].

53

Chapter 3. ATDx: An Architectural Technical Debt Index

This chapter answers the fourth research question of this thesis (RQ4). Specifically, it docu-
ments the preliminary version of an index (ATDx) conceived in order to provide an eagle-eye
overview of the health of software systems from the point of view of code related architectural
technical debt. The index is established through a large-scale, empirically based, analysis of
design issues which can be statically detected through the adoption of a prominent software
quality tool, namely SonarQube. By leveraging techniques such as repository mining, statisti-
cal analysis, and a blend of other quantitative and qualitative approaches, we present in this
chapter portions of our ongoing research effort to expand our knowledge on the detection and
management of architectural technical debt.

54

Contents

3.1

3.2

3.3

3.4

3.5

3.6
3.7

3.8

3.9

Introduction
The ATDx Approach
3.2.1 Definitions
3.2.2 ATDx Formalization
3.2.3 ATDx Building Steps

Empirical Evaluation Planning

............................

3.3.1 Goal and Research Questions

3.3.2 Empirical Evaluation Design

Empirical Evaluation Execution

Selection of the SonarQube Tool
ARS€ Identification and Classification
Software Portfolio Identification
ARSQ Dataset Building
ATDx Analysis

Identification of Relevant Contributors

ATDx Report Generation
Report Distribution and Survey Invitation

Online Survey

3.5.1 Participants Demographics

(RQ1) On ATDx Representativeness
(RQ2) On ATDx Actionability

Threats to Validity

Conclusion validity

Internal validity

Constructvalidity

External validity
Related Work

Conclusions and Future Work

55

Chapter 3. ATDx: An Architectural Technical Debt Index

3.1 Introduction

Architectural Technical Debt (ATD) in a software-intensive system denotes architectural design
choices which, while being suitable or even optimal when adopted, lower the maintainability
and evolvability of the system in the long term, hindering future development activities [83].
With respect to other types of debt, e.g., test debt [91] or build debt [29], ATD is characterized
by being widespread throughout entire code-bases, mostly invisible to software developers,
and of high remediation costs [92].

Due to its impact on software development practices, and its high industrial relevance, ATD is
attracting a growing interest within the scientific community and software analysis tool ven-
dors [1]. Notably, over the years, numerous approaches have been proposed to detect, mostly
via source code analysis, ATD instances present in software intensive-systems. Such methods
rely on the analysis of symptoms through which ATD manifests itself, and are conceived to
detect specific types of ATD by adopting heterogeneous strategies, ranging from the inspection
of bug-prone components [93], to the analysis of dependency anti-patterns [94], and the eval-
uation of components modularity [95]. Additionally, numerous static analysis tools, such as
NDepend!, CAST?, and SonarQube3, are currently available on the market, enabling to keep
track of such symptoms of technical debt and architecture-related issues present in code-bases.
These existing academic and industrial approaches focus on fine-grained analysis techniques,
considering ad-hoc definitions of technical debt and software architecture, in order to best
fit their analysis processes to technical debt assessment. Nevertheless, to date, how to gain
an informative and encompassing viewpoint of the (potentially highly heterogeneous [57])
ATD present in a software-intensive system independent of the tools at hand is still an open
question.

In order to fill this gap, in this study we present a refined version of ATDx [54], an approach
designed to provide a data-driven, intuitive, and actionable insights on the ATD present in a
software-intensive system. ATDx consists of a theoretical, multi-step, and semi-automated
process, concisely entailing (i) the reuse of architectural rules supported by third-party analysis
tools, (ii) calculation of architectural rule violations severity, based on the comparison of
normalized values across a software portfolio, and (iii) the aggregation of analysis results into
a set of customizable ATD dimensions. Similarly to other studies in the literature (e.g., [96]),
in this paper we refer to software portfolio as the set of software projects (also referred to as
software assets) owned by a single company.

ATDx is designed to serve two types of stakeholders: (i) researchers conducting quantitative
studies on source-code related ATD and (ii) practitioners carrying out software portfolio analy-
sis and management, to suitably detect ATD items and get actionable insights about the ATD

Ihttps:/ /www.ndepend.com
2https:/ /www.castsoftware.com/products/code- analysis- tools
3https:/ /www.sonarqube.org

56

https://www.ndepend.com
https://www.castsoftware.com/products/code-analysis-tools
https://www.sonarqube.org

3.1. Introduction

present in their systems according to their organizational and technical needs.

This study builds upon the research in which ATDx was preliminarily reported [54] by (i) refin-
ing the ATDx in order to address some of its drawbacks (see Section 3.2), and (ii) conducting
an empirical evaluation of the approach.

We carry out an empirical evaluation of the ATDx approach involving two open-source software
ecosystems (Apache and ONAP), 237 software projects, and 233 open-source software con-
tributors. The gathered results shed light on the representativeness and actionability of ATDx,
and provide further insights of the benefits and drawbacks which characterize the approach.
Among other, the most relevant characteristics of ATDx are: (i) analysis tool and programming
language independence, (ii) data-driven results, rather than based on a priori defined sever-
ities, remediation costs, and metric thresholds (iii) extensibility, and (iv) customizability to
specific application domains and portfolios.

The main contributions of this paper are the following:

¢ the evolution of ATDX, an approach providing a multi-level index of architectural techni-
cal debt; refined by replacing the outlier-based calculation of the original approach [54]
with a severity clustering algorithm;

a detailed description of the process for building an instance of ATDx, supporting the
independent implementation of an instance of ATDx by researchers and practitioners;

¢ an empirical evaluation of the representativeness and actionability of the ATDx ap-
proach based on SonarQube , involving two software ecosystems, 237 software projects,
and 233 software contributors, supported by the complete replication package?, and a
thorough discussion of the uncovered ATDx advantages and drawbacks.

The remainder of the paper is structured as follows. In the next section, we present the
theoretical framework underlying the ATDx approach, followed by the formalization of the
approach, and the description of the steps required to implement an instance of ATDx. In
Sections 3.3 and 3.4 we document the planning and execution of the empirical evaluation,
respectively. The results of the empirical evaluation are then reported in Section 6.3.4. In
Section 3.6 the discussion of the results is reported, while in Section 6.3.5 we elicit the potential
threats to validity which may have influenced our results. In Section 4.4 we present and discuss
the related work. Finally, Section 3.9 draws conclusions and hints at future work.

4https:/ /github.com/S2-group/ATDx_replication_package

57

https://github.com/S2-group/ATDx_replication_package

Chapter 3. ATDx: An Architectural Technical Debt Index

3.2 The ATDx Approach

In this section, we provide the definitions of attributes on which the calculation of ATDx relies
(Section 3.2.1), the ATDx formalization (Section 3.2.2), and describe the steps for building
ATDx (Section 3.2.3).

3.2.1 Definitions

Definition 1. Architectural rule. Given a source code analysis tool T and the set of its sup-
ported analysis rules RT, the architectural rules ART supported by T are defined as the subset
of all rules Rl.T eRT,i=1{1,...,IRT|} such that:

. RI.T is relevant from an architectural perspective, i.e., strongly influences one choice of
structures for the architecture [97];

. Rl.T is able to detect a technical debt item, i.e., “design or implementation constructs
that are expedient in the short term but that set up a technical context that can make a
future change more costly or impossible” [83].

In ATDx, we consider every ARI.T as a function ARl.T : E — {0,1}, where E is the set of archi-
tectural elements according to a granularity level (see below). In case that an element e € E
violates rule ARl.T, then ARl.T(e) returns 1, and 0 otherwise.

For example, a rule ARI.T checking that method overrides should not change contracts is (i)
architectural since it predicates on the high-level structure of a Java-based software project (i.e.,
its inheritance tree), and (ii) related to technical debt as violating such rule might not lead to
immediate repercussions, but could potentially cause unexpected behaviour and cumbersome
refactoring as the software project evolves.

Definition 2. Architectural Rule Granularity level

(Granularity level). Given an architectural rule ARZ.T, its granularity level Grl.T is defined as
the smallest unit of the software project being analysed which may violate ARiT, e.g.,aclass, a
method, or a line of code. As an example, if we consider a rule which deals with cloned classes,
its corresponding granularity level is “class”. Such mapping of architectural rules to different
granularity levels enables us to evaluate and compare the occurrence of rules violations across
different software projects at a refined level of precision, instead of trivially adopting a single
metric for the size of software projects for all the rules in ART, e.g., source lines of code (SLOC).
In addition, it enables us to assess the scope of the technical debt and as needed differentiate
from defects.

Definition 3. ATD Dimension. Given a set of architectural rules ART for an analysis tool T,

58

3.2. The ATDx Approach

the set of ATD dimensions ATDD” contains subsets of architectural rules ARl.T < ART with
similar focus. One architectural rule ARl.T can belong to one or more ATD dimensions ATDD].T c
ATDDT and the mapping between ARiT and ATDD]T is established by generalizing the semantic
focus of ARI.T. For example, if an architectural rule ARl.T deals with the conversion of Java

classes into Java interfaces, the ARl.T could fall under the general Interface ATD dimension.

In ATDx, we use the 3-tuple (ARZ.T,ATDDJT, Grl.T> to represent the mapping of each architectural
rule ARI.T to its granularity level Grl.T and ATD dimensions ATDD].T. It is important to note that,

while an ARl.T can be associated to one and only one granularity level Grl.T, an ARZ.T can be
mapped to multiple dimensions ATDD].TS, and vice versa.

3.2.2 ATDx Formalization

ATDx aims to provide a birds-eye view of the ATD present in a software project by analyzing the
set of architectural rules ART supported by an analysis tool T, and subsequently aggregating
the analysis results into different ATD dimensions ATDDT.

The goal of ATDx is portfolio analysis of projects in respect to their level of ATD. Intuitively,
starting from a dataset of ART and GrT values belonging to a set of software projects S. ATDx
performs a statistical analysis on the elements contained in the dataset, in order to classify
the severity of the architectural rule violations of the software projects. The level of severity
the SUA exhibits for each rule ARl.T € ART, is then reported as a constituent part of the ATD

dimension ATDDl.T € ATDDT mapped to ARl.T. Notice that the ATDx analysis results of a
specific system-under-analysis (SUA) are relative to the other projects S in the same portfolio,
and hence should not be interpreted as absolute values.

ATDx is based on the calculation of the number of architectural rule violations of a software
project S (normalized over the size of S) in order to compare the occurrence of rule violations
across projects of different sizes. Specifically, for each architectural rule ARI.T, we first calculate

ARiT (S), defined as the set of architectural elements in S violating ARZ.T, ie.,

T T
ART®)= U arf@ 3.1)
eeGriT(S)

where Grl.T (S) is the set of all elements e in S according to the granularity Grl.T (e.g., the set of
all Java classes in a Java-based project), and ariT(e) is a function returning e if the element e
violates the architectural rule ARI.T, the empty set otherwise.

Subsequently, we calculate NORMiT(S), defined as the normalized number of architectural

59

Chapter 3. ATDx: An Architectural Technical Debt Index

rule violations IARl.T(S)I over the total number of elements e according to granularity Grl.T, ie,

_1AR]9)]

NORM; (§) = —F—
IGrI©)

(3.2)

where IGrl.T (S)| is the size of S expressed according to granularity level Grl.T (e.g., the total

number of Java classes in S), and IARl.T(S)I is the total number of violations of rule Rl.T (see
Formula 3.1).

Once the NORMiT(S) for rule ARI.T in S is calculated, we statistically establish its severity. In

order to do so, we require the set NORMiT, which contains the values of NORMiT (S) for each
software project belonging to the portfolio, i.e.,

NORM] = {NORM/ (S1),...,NORM/ (S} 3.3)

where 7 is the total number of projects belonging to the considered portfolio of software
projects.

Given the calculation of NORMl.T, we can establish the severity of the NORMiT(S) measurement
by comparing its value with the other ones contained in NORMZT. More specifically, given the
set of values NORMiT and the value of NORMiT (S), we define the function severity as:

severity: X" x[0,1] —{0,1,2,3,4,5} (3.4)

where X = [0,1] and 7 is the total number of software projects belonging to the portfolio. The
severity function returns a discrete value between 0 and 5, indicating the level of severity of
NORMiT(S) w.r.t. the other values in NORMiT. In order to do so, we adopt a clustering algo-
rithm, namely CkMeans [98], which guarantees optimal, efficient, and reproducible clustering
of univariate data (i.e., in our case, NORMiT values). Consequently, this step consists of identi-
fying the severity cluster of NORMlT(S) that contains similar NORMl.T values of other software
projects within the portfolio. The usage of the CkMeans algorithm replaces the outlier-based
calculation of ATD on which the original ATDx approach was based [54]; this decision allows us
to gain finer-grained results (i.e., a discrete value between 0 and 5 instead of a boolean value).

An example of ART values distribution, and relative severity clustering, is provided in Fig-
ures 3.1 and 3.2. As we can observe in Figure 3.1, the majority of the projects possess NORMZ.T
values between 0.0 and 0.1, which are grouped via CkMeans into three distinct clusters, as
depicted in Figure 3.2. Such clusters correspond to the lowest levels of severity, namely severity
0, 1, and 2 respectively. The other three clusters, possessing centers (i.e., weighted mean of
cluster) of respectively 0.12, 0.21, and 0.5, correspond to the higher levels of severity, namely
severity levels 3, 4, and 5. From the clustering depicted in Figure 3.2 we see that, according to
their distribution, most projects are classified as possessing low severity (severity <= 2), while
only a smaller number of projects possesses a relatively high severity (severity >= 3).

60

3.2. The ATDx Approach

density.default(x = df$NORMjava:S1118)

15
|

Density

T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

N =111 Bandwidth = 0.01341

Figure 3.1 — Example of kernel density plot representing a NORMZ.T distribution

Optimal univariate k-means clustering of dfSNORMjava:S1118)

1.0 1.2

Weight

0.8

0.6

Cluster
n=111

Figure 3.2 — Example of severity calculation via CKMeans clustering, where different
colours indicate different clusters

61

Chapter 3. ATDx: An Architectural Technical Debt Index

In order to provide an overview of the ATD dimensions of a software project S, for each ATD
dimension ATDDJ.T c ATDDT we define the value of ATDD]T(S) as the average severity of the

ARl.T mapped to it, i.e.,

Y.L severity(NORM!,NORM! (S))

n

ATDD]T(S) = (3.5)

where 7 is the total number of rules in AR” mapped to

ATDD].T.

Finally, we define an overall value ATDx” (S), embodying the overall architectural
technical debt of S calculated via our approach, as the average value of all the defined
ATD dimensions ATDD, i.e.,

7 ATDD}

j=1

ATDx” (8) = (3.6)

where 7 is the total number of ATD dimensions ATDD”
considered in the specific implementation of ATDx.

3.2.3 ATDx Building Steps

In this section, we report the steps for building ATDx. It is important to note that the
whole process is generic, i.e., it is not bound to any specific analysis tool or technology
and extensible. The described process can be performed by both (i) researchers
investigating ATD phenomena and (ii) practitioners analyzing their own software
portfolios. In fact, following the steps of the process allows its users to implement
the instance of ATDx which best fits their specific technical, organizational, and
tool-related context.

Figure 6.1 presents the building steps for implementing the ATDx approach. Given
an analysis tool T (e.g., SonarQube), five steps are required to build an instance of
ATDx, namely: (i) the identification of the set of architectural rules belonging to
ART, (ii) the formulation of the 3-tuples in the form (AR],Gr/, ATDD]T), (iii) the
execution of T on a set of already available software projects to form the dataset of
ARZ.T (S) measurements, (iv) the execution of the ATDx analysis on the constructed
dataset, and (v) the application of the ATDx approach on the specific SUA.

62

STEP 1 -

AR Set Identification

Source
Code
Rules R”

ART
Identification

€9

Version
Control
System

STEP 2 - 3-tuple Formulation

Manual 3-tuples
ART e (4R, Gr!, ATDDT)
Classification

STEP 4 - ATDx Analysis

P 3 - AR" Dataset Building

STEP 5 - ATDx SUA
Analysis

Software > ATDx N, Atx sua
Repository Repository ART(S) Analysis Q’ Analysis
Identification Filtering Calculation o : / . —
A : 3 ; W : "
Initial Final ! -
Repositol Repositor i | A4TDD(s), NORM(S) ATDD'(SUA)|
pository epository r su4 T
Dataset Dataset ATDx"(S) Values ATDx"(SUA)
Values Values

Figure 3.3 — Overview of the ATDx building steps [54]

yoreoxddy XqQ LV 9YL ‘T'S

Chapter 3. ATDx: An Architectural Technical Debt Index

3.2.3.1 Step 1: Identification of the AR” set

The first step of the ATDx building process is the identification of a set of architec-
tural rules AR that will be used as input to the subsequent steps of the process.
Specifically, given an analysis tool T and its supported analysis rules R”, a manual
inspection is carried out in order to assess which of its rules qualify as ART accord-
ing to the criteria presented in Definition 1. This process can be carried out either
by inspecting the concrete implementation of the rules R” under scrutiny, or by
consulting the documentation of 7, if available.

3.2.3.2 Step 2: Formulation of 3-tuples (ARZ.T, ATDD]T, GriT)

After the identification of ART, the 3-tuples (AR;, ATDD;, Gr;) are established by
mapping each rule ARiT to (i) one or more architectural technical debt dimensions
ATDD].T and (ii) the granularity level GRl.T of the rule.

The process of mapping an ARI.T to its corresponding architectural dimensions
ATDDJ.T is conducted by performing iterative content analysis sessions with open
coding [99] targeting the implementation or documentation of the rule in order to
extract the semantic meaning of the rule. More in details, once the semantic meaning
of each rule is well understood, the ARl.T under scrutiny is labeled with one or more
keywords expressing schematically its semantic meaning. Such analysis is carried
out in an iterative fashion, i.e., by continuously comparing the potential ATDDjT
associated to the ARl.T under analysis with already identified dimensions, in order to
reach a uniform final ATDDT set.

The process of mapping an architectural rule ARI.T to its corresponding level of gran-
ularity Grl.T is also carried out via manual analysis of the architectural rule, and
subsequently identifying the unit of analysis that the rule considers (e.g., function,
class, or file level).>

It is important to note that Steps 1 and 2 are performed only once for the whole
portfolio and, depending on the tool and its rules, their corresponding 3-tuples can
be also reused across different portfolios.

5In the fortunate instance in which the GRiT mapped to ARl.T is explicitly specified in the source from

which the rules RT are gathered, such information should be preferred over a manual inspection of the
rule.

64

3.2. The ATDx Approach

3.2.3.3 Step 3: Building the AR (SUA) dataset

After the identification of the AR set (Step 1), it is possible to build the dataset
of ART(S) measurements. This process consists of (i) identifying an initial set of
projects to be considered for inclusion in the portfolio, (i) carrying out a quality
filtering process in order to filter out irrelevant projects (e.g., demos, examples) and
(iii) calculating the ART(S) sets and extracting the |GrT(8)| values of each project
included in the portfolio. The selection of the initial portfolio of projects to be
considered for inclusion is a design choice specific to the concrete instance of ATDx.
In other words, such choice is dependent on the analysis goal for which ATDx is
adopted, the availability of the software projects to be analyzed, and the tool T
adopted to calculate the AR T(S) sets. It is important to bear in mind that, given the
statistical nature of ATDx, having a low number of projects in this step would not lead
to meaningful ATDx analysis results (as further discussed in Section 3.6).

As for the selection of the projects to be considered, the step of carrying out a quality-
filtering process on the initial set of projects depends on the setting in which ATDx is
implemented. In the case that ATDx is used for an academic study, e.g., by considering
open-source software (OSS) projects, this step must be carried out to ensure that
no toy software-projects (like demos or software examples written for educational
purposes) are included in the final software portfolio to be considered [100].

After the identification of a final set of projects to be considered for analysis, the
ART(S) sets are calculated for each software project S in the portfolio. The execution
of such process varies according to the adopted analysis tool T. In addition, during
this step also the cardinalities of the granularity dimensions IGrl.T (S)| are for each
project S in the portfolio. Such values will be used in the next ATDx steps.

3.2.3.4 Step 4: ATDx Analysis

Once the ART(S) and GrT(S) sets are calculated for the whole portfolio, the architec-
tural technical debt of the projects can be assessed (see Section 3.2). Specifically, this
step takes as input AR (S) and Gr (S) sets for all the projects in the portfolio, and
outputs the ATDD? (S) and ATDx” (S) values of each project. It is worth noticing that
this process is incremental. Indeed, after a first execution of the ATDx approach on
the whole portfolio, it is possible to carry out further ATDx analyses on additional
projects by relying on the previously formulated 3-tuples (ARl.T,ATDDjT, Grl.T> and

the pre-calculated intermediate values of the ATDx analysis NORM lT

65

Chapter 3. ATDx: An Architectural Technical Debt Index

3.2.3.5 Step 5: Applying ATDx to a SUA

After the execution of ATDx on all projects in portfolio, the resulting ATDD” and
ATDx T values of a specific SUA can be computed.

Algorithm 1: Computing the ATDD” dimensions and the AT Dx" value for a single
SUA

Input: SUA, ART, NORMT, ATDDT
Output: ATDD T (SUA), ATDxT (SUA)

1
2

3

© N o G s

dimensions < empty dictionary
atdx — 0
for all dimensions j in ATDD” do
dimensions[j] — 0
for all rules ARl.T in ART do
violations — AR (SUA)
normalizedViolations — NORMlT(SUA)
dimensions[j] < dimensions(j] + severity(NORMl.T, normalizedViolations)
for all entries j in dimensions do
dimensions[j] — dimensions|j] / getNumRules(j)
atdx — atdx + dimensions]j]
atdx < atdx / JATDDT|
return dimensions, adtx

As shown in Algorithm 1, the computation of ATDD” and ATDx ” takes as input
4 parameters: (i) the SUA, the set of rules ART, the NORMT values computed in
the step 4, and the set of dimensions ATDD” defined in step 2. The outputs of the
algorithm are two, namely: (i) the set of ATD values of the SUA, ATDDT (SUA) (one
for each dimension) and (ii) ATDxT (SUA). The outputs of the algorithm serve two
different purposes; Specifically, the ATDD values provide support in gaining more
insights in the severity of the ATD according to the identified ATD dimensions, while
the ATDx T value provides a unified overview of the ATD present in the SUA. After
setting up the initial variables for containing the final output (lines 1-2), the algorithm
builds a dictionary containing an entry for each dimension in ATDD?, with the name
of the dimension as key and 0 as value (lines 3-4). Then, the algorithm iterates over
each rule in ART (line 5) and collects the number of its violations, both raw (line 6)
and normalized by the level of granularity of the current rule (line 7). Then the entry
of the dimensions dictionary corresponding to the dimension of the current rule is
incremented by the severity level of NORMiT as defined in Equation 3.4 (line 8). For
each dimension j (line 9) we (i) average its current value within the total number of
rules belonging to j in order to mitigate the potential effect that the number of rules

66

3.3. Empirical Evaluation Planning

belonging to the dimension may have (line 10) and (ii) increment the current ATDx”
with the computed score (line 11). Finally, the ATDx” value is normalized by the total
number of dimensions supported by all AR” rules (line 12) and both dimensions and
ATDx values are returned (line 13).

ATDx in a Nutshell. ATDx is a data-driven approach providing an overview of
code-related architectural technical debt of a software-intensive system. The
approach, based on the analysis of a software portfolio, uses pre-computed ar-
chitectural rule violations (ART) and granularity levels (GrT) to calculate the
severity level of violations via a clustering algorithm. Results are aggregated
into different architectural technical debt dimensions (ATDDT).

3.3 Empirical Evaluation Planning

We conduct an in vivo empirical evaluation to assess the viability of ATDx. In the
remainder of this section we report (i) the goal and research questions of the empirical
evaluation (Section 3.3.1) and (ii) its design (Section 3.3.2).

3.3.1 Goal and Research Questions

Intuitively, with our empirical evaluation we aim to understand if the ATDx analysis
results faithfully represent the ATD present in real life software projects. In addition,
we aim to assess if the ATDx analysis results are actionable, i.e., they motivate practi-
tioners to refactor their ATD. More formally, we formulate the goal of our evaluation
by following the Goal-Question-Metric template [101] as follows:

Analyze ATDx analysis results

For the purpose of evaluating their representativeness and their ability
to stimulate action

With respect to architectural technical debt

From the viewpoint of software practitioners

In the context of open-source software projects

It is important to note that ATDx can be applied to both open-source and proprietary
software. In this study we focus on open-source software projects due to (i) the

67

Chapter 3. ATDx: An Architectural Technical Debt Index

availability of rich data about their source code and development process and (ii)
the ease of mining of such type of software projects with respect to proprietary ones
[102]. Further considerations on the this empirical evaluation design decision are
reported in Section 6.3.5.

By taking into account our research goal, we can derive the following two research
questions:

RQ1: To what extent are the ATDx results representative of the architectural technical
debt present in a software project?

By answering this research question, we aim at assessing the representation condi-
tion [103] of ATDx, i.e., the extent to which the characteristics of the ATD present in
a software intensive-system are preserved by the numerical relations calculated via
the ATDx approach. In other words, this research question evaluates to which extent
the ATDx analysis results are representative of the ATD in a software project, both by
individually considering individually the results for each software-intensive system,
than by comparing results across different systems.

RQ2: To what extent do the ATDx results stimulate action of developers to address
their architectural technical debt?

By answering this research question, we aim to assess the extent to which the ATDx
analysis results stimulate developers to address ATD, i.e., if the results motivate
developers to actively manage the ATD detected via ATDx.

3.3.2 Empirical Evaluation Design

The empirical evaluation is designed according to our research questions and in-
cludes all the building steps of the ATDx approach described in Section 3.2. The
evaluation is composed of nine main phases:

¢ Phase 0 - Identification of the analysis tool T to be used in the evaluation.

* Phase 1 - Identification and classification of the set of architecturally-relevant
rules (i.e., ART); this step corresponds to the ATDx building Steps 1 and 2 in
Figure 6.1.

68

3.3. Empirical Evaluation Planning

* Phase 2 - Identification of one or more software portfolios to be analyzed.

* Phase 3 - Establishment of the ART dataset(s) for the selected software portfo-
lio(s); this step corresponds to Step 3 in Figure 6.1.

* Phase 4 — Analysis of the dataset(s) via ATDx; this step corresponds to Steps 4
and 5 in Figure 6.1.

¢ Phase 5 - Identification of a curated set of contributors of the selected software
portfolio(s).

¢ Phase 6 — Generation of personalized ATDx reports.
* Phase 7 — Distribution of the ATDx reports.

e Phase 8 — Online survey on the ATDx analysis results.

In the remainder of this section we explain each phase of our empirical evaluation;
we present the phases in general terms, so that independent researchers can fully
reuse them in future replications of this study. Then, in Section 3.4 we provide the
technical details about how we implemented and executed each phase in the context
of (i) Java projects, (ii) the SonarQube analysis tool, and (iii) the Apache and ONAP
software ecosystems.

In order to evaluate ATDx, we implement a concrete instance of ATDx by following
the building steps presented in Section 3.2. As a first step, in Phase 0 we select a
source code analysis tool T, implementing the R rules.

Phase 1 aims at identifying a set of AR rules on which the ATDx approach will be
based. Specifically, the ART identification process is conducted by considering: (i)
the soundness of the AR rules, demonstrated by industrial adoption and scientific
evidence, (ii) the industrial relevance of the tool implementing the AR rules, and (iii)
the feasibility of calculating AR values. In addition, during this phase, the identified
ART rules are manually classified, in order to derive the 3-tuples (ARI.T,ATDD]T, Grl.T N
required by the ATDx approach.

As discussed in Section 3.2, the ATDx calculation relies on a portfolio of software
projects. Hence, in order to gather ATDx analysis results, in phase 2 we identify the
software portfolio(s) that will be used as experimental subject in our evaluation. The
focus on software portfolios, rather than a collection of unrelated software projects,
allows to focus on software projects that potentially share a similar context, and
overlapping contributors, and hence are closer to the envisioned usage scenario
of ATDx. Accordingly, in case of more than one portfolio is identified during this

69

Chapter 3. ATDx: An Architectural Technical Debt Index

phase, the portfolios will be analyzed via ATDx independently. Driving factors for
the identification of software portfolios is the availability of the software projects
contained in the portfolio, and the possibility to calculate AR values for the portfolio,
according to the AR rule set identified in the previous empirical evaluation phase.

In phase 3 we compute the values of ART and Gr” for the software projects in the
identified portfolio(s). This process is carried out either by gathering the source code
of the projects, extracting the Gr” values, and executing the tool implementing the
ART rules locally, or by directly mining pre-computed AR’ and Gr” values made
available remotely (e.g., if provided by contributors of the software portfolios, or a
cloud service of the tool implementing the AR rules).

In phase 4, we execute the ATDx analysis in order to calculate the ATDDT(SUA) and
ATDx” (SUA) for each project of the identified portfolios.

In phase 5 we identify the relevant contributors of the selected software portfolio(s).
Such contributors will then be contacted, in a following empirical evaluation phase,
in order to gather insights into the obtained ATDx analysis results. Specifically, we
are interested in contributors who are familiar with multiple software projects of
the portfolio(s), in order to enable them to compare ATDx results across different
projects. Hence, we select out of the all contributors of the software portfolio(s), the
ones who contributed to at least two projects of the portfolio in the past 12 months.

Once we obtained the ATDx analysis results for each project of the portfolio(s), and
established a curated set of contributors to be contacted, in phase 6 we generate a
personalized report for each contributor. Such report contains the ATDx results of
each project of the contributor (represented as radar-charts) and further insights into
the results (e.g., architectural elements most affected by ATD).

In phase 7, the reports are shared with the contributors via a customized email,
jointly with an invitation to participate to an online survey.

Finally, in phase 8 we collect insights on the ATDx analysis results via an online survey.
The survey is designed in order to require a short amount of time to be filled (this
helps in terms of both response rate and participants fatigue). Moreover, various
factors that influence response rates of developers are considered while designing
the survey, such as authority, brevity, social benefit, and timing [104]. An overview of
the questions composing the survey is reported in Table 3.1.

The survey is designed with a two-step approach. In the first step, a pilot version of

70

3.3. Empirical Evaluation Planning

09 ON papuo-uadQ {2onoerd Juarmod oA ur syreyo-IepeI ay) asn nok pinom Moy 60
[{o): SO o[edS uayrIuiod-G uonoe oyl 03 dw dIdsul S)IRYD Jepel oy} Ul paAe[dsIp synsar oy, 30
104 ON papus-uadQ ((s)auo yorym ‘os J1 ¢2d£A1 1qap [eINIAIYOIR AUk SSIW NOA O LO
199 [BINIIANIYDIE JO uoneuasardor
10¥ SO 9[eds M riutod-¢ pooS e are Jreyd-1epel 3y) ul pake[dsip sad£) 1qep eImoaydIe Ay, 920
sy00fo1d oy ur Juesaxd 1qop [eINJONIYITE UT SOOUAILIIP
10Y SO 9edS Moyriutod-¢ ay) 109pal s)Meyd Jeper Y], :Ioyjedo) spoafoid [re je Surjoo Ag SO
1P [BINOIYOIE JO A)e)s JUALIND §,309lo1d oy Joopax
109 SOk 9eos uoyriutod-¢ senjea jreyod-reper oyJ, :309floxd yoes je A[enpiaipur Suryoo| Ag +0O
sorydeiSowa(g SO 9[eos oI jurod-¢ (s100fo1d ay) yyim noA are JeIIUIR) MOY ‘@FeIoAR UQ O
(193185 INOA Ul
sorydeaSowag SR 0I<‘01-9 ‘G-7 ‘1 01 paINQLIIUOd NOA dAey s31d9fo1d aremijos 9o1nos uado Auewr Moy 0
soydesSowaq SOx 1939y {2Irem1jos Surdo[oaap ua3q noA JAeY sIedA Auew MOH 10
OY paredie], Arosindwo) adA], asuodsay 1XQL, uonsand) [uonsang)

suonsanb AaAIng — 1°¢ 9[qel,

71

Chapter 3. ATDx: An Architectural Technical Debt Index

the survey is drafted and shared with 5 industrial practitioners within our personal
network. In the second step, the questionnaire is reviewed and finalized by taking
into account the collected feedback.

Questions Q1-Q3 assess the experience of the participants in terms of their experience
(Q1-Q2) and familiarity with the open source projects included in the personalized
ATDx report (Q3). To ensure the quality of the data gathered via the survey, survey
responses of contributors not familiar with the projects included in their personalized
report will be discarded. The subsequent 6 questions are designed to collect the data
relevant to answer our RQs. Specifically, Q4-Q7 aim at assessing the core RQ of our
study (RQ1), namely if the ATDx results are representative of the ATD present in
the software projects. More in detail, with Q4 and Q5 we aim at evaluating if the
inter- and intra-relations of the ATD present in software projects are preserved by the
numerical relations calculated via ATDx [103]. With Q6 instead, we assess if the ATD
dimensions (ATDD?) identified during the building Step 2 of the ATDx approach (see
Section 3.2.3.2) are a faithful representation of the overall ATD present in the software
projects®. As a follow up to the previous question, Q7 investigates if any prominent
ATD dimensions are missing in the used instance of ATDx. We opted to included
two separate questions, Q6 and Q7, both focusing of ATD dimensions, in order to
provide participants with a swift mean to provide input via a closed-ended question
(Q6), while enabling them provide further details via the open-ended question (Q7).
In order to evaluate if the ATDx results stimulate the active management of ATD
(RQ2), we use the final two survey questions (Q8 and Q9). Specifically, with Q8, we
directly assess the extent to which contributors are inspired to take action based on
the ATDx results. With Q9 we gather further insights on the potential use of the ATDx
in development practices. In addition to the questions reported above, the closed-
ended questions targeting RQs (Q4, Q5, Q6, Q8) are supported by a complementary
question (“Comments?”), allowing participants to add further detail into their closed-
ended answer. In addition, the survey closes with a final complementary question
(“Do you have any final comments or suggestions?”), designed to gather any additional
input the participants may like to provide. To ensure that participants would be able
to freely express themselves, an informative note is included in the survey invitation
text, to assure them that all collected data would be anonymous.

The complete survey, comprising the aforementioned questions and supporting text
clarifying terms and questions, is made available for review and replication in the
publicly available supporting material of the paper.

8For the sake of clarity, in the survey, ATD dimensions are simply referred to as “ATD types”.

72

3.4. Empirical Evaluation Execution

In the following section, we report the details of our evaluation execution, which was
conducted by rigorously adhering to the empirical evaluation design presented in
this section.

3.4 Empirical Evaluation Execution

As shown in Figure 3.4, we executed the empirical evaluation by following the nine
phases discussed in the previous section. In the following we give the details on the
execution of each phase.

3.4.1 Phase 0: Selection of the SonarQube Tool

For this empirical evaluation we implement ATDx based on the SonarQube” static
analysis tool. The rationale behind the adoption of SonarQube to implement the
experimental ATDx instance is multifold: (i) SonarQube is widely used in industrial
contexts [105], allowing us to have an ATDx instance potentially with high industrial
relevance (which could be used by practitioners independently of our empirical
evaluation), (i) SonarQube is open-source, hence the source code of each of its AR;gQ

rules can be inspected and associated to its granularity level Ger with relatively low
effort, and (iii) the pre-computed SonarQube analysis results of several OSS projects
are publicly available via the SonarCloud?® platform, hence easing the AR?Q(SUA)
measurement retrieval process; those projects are actively maintained by several
well-known organizations, such as the Apache Software Foundation®, Microsoft!?,
and the Wikimedia Foundation!?.

3.4.2 Phase 1: AR%? Identification and Classification
The goal of this phase is to establish the set of architectural rules AR from Sonar-

Qube . As input to this phase, we use a set R5? of Java-based SonarQube rules that
were identified as design rules in a previous research [106]. Those rules represent

"https:/ /www.sonarqube.org/
8https://sonarcloud.io/
9https://sonarcloud.io/organizations/apache/
0https://sonarcloud.io/organizations/microsoft/
Whttps://sonarcloud.io/organizations/wmftest/

73

https://www.sonarqube.org/
https://sonarcloud.io/
https://sonarcloud.io/organizations/apache/
https://sonarcloud.io/organizations/microsoft/
https://sonarcloud.io/organizations/wmftest/

YL

Ermnst et al . [10] Apache ONAP
(Phase 3) (Phase 4] [Project '.‘ Project
N.- - ATDx W®Zd ATDx
sonarcloud & ARS? Dataset ATDx Analysis | |/ Results Results
= H Building (per Portfolio) H T
v [Phase 6] v (Phase 7) Phase 8

ARSQ Identification
and
Classification

Software Portfolios
Identification

Identification of
Analysis Tool T

. Report Distribution .
Personalized ATDx P Online
N . and Survey
Report Generation Survey
Invitation

Identification of
Relevant
Contributors

Figure 3.4 — Overview of the empirical evaluation of ATDx conducted in this study

XALY ‘€ &dey)

Xapu] 1G3(] [BITUYIA], [EINIINYITY UY

3.4. Empirical Evaluation Execution

a sound starting set of rules of potential architectural relevance, according to our
definition of architectural rule presented in Section 3.2.1.

To select the architectural rules among the ones presented by Ernst ef al. [106], we
carry out a manual inspection of the definition of each single rule. Such inspection is
based on the publicly-available official documentation of SonarQube '2. The identi-
fication process is carried out by (i) analyzing the content of each rule description
and (ii) evaluating it against the two criteria presented in Section 3.2.1. To mitigate
potential threats to construct validity, two researchers independently carry out the
identification. The identification process results in a 72.2% of agreement between
the two researchers, with a substantial inter-rater agreement calculated via Choen’s
Kappa (k = 0.62). Then, a third researcher with several years of experience in software
engineering takes over by (i) resolving possible conflicts and (ii) reviewing the the
final set of architectural rules ARS?.

From the initial set of 72 SonarQube design rules presented by Ernst et al. [106], we
identity 45 architectural rules. As detailed in Section 3.4.4, we further refine the set
of identified rules during Phase 3 by removing the architectural rules which are not
included in the SonarQube quality profiles'® of the selected software portfolios. An
overview of the final set of the architectural rules used in this study is reported in
Table 3.2.

Once we established the set of architectural rules ARS?, we classify them in order to
derive their associated granularity level GRSQ and ATD dimensions ATDDS?, i.e., we
formulate the ATDx 3-tuples (AR?Q, Grl.SQ,ATDD?Q). This classification process is
carried out collaboratively by three researchers, by discussing potential divergences
till a consensus is reached among all researchers. Columns 1, 3, and 4 in Table 3.2 give
an overview of the final mapping between the rules ARI.SQ, their granularity GriSQ,

and ATD dimensions ATDDf.Q.

Regarding the granularity levels Gr3?, we identify the four levels of granularity re-
ported in column 3 of Table 3.2. The identified granularity levels are: Java non-
comment lines of code NCLOC), Java method, Java class, and Java file.

As for ATD dimensions ATDDS?, we elicited 6 core dimensions, namely Inheritance,
Exception, Java Virtual Machine Smell (JVMS), Threading, Interface, and Complexity
(see column 4 in Table 3.2). The Inheritance dimension (9 rules) clusters rules evalu-

12https://docs.sonarqube.org/latest/user-guide/rules/
13https://docs.sonarqube.org/latest/instance-administration/quality- profiles/

75

https://docs.sonarqube.org/latest/user-guide/rules/
https://docs.sonarqube.org/latest/instance-administration/quality-profiles/

Chapter 3. ATDx: An Architectural Technical Debt Index

Table 3.2 — The architectural rules, granularity levels, and ATD dimensions used in the experiment

SonarQube ID Short description Granularity level Ameov ATD Dimension T»HUUmov
java:S107 Methods should not have too many parameters Method Interface
java:S112 Generic Exceptions should never be thrown Java NCLOC Exception
java:S1104 Class variable fields should not have public accessibility Class Interface
java:S1113 The Object.finalize() method should not be overriden Class Inheritance
java:S1118 Utility classes should not have public constructors Class Interface
java:S1130 Throws declarations should not be superfluous Java NCLOC Exception
java:S1133 Deprecated code should be removed eventually Method Interface, Complexity
java:S1161 @Override annotation should be used on any method overriding (since ~ Method Inheritance

Java 5) or implementing (since Java 6) another one
java:S1165 Exception classes should be immutable Class Exception
java:S1182 Classes that override "clone" should be "Cloneable" and call "su- Class Inheritance

per.clone()"
java:S1185 Overriding methods should do more than simply call the same method ~ Method Inheritance

in the super class
java:S1199 Nested code blocks should not be used Java NCLOC Complexity
java:S1210 "equals(Object obj)" should be overridden along with the "compareTo(T ~ Method Inheritance, JVMS

obj)" method
java:S1217 Thread.run() and Runnable.run() should not be called directly Java NCLOC JVMS
java:S1610 Abstract classes without fields should be converted to Interfaces Class Interface
java:S2062 readResolve methods should be inheritable Class Inheritance
java:S2157 "Cloneables" should implement "clone" Class Inheritance, JVMS
java:S2166 Classes named like "Exception" should extend "Exception" or a sub- Class Exception

class
java:S2222 Locks should be released Java NCLOC Threading
java:S2236 Methods "wait(...)" "notify()" and "notifyAll()" should never be called Java NCLOC Threading

on Thread instances
java:S2273 "wait(...)" "notify()" and "notifyAll()" methods should only be called Java NCLOC Threading

when a lock is obviously held on an object
java:S2276 "wait(...)" should be used instead of "Thread.sleep(...)" when a lock is Java NCLOC Threading

held
java:S2638 Method overrides should not change contracts Method Inheritance, JVMS S
java:S2885 "Calendars" and "DateFormats" should not be static Class Threading
java:S2975 Clones should not be overridden Class Inheritance, JVMS

3.4. Empirical Evaluation Execution

ating inheritance mechanisms between classes, such as overrides and inheritance of
methods or fields. The Exception ATDDS? (6 rules) groups rules related to the Java
throwable class “Exception” and its subclasses. JVMS (5 rules) contains rules which
assess potential misuse of the Java Virtual Machine, e.g., the incorrect usage of the
specific Java class “Serializable”. Rules associated with the Threading dimension (5
rules) deal with the potential issues arising from the implementation of multiple exe-
cution threads, which could potentially lead to concurrency problems. The Interface
dimension (5 rules) encompassess rules assessing fallacies related to the usage of Java
interfaces. Finally, the Complexity dimension (2 rules) encompasses rules derived
from prominent complexity measures, e.g., McCabe’s cyclomatic complexity [107].

3.4.3 Phase 2: Software Portfolio Identification

Subsequent to Phase 1, we can proceed with the identification of software portfolios,
i.e., the experimental subjects of our empirical evaluation. In order to collect ARS?
values, we opt to use the SonarCloud platform, which enables us to efficiently and
effectively gather the data required for the ATDx analysis (see also Section 3.4.1).
Hence, we want to identify portfolios that (i) are implemented in Java and (ii) make
available pre-computed ARS? values via SonarCloud. In order to do so, we mine
SonarCloud via its web-based API and (i) collect information about all public projects
hosted on SonarCloud and (ii) identify the SonarCloud organizations'* having the
highest number of Java-based software projects. This leads us to identify two differ-
ent software ecosystems, namely (i) Apache!®, covering general-purpose software
components like the well-known Apache HTTP server, Apache Hadoop, and Apache
Spark, and (ii) ONAP16, focusing on orchestration, management, and automation
of network and edge computing services. In this study we choose to target two
different ecosystems as evaluation subjects!’ in order to mitigate possible external
threats to validity. Indeed, focusing on Apache and ONAP allows us to study ATDx
results for software portfolios developed for different contexts, and having different
development processes, cultures, and technical backgrounds.

Among all the Java projects in each ecosystem, we filter out those without a corre-
sponding GitHub repository. This filtering steps allows us to (i) have full traceability

141n SonarCloud, an organization is a space where a team or a whole company can collaborate across
many projects (https://sonarcloud.io/documentation/organizations/overview).

5 https:/ /www.apache.org

18 ttps:/ /www.onap.org

17In the context of 0SS, portfolios of 0SS foundations like Apache are commonly referred to as “ecosys-
tems” [108].

77

https://sonarcloud.io/documentation/organizations/overview
https://www.apache.org
https://www.onap.org

Chapter 3. ATDx: An Architectural Technical Debt Index

Table 3.3 — Summary statistics of the considered software projects

Apache
Min. Max. Mean Mdn o CV Total
Projects - - - - - - 126
Java NCLOC 90 383K 19.1K 29K 504K 26 2.3M
Java Files 5 4.4K 2439 36 608.4 2.5 304K
Java Classes 3 46K 276.3 37 700.2 25 345K

Java Methods 21 34.9K 1.9K 241 5K 2.5 242K

ONAP
Min. Max. Mean Mdn o CV Total
Projects - - - - - - 111
Java NCLOC 753 239.9K 12.4K 5K 28.1K 23 1.3M
Java Files 10 3.6K 199.4 79 4405 2.2 221K
Java Classes 9 3.2K 189.2 76 394.2 2 21K

Java Methods 49 22K 1.3K 518 28K 22 141K

Total
Min. Max. Mean Mdn o CV Total
Projects - - - - - - 237
Java NCLOC 90 383K 159K 3.7K 415K 2.6 3.6M
Java Files 5 4.4K 223 57 535.4 2.4 525K
Java Classes 3 46K 2354 61 5773 24 555K

Java Methods 21 34.9K 1.6K 352 41K 25 383K

Mdn: Median; o: standard deviation; CV: coefficient of variation.

towards the source code of the system (useful for further inspections) and (ii) retrieve
the names and email addresses of projects’ contributors to be contacted for the sur-
vey (see Section 3.4.6). In order to avoid potential selection bias, we do not perform
any other filtering step of the selected software projects, e.g., by removing those with
relatively low number of Java classes or few violations of the rules in ARSC.

The final set of software projects is composed of 126 Apache projects and 111 ONAP
projects, for a total of 3.6 millions of non-commenting lines of Java code across 237
software projects. Table 3.3 and Figure 3.5 show the summary statistics of the selected

78

3.4. Empirical Evaluation Execution

1e+05

1e+04 -

1e+03

1000

100

1000

100+

10000

1000

100

Java Classes

Java Methods

()
% 1e+02 - . Ecosystem
3 Java NCLOC Java Files B3 Apache
=

ONAP
5 s . s =]

Figure 3.5 - Overview of identified ecosystems demographics

ecosystems. From Table 3.3, we can observe that the smallest software project is
included in the Apache ecosystem, and is implemented by only 90 Java NCLOC. From
Figure 3.5, we can see that this small project constitutes an outlier with respect to
the other project of the ecosystem. In the ONAP ecosystem instead, the smallest
software project is constituted by 753 NCLOC. The presence of small projects in the
ecosystems is justified by the presence of “periferal” or “utility” software projects in
the ecosystems, as further discussed in Section 3.6. The largest software project con-
sidered is also present in the Apache ecosystem, and includes 383K Java NCLOC. By
considering the distributions reported in Figure 3.1, we observe that both ecosystems
present some software projects possessing a high outlier size, that will considerably
contribute to the total number of ARS? violations of the two ecosystems (as further
detailed in the following section). Regarding the mean size of projects of the two
ecosystems, we note that the ONAP ecosystem possesses overall projects of bigger
size (cf. columns Mdn of Table 3.3). The median instead is higher in the Apache
ecosystem, due to the presence in the ecosystem of some projects of exceptionally
high size, as previously discussed. The variability in size is overall higher in the Apache
ecosystems (cf. columns o of Table 3.3), which is also reflected in the coefficient

79

Chapter 3. ATDx: An Architectural Technical Debt Index

Table 3.4 - Summary statistics of the mined ARS? values per software project

Tot. Min. Max. Mean Mdn o cv
Apache 174K 0 32K 1395 12 4572 32
ONAP 54K 0 616 48.9 11 99.9 2
Total 228K 0 32K 969 12 342 3.5

values (CV) of the two ecosystems.

3.4.4 Phase 3: ARS? Dataset Building

After the identification of the software portfolios, we proceed with building the
dataset of ARS? values for each portfolio. As a preliminary activity, we check the
SonarQube quality profiles used by Apache and ONAP in order to ensure that all
rules in ARS? are included (see Phase 1). This activity led to the exclusion of 20 rules
from the ARS set; the final set of ARS? rules is presented in Table 3.2. This quality
assurance step is needed only in the context of our empirical evaluation and it is
necessary to ensure that all rules in ARS? rules contribute to the calculation of the
ATDDS? and ATDx5? values.

After the consolidation of the ARS? setwe retrieve the ARS? values for each project
included in the identified portfolios. This process is executed via automated queries
to the SonarCloud API. We obtained a total of 22.8K ARS? rule violations across the
237 projects. For each rule violation, additional metadata is mined e.g., the Java class
where the violation occurs, the affected lines of code, and the textual description
of the issue. Such information is then used for further analysis during the report
generation phase (see Section 3.4.7), and is provided as complement to the ATDx
report shared with the contributors.

An overview of the mined ARS? rule violations is reported in Table 3.4. As we can
observe from the table, the total number of ARS? rule violations is much higher
in the Apache ecosystem if compared to the ONAP one. We attribute this result to
the presence, in the Apache ecosystem, to some large projects (cf. columns “Max.”
of Table 3.3), which are also characterized by a high number of ARS? violations
(see column “Max.” of Table 3.4). Both ecosystems include projects that do not
present ARS? violations. The Apache and ONAP ecosystems have a median number
of ARS? violations equal to 12 and 11, respectively. The standard deviation (o) of

80

3.4. Empirical Evaluation Execution

ARS? violations instead results much higher for the Apache ecosystem instead. As
before, this result can be attributed to the presence of few projects of considerable
size in the Apache ecosystem (see Figure 3.5). the same consideration can be made for
the coefficient of variation (CV), as the projects belonging to the Apache ecosystem
display a higher heterogeneity in sizes if compared to the ONAP projects.

3.4.5 Phase 4: ATDx Analysis

By following our empirical evaluation design, the ATDx analysis is run independently
for each portfolio, i.e., the analysis is based on the intra-portfolio comparison of
ARSQ values. As detailed in Section 3.3.2, this ensures that the clustering on which
ATDx relies is executed by considering exclusively software projects sharing a similar
context, hence reflecting the envisioned usage scenario of ATDx.

Figure 3.6 and Figure 3.7 give an overview of the ATDx analysis results. While the
ATDD values vary across the projects of the two ecosystems, both of them exhibit low
ATDx values (with a median of 0.28 for Apache, and 0.25 for ONAP). By considering
the values of the various ATDDS? dimensions, we observe that none of them reaches
the maximum of the scale (i.e., 5 — see Section 3.2.2). This has to be attributed to the
potential empirically unreachable ATDDT maximum values property of ATDx, which
is further discussed in Section 3.6. While it would be possible to convert the scale
adopted in order to improve the presentation and intuitiveness of the results (e.g., by
converting local maxima to absolute ones), we refrain to do so, in order to support
the transparency and understandability of the results.

Overall, we can observe that few dimensions contribute prominently to the cumula-
tive value of the ATDx. Specifically, Interface is the dimension contributing the most
to the overall ATD present in both portfolios, followed by the Exception dimension.
The other ATDDS? dimensions contribute less in terms of ATD for both portfolios;
nevertheless, some outliers are present, specially in the Complexity and Exception
dimensions, meaning that some projects present an exceptional number of violations
of rules belonging to such dimensions. Overall, the obtained results are in line with
previous studies on other software metric indexes, e.g., [109].

81

Chapter 3. ATDx: An Architectural Technical Debt Index

Value

Value

82

20 3.0

1.0

0.0

10 15 20 25

0.0 05

A BS

T T T T T T T
Interface Inheritance Exception JVMS Threading Complexity ATDx

ATDD

Figure 3.6 — ATDx analysis results for the Apache ecosystem

‘l‘iil&

Interface Inheritance Exception JVMS Threading Complexity ATDx

ATDD

Figure 3.7 - ATDx analysis results for the ONAP ecosystem

3.4. Empirical Evaluation Execution

3.4.6 Phase 5: Identification of Relevant Contributors

In parallel to the ARS? dataset building and ATDx analysis phases, we identify the
relevant contributors for our study, i.e., the contributors who will be invited to partic-
ipate in our survey. As detailed in Section 3.3.2, we are interested in contributors who
contributed to at least two software projects of a portfolio in the past 12 months. In
order to identify such contributors, we first mine the GitHub repositories to identify
contributors who pushed commits to the master branches of the software projects
in the past 12 months. Subsequently, we identity all overlapping contributors, i.e.,
contributors who resulted to be active in two or more projects included in a port-
folio in the past 12 months. This process leads to the identification of 233 relevant
contributors, 72 for the Apache ecosystem, and 161 for the ONAP ecosystem. No
contributor is identified as a relevant contributor for both the Apache and ONAP
ecosystems. For each identified relevant contributor, we store their contact informa-
tion, along with the projects their contributed to, which will then be used to generate
their personalized ATDx report in the subsequent phase of the empirical evaluation.

3.4.7 Phase 6: ATDx Report Generation

After the ATDx analysis, and the identification of the relevant contributors, we pro-
ceed with the generation of a personalized report for each relevant contributor. In
total, 233 personalized reports have been generated. The generated reports follow
the Markdown format and are hosted in a dedicated GitHub repository'®. Using the
Markdown format for the reports allows us to (i) show the ATDx results in a familiar
environment for the projects’ contributors and (ii) directly link the personalized
report in the email inviting the contributors to participate to the survey.

An example of personalized report is shown in Figure 3.8. Each report is composed of
three main parts, namely:

1. Anintroductory text providing the contributor with a concise explanation of
the ATDx approach, the related background information (e.g., a brief definition
of the ATDDS? dimensions), and a summary of the report content;

2. An overview of the ATDx analysis results for all projects of the contributor,
provided in form of radar charts, to allow a swift comparison of ATDx analysis
results across the projects;

18https://github.com/S2-group/ATDx_reports

83

https://github.com/S2-group/ATDx_reports

Chapter 3. ATDx: An Architectural Technical Debt Index

192 Lines (173 slo) | 35.1 K8 Rw Bame G 2 G

ATDx Report Summary

Our ATDx analysis targets a portfolio of software projects and identifies the pain points of each project in terms of Architectural
Technical Debt (ATD). This evaluation is based o a statistical analysis of the violations of SonarCloud rules.

ATDx in a nutshell

Serye®
@‘ %@ @ ® ® ®

' s 4

ATDx works by comparing architectural debt metrics across the projects of a software portfolio. Intuitively, it ensures that
measurements across different projects are comparable, and then evaluates the severity of Architectural Technical Debt by
confronting the measurements across the projects.

— (X X]
ATDx radar charts of your projects

Project 1 Project 2 Project 3

Project on Github. Project on Github Project on Github
Project on SonarCloud Project on SonarCloud Project on SonarCloud
Complete issue report (JSON) Complete issue report (JSON) Complete issue report (JSON)
— (XX]

ATDXx project report summaries

Project 1: apache/slii g-apache-sling-api

apache_sling-org-apache-sling-api

Project on Github
Project on SonarCloud
Complete issue report (JSON)

Top classes with architectural debt violations

Total

Class name issuss Mheritance Exception JVMS Interface Threading Complexity Fullyq
ResourceUtiljava 3 0 0 0 7 0 6 src/ma
ResourceProviderDTO java 10 4 4 o 10 0 0 src/ma
ResourceChange java 8 o 0 0 4 o 4 src/ma
slinaConstants.iava 7 4 4 0 4 0 3 sicima

Figure 3.8 — Example of ATDx report, comprised of (1) concise description of the
ATDx approach and related background information (e.g., description of the ATDDS?
dimensions), (2) overview the project analysis results, and (3) per-project report,
including the top-10 classes in terms of ATD violations.

84

3.4. Empirical Evaluation Execution

3. A documentation of the ATDx analysis results for each project, including the
top-10 classes containing the highest ARS? values, mapped to their ATDDS?
dimensions.

Additionally, in order to provide the contributors with further context regarding the
projects included in the report, each radar chart is complemented with additional
information about the system under analysis, specifically: (i) a link to the original
GitHub repository of the software project, (ii) a link to its SonarCloud dashboard, and
(ii) a link to the complete raw data resulting from the ATDx analysis.

3.4.8 Phase 7: Report Distribution and Survey Invitation

After the generation of the reports, we share the results to the 233 relevant contribu-
tors identified in Phase 5. In addition to the distribution of the personalized reports,
during this phase, we also invite contributors to participate to the online survey de-
scribed in Table 3.1. Striving for a high response rate, we kept the invitation email as
short and engaging as possible and customized its contents based on their receivers
and the project they contributed to. Two different rounds of invitation, executed in
two subsequent weeks, are used to stimulate the relevant contributors to participate
in the survey.

3.4.9 Phase 8: Online Survey

In the last step of our empirical evaluation, we gather the data required to answer our
research questions via the online survey. This survey is implemented by rigorously
adhering to the structure presented in Section 3.3.2. We stop the data collection 4
weeks after the last round of invites are sent out. This allows us to finalize the results
to be considered, while providing relevant contributors an adequate amount of time
to participate to the survey.

Empirical Evaluation Setup. To evaluate ATDx, we implement an instance
of the approach based on SonarQube, and 25 architectural rules derived from
the literature. We run the ATDx analysis on two software ecosystems, namely
Apache and ONAP (126, and 111 software projects, respectively). The analysis
results are then shared, via personalized reports, to 233 contributors of the
analysed project. Finally, we invited the 233 contributors to participate in an
online survey designed to answer our research questions.

85

Chapter 3. ATDx: An Architectural Technical Debt Index

3.5 Results

In this section, we present the results of our empirical evaluation: Section 5.3.2.3
provides some demographic information regarding the participants of our survey;
Section 6.3.4.1 reports on the results for RQ1, i.e., the representativeness of the ATDx
analysis results; and Section 6.3.4.2 documents the results for RQ2, i.e., the extent to
which the ATDx analysis results stimulate developers to take action with respect to
the ATD detected in their projects.

3.5.1 Participants Demographics

In total, 47 out of 233 relevant contributors (20% response rate) participated in our
survey. Participants have a median (average) of 12 (12.3) years of software develop-
ment experience, with a minimum (maximum) of 2 (26). Most participants (97%)
declared to have contributed to more than one OSS project, with the majority (38%)
contributing to 6-10 OSS projects. All participants declared to be familiar with the
analyzed software projects, with (i) 50% of them being very familiar with the projects
(i.e., “occasional contributors”), (ii) 40% of them being extremely familiar with the
projects (i.e., “regular contributors”), and 4% of them being moderately familiar (i.e.,
“have looked at its artifacts, read its code, and can contribute easily”). Based on the
gathered demographic data, we are reasonably confident that all participant have a
good level of development experience and enough familiarity with the projects to
properly understand the ATDx results shown in their personalized reports.

3.5.2 (RQ1) On ATDx Representativeness

In order to assess the representativeness of our approach, we examine the responses
to questions Q4-Q7 of our survey (see Table 3.1). Figure 3.9 provides an overview of
the responses given by the participants.

Question Q4 regards the extent to which ATDx analysis results reflect the actual
ATD of a software project, by considering individually each project. The response
distribution of this question reveals that most participants find the ATDx results
representative (72%), with most participants agreeing with the statement formulated
in Q4 (51%), or strongly agreeing with it (21%). Only a small portion of the partic-
ipants does not find the ATDx results representative to various extents (8%), with
only one participant strongly disagreeing with the statement. By considering the

86

.8

I
Q4: By looking individually at each project: The
radar—chart values reflect the project's current 19%

state of architectural debt

1

. ' Reponse
Q5: By looking at all projects together: The
radar charts reflect the differences in 28% . Strongly disagree
architectural debt present in the projects . oI
isagree
1
Neutral
Q6: The architectural debt types displayed in the
radar-chart are a good representation of 17% . Agree
architectural debt . Strongly agree
I
Q8: The results displayed in the radar charts P

inspire me to take action

|

100 50 0 50 100
Percentage

Figure 3.9 - Response distribution of Likert scale survey questions used to answer our research questions (Q4, Q5,

Q6, Q8)

s)Msay ‘'g

Chapter 3. ATDx: An Architectural Technical Debt Index

rather sporadic open-ended comments provided by participants for this question
(6 data points), we note a characteristic lack of awareness of the ATD present in
their projects, e.g., “Not sure how much technical debt we have” (4 data points), and
a few acknowledgments of the results representativeness, e.g., “Results match my
expectations” (2 data points). Overall, by considering the answers provided by the
participants, we conclude that ATDx is representative when individual projects are
considered.

Question Q5 focuses on comparing ATDx analysis results across all projects within
each personalized report. Based on the results gathered with this question, we note
that most participants find the ATDx results representative when compared across
projects, albeit to a lower extent than when considering the results of individual
projects. In particular, while the majority of participants agrees with the representa-
tiveness of ATDx results (62%), answers are also characterized by a higher disagree-
ment (11%), and the highest number of neutral answers among all Likert-scale survey
questions (28%). The few comments provided by participants for this question (5 data
points), point to difficulties in comparing the ATD across different software projects.
We conjecture that the lower agreement with respect to Q4 could be attributed to
inherent challenges in comparing the ATD present in different software projects,
that would also motivate the high number of neutral responses measured for this
question.

Question Q6 regards the representativeness of ATDDS? dimensions used in the em-
pirical evaluation. By looking at Figure 3.9, we observe that overall Q6 yields the
highest agreement rate (75%), and the lowest neutral (17%) and disagreement rates
(8%). Rhe participants (7 data points) suggest in the open-ended comments: (i)

adding more dimensions, (ii) adding specific dimensions (e.g., “tests”, “cloned code”),
or (iii) adding more details about the dimensions already included.

The final question related to RQ1 (Q7 in Table 3.1) regards potentially-missing ATDDS?
dimensions of the specific ATDx instance used in the empirical evaluation. This ques-
tion is optional and only three participants answered it. Nevertheless, the provided
answers are informative and propose the following additional dimensions: “dupli-

» o«

cated classes”, “testing", and “cloned code".

88

3.5. Results

Main findings (RQ1, ATDx Representativeness). The survey results confirm the rep-
resentativeness of the ATDx analysis results. The representativeness of the dimensions
used in the ATDx instance implemented for this empirical evaluation present the high-
est agreement rate (75%), followed by the representativeness of the analysis results
within individual projects (72%). The comparison of analysis results across different
projects is characterized by the (relatively) highest portion of disagreeing and neu-
tral responses (respectively 11% and 28%), potentially due to inherent difficulties in
comparing architectural debt present in different software projects.

3.5.3 (RQ2) On ATDx Actionability

With RQ2 we aim to assess the degree to which the ATDx analysis results stimulate
developers to take action towards addressing their ATD. In the survey, this RQ is
covered by two separate questions: a Likert scale question (Q8) and an open-ended
question (Q9).

As shown in Figure 3.9, participants generally agree with the statement that the
results displayed in the radar charts inspire them to take action (60%). The remaining
participants tend to either disagree with the statement (21%) or take a neutral stance
(19%). By considering the additional comments provided by the participants to
support their answer (6 data points), we observe the need for a finer-grained level
of information in the ATDx report to address the identified ATD, as the provided
documentation may not be sufficient to trigger concrete action on the analysis results.
Examples of requested additional information include: “Give more information on
problems” and “Add more technical debt aspects”.

Based on this finding, we conclude that the current information documented in
the ATDx reports (namely ATDDS? values, top classes with AR” violations, and
JSON files containing the raw SonarQube analysis results) is perceived as actionable.
Nevertheless, participants also suggested interesting points for improvement, e.g.,
by providing (i) the ability to zoom in and out of ATD hotspots at different levels of
abstraction, (ii) ATD visualizations, (iii) hints about ATD resolution strategies.

Question Q9 is about the scenarios in which the ATDx analysis can be used in practice.
Even though only 10 participants answered this question!?, participants mention

19The low response rate for question Q9 might be due to the question being formulated as optional, and
asked at the end of the survey.

89

Chapter 3. ATDx: An Architectural Technical Debt Index

some interesting usage scenarios about visualization (e.g., “as a UI in SonarQube”),
refactoring (e.g., “find code to fix” code review), and communication (e.g., “talk about
problems in issue tracker”). Also, participants highlight the lack of a user interface to
visualize the analysis results in an interactive manner. Driven by the results collected
for RQ2, we envision to improve the reporting of ATDx analysis results, in order to
improve its actionability, and directly support a set of selected usage scenarios, e.g.,
by enabling the composition of the analysis with continuous integration pipelines,
issue trackers, and enabling a finer-grained scrutiny of the result via a dedicated
dashboard.

Main findings (RQ2, ATDx Actionability). The ATDx results tend to be actionable,
with usage scenarios including refactoring, code review, communication, and ATD
evolution analysis. Points for improvement include the need to provide more informa-
tive reports and the lack of an interactive dashboard.

3.6 Discussion

With our empirical evaluation, we gathered different insights regarding the in vivo
application of ATDx . Overall, the empirical results demonstrated the representative-
ness of the approach and, even if to a lower extent, its actionability. Regarding the
empirical evaluation, it is important to note that the results are bound to an experi-
mental implementation of ATDx, and hence have to be considered only as a proxy of
the general ATDx approach presented in Section 3.2. Nevertheless, implementing an
ATDx instance is an inevitable step required to evaluate the approach. This leads to a
potential threat to validity of our findings, as further discussed in Section 6.3.5.

Implementing a concrete instance of ATDx allowed us also to gain further hands-on
knowledge of the characteristics of the approach. Specifically, when considering
the approach benefits, we took advantage of the (by design) tool independence of
ATDx, allowing us to use a readily available rule set [106] and the pre-computed
measurements of SonarCloud.

The language independence property of ATDx instead allowed us to focus on the
software portfolios deemed best fitted for the empirical evaluation, rather than having
to follow potential constraints dictated by other analysis approaches.

As described in [54], the semantic metric aggregation on which ATDx is based, allows

90

3.6. Discussion

to provide multi-level granularity results. This characteristic of the approach was
used in the empirical evaluation by including in the ATDx report architectural ATDD”
dimension values at project-level, AR rule violations at class-level, and localization
of single AR rule violations at line-of-code-level.

Actionability of ATDx resulted to be lower with respect to its representativeness
(see Section 6.3.4.2). We conjecture that this result did not depend considerably
on the adopted levels of granularity, but rather on how the analysis results were
documented in the ATDx report. As future work, we look forward to refine the ATDx
report capabilities, which were only marginally considered for this investigation, by
providing enhanced visualizations of analysis results (e.g., via dashboarding), and
information on how to resolve the identified ATD issues.

The empirical evaluation conducted in this study provided us also further insights
on the data-driven nature of ATDX, i.e., its reliance on inter-project measurement
comparison, rather than predefined metric thresholds. This led to the establish-
ment of two severity classification frameworks tailored ad-hoc for the two portfolios
considered, implementing different empirically-derived severity thresholds.

Some of the envisioned benefits of ATDx described in [54] could instead not be
assessed with our empirical evaluation design. Prominently, the ATDx instance was
based on a single tool, namely SonarQube. This did not allow us to study the fool
composability property of ATDx, i.e., the aggregation of analysis results gathered via
heterogeneous tools. As future evaluation of the ATDx methodology, we plan to assess
the effects of tool composition on the ATDx analysis results.

In addition to tool composability, we did not conduct any domain-specific customiza-
tion of ATDx, other than filtering out the ARSCQ rules that were not included in the
SonarQube quality profiles of Apache and ONAP. While the Apache and ONAP ecosys-
tems could be deemed as oriented towards specific domains (namely web servers,
and networking/edge-computing respectively), upon further inspection we noted
a high heterogeneity across projects of the same ecosystem. The heterogeneity of
projects belonging to the same ecosystems has to be attributed to “periferal” and
“utility” software project, that support the general domain of the organizations, but
focus on narrow use cases or implementation concerns. As an example taken from
the ONAP ecosystem, the ONAP SO project? implements a core functionality in
the ONAP domain, namely the orchestration of ONAP components. The ONAP

20nttps://github.com/onap/so

91

https://github.com/onap/so

Chapter 3. ATDx: An Architectural Technical Debt Index

SDC?! instead is a “utility” project, which does not focus directly on networking or
edge-computing, as it implements a visual modeling and design tool. To carry out
a fine-grained domain customization of ATDx, a curated portfolio including exclu-
sively software projects belonging to a specific domain, e.g., safety-critical systems or
mobile applications, should be considered.

Regarding other characteristics of ATDx presented in [54], in this work we directly ad-
dressed the emphasis on outlier values, characteristic of the previous version of ATDx.
To overcome this limitation, we substituted the outlier function used to calculate
the constituent values of ATDD with the severity function (see Formula 3.4), which is
based on the CkMeans clustering algorithm. This adjustment allowed us to calculate
ATDD values at a refined level of granularity, by determining the severity of each ART
violation of software project, rather than focusing on a boolean characterization of
its outlier violations.

For this research, we also carried out an ATDx implementation validation, required
to assess the representativeness of an implemented instance of ATDx. Rather than
utilizing focus-groups, as envisioned in the publication this research builds upon [54],
we leveraged personalized reports and follow-up surveys (see Section 3.3.2): this
allowed us to contact in an efficient way a considerable number of developers who
contributed to the analyzed software projects.

The ATDx approach is dependent, by definition, on a portfolio of software projects.
Hence, while numerous ATD analysis approaches require exclusively the SUA [1],
our approach needs instead a portfolio of software projects to calculate the severity
of ART violations. This implies that the ATDx results of a SUA are only “relative” to
the other projects included in the portfolio, and are not representing an absolute
result. As a consequence, the ATDx analysis results are not directly comparable across
different portfolios. For example, by considering the distribution of ATDD violations
of Figures 3.6-3.7, it is important to remember that the results are intrinsically depen-
dent on the portfolios considered. As a consequence, the distributions presented in
Figure 3.6 and Figure 3.7 are not directly comparable. The ATDx dependency on a
portfolio can be considered as both a benefit and a drawback of the approach. On
one hand, ATDx resolves potential problematics related to statically defined metric
thresholds and debt values via severity clustering, allowing to fine-tune the ATDx
analysis based on the specific portfolio and context considered. On the other hand,
the approach can be utilized exclusively if a portfolio of software projects is available.

2lnttps://github.com/onap/sdc

92

https://github.com/onap/sdc

3.6. Discussion

Another characteristic inherent to the ATDx design is the potential empirically un-
reachable ATDx maximum values. While reaching a maximum value in a certain
dimension ATDD? is by definition theoretically possible, it is empirically extremely
improbable. By design, a software project reaches the maximum in one dimension
if and only if it possesses maximum severity values in all ARs mapped to a ATDD”
dimension. If the software project possesses a maximum value of ATDD, this would
indicate that the project is characterized by exceptionally severe and recurrent issues
in that dimension. In our empirical evaluation, such project was not present for
any dimension. As reported in Section 3.4.5, a possible heuristic to improve this
characteristic of ATDx would be to rescale the values of a dimension i to the [0, max;]
range, where max; is the maximum value in the dimension i across all rules in ARt
mapped to i. Nevertheless, we refrained from such solution in order to support the
transparency and interpretability of the results.

Building an ATDx instance entails a human-in-the-loop (as implied in the second
building step of ATDx, see Section 3.2.3.1). In fact, the classification of 3-tuples relies
on manual classification, and hence is inherently characterized to a certain extent by
subjectivity. Despite our best efforts to document a systematic classification process,
mitigation mechanisms should be adopted in order to reduce potential sources of
bias during the execution of this step (e.g., by involving different individuals in this
step, and systematically tracking inter-rater agreement levels).

Finally, a last characteristic of ATDx is its reliance on a predefined set of AR”. As
detailed in [54], ATDD values are computed by considering distinct sets of ARs. It is
necessary that the number of rules across the different sets is balanced as, if the dis-
tinct sets exhibit notable differences in cardinality, the weight of under-represented
sets could lead to their unfair representation. In the ATDx instance utilized in our
empirical evaluation, this characteristic was meticulously considered and mitigated
by carefully selecting AR” from existing academic literature [106], and by considering
the ART recurrence, relevance, and the cardinality of the mapped ATDDs.

Overall, our empirical evaluation shows how ATDx can be a valuable approach to
gain awareness of the ATD present in a software-intensive system. The approach can
be tailored to the specific context one considers, by utilizing measurements gathered
via the tools available, and relate the severeness of architectural rule violations with
respect to other similar projects included in a software portfolio. The ATDx report
results provide an intuitive yet meaningful overview of ATD, which can be enhanced
via further visualization techniques to provide actionable guidance of ATD hotspots
and their resolution.

93

Chapter 3. ATDx: An Architectural Technical Debt Index

3.7 Threats to Validity

Despite our best efforts, the presented results could suffer from potential threats to
validity. Following the classification of Wohlin et al. [73], we consider four different
threat types.

3.7.1 Conclusion validity

Conclusion validity regards if the experimental measurements are measuring the
theoretical constructs they are intended to measure. As the results of our empirical
evaluation are gathered via a survey, a possible thread to conclusion validity is the
face validity of the survey [110], i.e., the extent to which the survey conveys the
concept it purports to measure. In order to mitigate potential threats to face validity,
supporting text explaining the goal of the survey, concepts related to ATD, and the
ATDx approach purpose and functioning, were integrated in all material shared with
the survey participants, namely the survey invitation message, the ATDx report, and
the survey itself. Additionally, to ensure that the survey questions were sufficiently
clear to participants, and no important aspect was missing in the questions, each
closed-ended question was accompanied by an open-ended question (“Comments?”),
were participants could add clarifications to their answers, doubts, and remarks.

To avoid potential threats related to the extent to which the survey answers are fitted
to answer our RQs, we designed the survey questions by deriving them directly from
the RQs and the goal of our empirical investigation. This led to the formulation of
different survey questions, covering the various aspects the RQ purported to assess.
To ensure full traceability of the mapping between survey questions and RQs, the
complete process leading to the formulation of each survey question is documented
in Section 3.3.2, while the explicit mapping between survey question and RQ is also
schematically reported in Table 3.1.

Potential threats related to low statistical power are mitigated by documenting sep-
arately the distributions of answers to each single question of the survey, allowing
for independent scrutiny and interpretation of the gathered results. Additionally,
the 20% response rate results to be aligned with other survey-based software engi-
neering investigations [111]. Hence, we are confident that this threat may have only
marginally influenced our results, if at all.

94

3.7. Threats to Validity

3.7.2 Internal validity

Internal validity regards if the observed results are actually due to the treatments.
Regarding the experimental subject utilized for the ATDx analysis, i.e., the Apache and
ONAP ecosystems, we note that the projects considered may also contain non-Java
source code, even if tagged as “Java” software projects on SonarCloud. To mitigate
potential threat to internal validity, we consider for the ATDx analysis exclusively
SonarQube rules pertaining to Java. To avoid instead potential bias when selecting
the ARS? rules, three researchers were involved in Step 1 of the ATDx building process,
their level of agreement was measured statistically, and disagreements were jointly
discussed with the help of a third researcher. The same mitigation strategy was also
applied for the definition of the Java-based 3-tuples in step 2.

Regarding the survey adopted, an internal threat to validity regards the potential
influence that the invitation, ATDx report, and survey text may have had on survey
answers. In order to mitigate this threat, all text was kept as neutral and formal
as possible. Additionally, survey participants were informed that the survey was
completely anonymous, so to allow them to freely express themselves.

Another threat to internal validity regards the extent to which the survey participants
understand the concept of ATD, and its difference with TD. This background knowl-
edge is required to ensure that participants correctly interpret the survey questions,
and do not base their answers on approximate or erroneous assumptions. In order to
mitigate this threat, at the beginning of both the personalized reports and the survey
we present to participants (i) background information on ATD and (ii) how we defined
it in the context of this study. In addition, survey questions were formulated in order
to be as straightforward and intuitive as possible. Each question was supported by
a free form text field in order to allow (i) the participants to express their potential
doubts and (ii) us to gather additional insights into their answers.

A threat to validity which could have affected our results regards maturation [73].
Specifically, the positioning of optional open-ended questions towards the end of the
survey may have influenced their response rate. Nevertheless, we prioritized clarity
and flow of the survey over this potential threat, and mitigated it by ensuring that
answering all survey questions would require as little time as possible.

Potential selection biases were mitigated by defining a priori a rigorous selection pro-
cess to identify the portfolios and survey participants used in the empirical evaluation
(see Section 3.3.2). Additionally, to ensure the soundness of the selected participants,
a set of demographic questions, including the familiarity with the shared software

95

Chapter 3. ATDx: An Architectural Technical Debt Index

projects, was included in the survey.

Finally, a last threat to internal validity regards the evaluation method adopted,
namely blind survey:.

3.7.3 Construct validity

Construct validity regards if our empirical evaluation is appropriate to answer the
RQs. A prominent threat to construct validity, presented in Section 3.6, regards
the evaluation of a specific instance of ATDx in order to evaluate the approach.
As this step is required, we could not completely avert this threat, which has to be
considered while interpreting the results. To mitigate its influence, we based our ATDx
implementation on a widely popular static analyser, a starting set of design-related
rules presented in the academic literature [106], and two prominent OSS ecosystems,
one of which was already adopted in various other TD studies [112, 113, 114, 115].

The adoption of a blind survey to evaluate our approach could constitute another
threat to construct validity, as we did not posses any knowledge of the participants
identity, other than the mined OSS data, and the demographic data gathered via the
preliminary survey questions (see Table 3.1, Questions Q1-Q3). Adopting a blind
survey however allowed us to mine data from a considerable number of real-life
software projects (237), i.e.,, maximizing participants thanks to anonymization.

Another potential threat to construct validity is constituted by the adoption of OSS
software ecosystems as portfolios for the ATDx analysis. To mitigate potential threats
related to the selection of the portfolios, we ensured that they included a considerable
number of software projects (237 in total), belonged to established OSS organizations
(Apache and ONAP), and utilized SonarQube in their continuous integration pipeline.
Additionally, for our survey we selected exclusively participants who contributed to
at least two software projects of the portfolios, hence allowing them to compare ATDx
analysis results across different projects.

In order to mitigate potential threats to mono-operation and mono-method bias [73]
in our survey design, we formulated it as a mix of open-ended and closed-ended
questions, with different questions mapped to each RQ.

96

3.8. Related Work

3.7.4 External validity

External validity regards whether and to what extent our observations can be gener-
alized. A potential threat to external validity concerns the representativeness of the
portfolios selected for our empirical evaluation. As reported in the previous section,
we mitigated potential threats to external validity by ensuring that only relevant
portfolios, and their contributors, were considered. In addition, the tool on which
our experimental instance of ATDx is based, namely SonarQube, is one of the most
frequently used static analysis tools for Java-based software projects [105], making us
reasonably confident about the relevance of its rules in real-world projects. Despite
our best efforts to mitigate external validity threats, such could potentially influence
our obtained results, especially if proprietary portfolios or other source code analysis
tools are considered. Future research will naturally further strengthen the external
validity of the results reported in this research, e.g., by experimenting with ATDx in
industrial settings, and by considering additional source code analysis tools.

3.8 Related Work

In this section we discuss the academic and industrial work related to this study.
Specifically, we consider as related work approaches aimed at detecting ATD, ap-
proaches aimed at providing indexes of ATD and TD, and additional work that share
conceptual similarities with ATDx.

Regarding approaches aimed at identifying ATD, numerous software analysis ap-
proaches have been proposed during the years. Among the most prominent and
current ones, the approach of Arcelli Fontana et al. [116], Martini et al. [117], and
Roveda et al. [118] focus on the identification of ATD by analyzing dependency ar-
chitectural smells, which could lead to the emergence of an additional ATDD di-
mension, namely “Dependency”. Similarly, Kazman et al. [119], Xiao et al. [93], and
Cai et al. [120] analyzed ATD by inspecting antipatterns of semantically related archi-
tectural components, e.g., by the analysis of bug-prone components. Building on the
notions presented in such previous studies, in a follow-up research, Cai et al. [121]
introduce DV8, a tool designed to measure software modularity, detect architec-
ture anti-patterns, and quantify the maintenance cost of each anti-pattern instance.
Among the most prominent differences, ATDx deviates methodologically from the
approaches presented in studies reported above by utilizing inter-project severity
clustering and semantic aggregation of violations into different ATD dimensions.
Another related study of Nord et al. [122], differentiating from ATDx for the same

97

Chapter 3. ATDx: An Architectural Technical Debt Index

reasons, presented an ATD metric based on rework associated to changing dependen-
cies of architectural components and values of features delivered. Among the studies
considered so far, the most closely related one is the work of Roveda et al. [118] as it
presents another ATD index. Differently from ATDx, this index focuses on architec-
tural smells, notably related to dependency violations.

Le et al. instead reported an empirical investigation of architectural decay via the
analysis of 8 architectural smells of different nature [123]. Interestingly, in such study,
smell violation severity is evaluated by adopting interquartile analysis [124], similar
to the first iteration of the ATDx [54]. As a further difference with ATDx, the analysis
proposed by Le et al. utilizes intra architectural rule level analysis and values are not
normalized per system-size.

More ATD identification approaches are reported in a secondary study of Verdec-
chia et al. [1], albeit none of the included primary studies present an ATD index, with
exception of the work of Roveda et al. previously discussed [118]. In another related
survey study, Arcelli Fontana et al. [125] present a preliminary discussion on technical
debt indexes provided by tools. In contrast to the other studies considered so far, the
work of Arcelli Fontana et al. focuses on proprietary tools. Among these, the tools
that share most commonalities with ATDx are CAST??, inFusion®3, Sonargraph?4,
and Structurel01 2°. While such tools focus to various extents on ATD and provide
indexing capabilities, they are conceptually different with respect to ATDx. In fact,
the calculation of the indexes implemented in such tools is generally based on the
multiplication of violations’ recurrence times the effort required to fix the violations,
rather than relying on a data-driven and inter-project comparison-based severity
calculation. For example, the index provided by CAST is calculated by multiplying
the number of rule violations times the criticality of the rules violated times the effort
required to fix the rule violations. With ATDx, we distantiate from a priori defined
rule severity and remediation effort, as recent literature pointed towards their poten-
tial inaccuracy [126]. An additional proprietary tool is the Software Analysis Toolkit
(SAT) developed by the Software Improvement Group (SIG) [96]. Such tool, similar to
ATDx, is intended to carry out software portfolio quality monitoring. Nevertheless,
the implementation details, internal workings, and metrics used do not appear to
be disclosed to the public. To the best of our knowledge, SAT differentiates from
ATDx in multiple ways, e.g., it is not a tool-agnostic approach (as it implements its

22nttp:/ /structure101.com/products/workspace/

Z3http:/ /www.intooitus.com/, which evolved in the tool A Reviewer http://www.aireviewer.com
24nttps:/ /www.hello2morrow.com/products/sonargraph

2Shttps://structurel01.com/

98

http://structure101.com/products/workspace/
http://www.intooitus.com/
http://www.aireviewer.com
https://www.hello2morrow.com/products/sonargraph
https://structure101.com/

3.9. Conclusions and Future Work

own quality metrics and rules), and does not consider clustering for dynamic issue
severity classification.

Regarding the identification of metrics thresholds, similarly to the first version of
ATDx, Alves et al. [127] adopt an interquartile strategy to identify the severity of
metric values. As additional differences, such study does not focus on ATD and,
while adopting a system-size normalization strategy, it considers only one level of
granularity (NCLOC). Finally, in a recent work, Ulan et al. [128] proposed a software
metric aggregation approach based on their distribution. Our approach is different
by (i) adopting a clustering algorithm to determine violation severity, (ii) considering
sizes according to distinct granularities, and (iii) clustering results into different
semantic dimensions.

3.9 Conclusions and Future Work

Over the years, numerous approaches have been proposed to detect ATD instances
present in software intensive-systems. Such methods rely on the analysis of symp-
toms through which ATD is manifested, and consider ad-hoc definitions of technical
debt and software architecture, in order to best fit the conceived analysis processes.
When ATD indexes are provided by approaches and proprietary tools, they are most
commonly based on formulae considering a priori defined values, such as severity,
remediation cost, and metric thresholds, that are potentially prone to human esti-
mation and approximation inaccuracies, and disregard the context of the analyzed
software. Furthermore, to the best of our knowledge, such indexes do not aim at pro-
viding an encompassing view of the (potentially highly heterogeneous) ATD present
in a software-intensive system, but rather focus on a specific facet of ATD.

To fill this gap, in this research we presented ATDx, an approach leveraging the
analysis of a software portfolio, pre-computed architectural rule violations, and
granularity levels, to compute severity levels of ATD violations via a clustering-based
algorithm. Results of ATDx are aggregated into a purely data-driven index, which is
composed of different “ATD dimensions”, providing information on the facets of the
ATD measured.

In order to evaluate the representativeness and actionability of ATDx, we imple-
mented an instance of the approach based on SonarQube, and run the analysis on
two software ecosystems, Apache and ONAP. We then shared the results with targeted
contributors, and invited them to participate in a survey designed to collect their

99

Chapter 3. ATDx: An Architectural Technical Debt Index

feedback on ATDx.

The gathered answers showed that ATDx analysis results are representative, especially
when considered for each project individually, and that the used ATD dimensions
are an indicative representation of ATD. Results also showed the actionability of the
approach, although to a lower extent when compared to the ATDx representativeness.

The collected results are promising, but we deem this investigation as a preliminary
step towards the consolidation of ATDx. As future research activities, we envision
to mitigate potential threats to validity associated to our results by conducting fur-
ther empirical evaluation by considering also e.g., proprietary portfolios, different
programming languages, source-code analysis tools, and software domains. Addi-
tionally, based on our findings, we envision to enhance the reporting capabilities of
results, in order to strengthen its actionability, and directly support a set of selected
usage scenarios, e.g., by enabling the composition of the analysis with continuous
integration pipelines, issue trackers, and providing a finer-grained scrutiny of the
results via a dedicated dashboard.

In conclusion, with ATDx we do not aim at providing a “silver bullet” to identify
the ATD present in a software-intensive system: the multifaceted nature of ATD
comprises a plethora of different ATD items, symptoms, causes, and consequences,
which hinders a holistic general-purpose approach. Rather, with ATDx we strive for
the establishment of a sound, comprehensive, and intuitive architectural view of code-
related ATD, which helps facilitate conversations, understanding, and awareness of
the current state of ATD in software-intensive systems.

100

Architectural Technical Debt:
A Grounded Theory

When the past is always with you, it
may as well be present; and if it is
present, it will be future as well.

William Gibson, “Neuromancer”

This chapter is based on:
[3 R. Verdecchia, P. B. Kruchten, and P. Lago, Architectural Technical Debt: A Grounded Theory [56],

European Conference on Software Architecture (ECSA), 2020.
[3 R. Verdecchia, P. B. Kruchten, and P. Lago, I. Malavolta, Building and evaluating a theory of architectural
technical debt in software-intensive systems [57], Journal of Software and Systems (JSS), 2021.

101

Chapter 4. Architectural Technical Debt: A Grounded Theory

This chapter documents the investigation carried out in order to answer the third
research question of this thesis (RQ3). Specifically, this chapter reports a grounded
theory study, executed by leveraging interviews with experienced software practi-
tioners in order to establish a grounded theory on architectural technical debt. The
results provide a comprehensive theory on architectural technical debt, consider-
ing the multifaceted dimensions of related phenomena. Emerging results include,
among other categories, grounded findings relative to architectural technical debt
items, their causes, consequences, symptoms, prioritization problems, and manage-
ment strategies. Conforming to grounded theory principles, the categories are not
presented as isolated instances, but are instead presented as a unified theory thanks
to the analysis of the relations among the categories which constitute the theory.

102

4.1. Introduction

Contents
41 Introduction vt ittt it i e e e 103
4.2 ResearchMethodo 105
421 GroundedTheory., 106
4.2.2 Grounded Theory Design and Execution 109
4.2.3 Theory Evaluation via Focus Groups: Design and Execution . 114
4.3 ATheory of Architectural TechnicalDebt 117
43.1 ATDItems, 121
4.3.2 Causes 129
433 ConSeqUEenCES v v vt v it e e e e 135
434 Symptoms 140
4.3.5 Management Strategies 147
436 Tool e 152
437 Artifact 153
4.3.8 Prioritization Strategies 154
439 Person 155
4.3.10 Communication, 158
44 RelatedWork. i 160
4.5 TheoryEvaluationResults 163
451 CI: Theory Fitto UnderlyingData 163
452 C2:Theory Workability 164
453 C3:TheoryRelevance. 164
454 C4: Theory Modifiability 165
4.6 Verifiability and Threatsto Validity 165
47 Conclusion i i i i i i e e 166

4.1 Introduction

Technical Debt (TD) is a concept that has been with us for a long time, at least since
1992 when Cunningham crafted the phrase [129], but it only got some real attention
from researchers in the last 10 years [130]. What is technical debt? “In software-
intensive systems, technical debt consists of design or implementation constructs
that are expedient in the short term, but set up a technical context that can make
a future change more costly or impossible. Technical debt is a contingent liability

103

Chapter 4. Architectural Technical Debt: A Grounded Theory

whose impact is limited to internal system qualities, primarily maintainability and
evolvability” [131].

Technical debt can take many different forms in software development, and can be
found in many different places [132]. While much of the literature and tooling avail-
able today address code-level technical debt, our focus is on Architectural Technical
Debt (ATD). This is the technical debt incurred at the architectural level of software
design, that is, in the decisions related to the choice of structure (e.g., layering, de-
composition in subsystems, interfaces), the choice of technologies (e.g., frameworks,
packages, libraries, deployment approach), or even languages, development process,
and platform. As software systems grow in size and their lifespan extends to many
years, many of these original design choices become constraints, and limit future
evolution or even prevents it. To evolve the system, developers do find workarounds
and often complicated solutions, which introduce quality issues and delays. Large
and long-lived systems are suffering from architectural debt, while the small and
short-lived ones die before ATD becomes a real problem. For example, a research
prototype may work well for its intended goal, but if used as brittle architectural
foundation for a commercial product, it can lead to the failure of a company after
years and years of strenuously accumulating workaround on workaround.

However, despite its importance and widespread presence, as of today our knowledge
of ATD is still incomplete. Indeed, how to accurately identify, monitor, and manage
ATD is to date still an open question. The goal of this paper is to fill this gap by
providing novel insights of the crucial factors which characterize ATD in industry. In
order to achieve this goal, in this study we applied a mixed-method empirical strategy
based on the grounded theory method and focus groups. This strategy allows us to
(i) systematically organize and report in a cohesive theory the knowledge acquired
by experienced practitioners on the topic and (ii) evaluate and refine the emerging
theory according to the new data collected via the focus groups.

The main contribution of this study is the development and evaluation of an ATD
theory, which provides an empirically-extracted conceptualization of the architec-
tural technical debt phenomenon. For example, we identified architectural issues,
their symptoms, and managements strategies, which not only shed light on the state
of the practice on ATD, but also provide means for researchers and practitioners to
further understand and monitor ATD phenomena. While the focus of our theory is on
the architecture of software-intensive systems, the emerging results can be utilized to
create specializations of the theory by considering a different abstraction level, e.g.,
code-level technical debt.

104

4.2. Research Method

In a previous study [133] we reported a preliminary version of our theory for ATD. In
this paper we extended our previous work in multiple ways:

» we added 2 new categories, 24 new concepts, and introduced a new inter-level
abstraction of concepts, referred to as Type. These new results emerged thanks
to a further in-depth theoretical coding process, by analyzing the relations be-
tween substantive codes, and how these were represented in terms of concepts,
categories, and relations between them;

* we conducted an evaluation of the theory by adopting the focus group method,
which led to the assessment of the theory according to a set of predefined
criteria, and the introduction of 12 additional concepts in the theory;

e we added an in-depth discussion of the related work by analysing how the
emerging ATD theory complements the findings and visions of existing studies
on architectural technical debt.

The target audience of this study includes practitioners and researchers. Our theory
provides a solid foundation which benefits (i) practitioners aiming at a better man-
agement and mitigation of the ATD they experience, and (ii) researcherslooking for
precise and evidence-based definitions of ATD-related concepts, which may in turn
help exploring new research directions towards a better characterization of ATD and
its effective management.

The paper is structured as follows. The next section focuses on providing back-
ground on the grounded theory method, followed by specifics of our study design
and execution. Section 6.3.4 reports the results of our investigation, with each of the
Subsections 4.3.1- 4.3.10 dedicated to the description of a specific category of our
theory. Related work is reported in Section 4.4, while threats to validity to our study
are reported in Section 6.3.5. Section 6.3.7 concludes the paper.

4.2 Research Method

The research strategy followed in this study consists of two separate parts, carried
out subsequently. Specifically, in the first part of the investigation, in order to formu-
late a theory on ATD, we adopted a grounded theory method (see steps @ - @ of
Figure 4.1). Afterwards, once the theory on ATD was established, we applied focus
groups in order to evaluate and refine our theory (see step (D) of Figure 4.1). The
remainder of this section gives an overview of the complete research process utilized

105

Chapter 4. Architectural Technical Debt: A Grounded Theory

in this investigation. We structure this section as follows: Section 4.2.1 summarizes
the grounded theory method, Section 4.2.2 documents the grounded theory design
and execution, including the details about data collection and data analysis, and
Section 4.2.3 details the focus group method adopted to evaluate and complement
the emerging theory.

4.2.1 Grounded Theory

To build a theory on Architectural Technical Debt we adopted Grounded Theory (GT),
a qualitative research method enabling us to establish a theory by grounding our
findings in the experience of software practitioners. GT is used to systematically
explain an observed phenomenon by studying how people conceptualize and deal
with it in practice. As summarized by Schreiber et al. [134], the goal of grounded
theory is to answer the question “What is going on here?”. To do so, incidents (i.e.,
bits of gathered data related to the studied phenomenon) are analyzed to identify
emerging concepts. As the research progresses, the growing number of concepts
are aggregated semantically into different categories, which constitute the basic
building blocks of the emerging theory. Categories are further developed by gathering
additional data and comparing the new incoming incidents against the old ones,
which were already categorized. This inductive process leads to the identification of
abstract categories, which are theoretically shaped by letting their definition fit all of
the underlying data. The iterative data collection and analysis process stops once the
identified categories become saturated, i.e., when new data is no longer triggering
their revision or reinterpretation. In addition to the identification of the categories
constituting a theory, GT requires to analyze incidents to identify the conceptual
relationships existing between the different categories. In fact, a theory established
by using GT is not mere taxonomy or “set of themes”, but rather a cohesive set of
constructs and relationships describing the studied phenomenon.

An overview of the GT research process followed in this study is depicted in Figure 4.1.
It starts with a bootstrap question which drives the whole study and reads as follows.

Which architectural design decision do you regret the most today?
Then, the method is based on the following concepts:

@ Theoretical Sampling. New data is collected iteratively by purposely identi-
fying current gaps and/or unsaturated categories of the theory. Theoretical

106

L0T

. Incidents
Participant

e 1ECAlS e I
o ==y
% ®

Theoretical Sampling

) Theoretical
Coding Sensitivity

Literature
Review

Category]

Theoretical
Saturation
Bootstra,
> T T Core Category —@—— ~~----~
Data Collection 0

and Analysis
Constant
Comparison

Figure 4.1 - Overview of the grounded theory research method (@ - @), evaluated via focus groups (®)

Focus Groups

v

Memoing

A

POYIdIN Yo1easay ‘'

Chapter 4. Architectural Technical Debt: A Grounded Theory

sampling guides the selection of new data sources (e.g., participants), and the
data to be collected (e.g., by generating iteratively interview questions).

Coding. Incoming data is processed by subdividing it into incidents (e.g.,
single lines of text, or paragraphs), and subsequently labeling the incidents
with analytical codes summarily expressing their semantic meaning. Codes are
then compared and further analyzed by considering their properties in order
to infer theoretical concepts and categories of the emerging theory.

Theoretical Sensitivity. The data gathering and analysis processes are guided
by theoretical sensitivity. This concept refers to the creative ability of the
researcher, and guides the theoretical sampling, conceptualization of incidents,
and identification of relations between concepts.

Memoing. Throughout the entirety of a grounded theory study, memos (e.g.,
textual notes, sketches, diagrams) are taken. Memos are used to keep track of
emerging concepts/categories, the relations between them, and potential gaps
in the theory. Memos are constantly compared to the emerging theory and new
incidents, in order to ensure that the categories best fit the underlying data.
This latter process is referred to as memo sorting (or theoretical sorting).

Constant comparison. Throughout the entirety of the study, all artifacts (in-
cidents, codes, concepts, categories, and memos) are constantly compared
and updated. This process is executed to ensure that the emerging theory is
cohesive, and is coherent with the underlying data in which it is grounded.

Theoretical Saturation. The data collection and analysis process terminates
once the categories become saturated, i.e., when adding new data does no
longer result in an update of the established theory.

Literature Review. In GT studies, a comprehensive review of the literature is
commonly postponed till after the establishment of the theory. Limiting the
researcher’s exposure to the literature is crucial to ensure that the emerging
theory is grounded in the collected data, and is influenced as little as possible
by preconceptions and already established concepts.

To date, three prevailing versions of GT can be found in the literature, namely Classic
(or Glaserian) GT, Straussian GT, and Constructivist GT. They mainly differ in three
aspects, namely philosophical point of view (objectivism, pragmatism, and social
constructionism, respectively), coding procedures (open-selective-theoretical coding,

108

4.2. Research Method

open-axial-selective coding, and initial-focused-theoretical coding), and role of the
literature (while all stances acknowledge the general guideline presented in @, they
differ in other related details, as further discussed in [135]).

4.2.2 Grounded Theory Design and Execution

For this study, we adopted the classic “Glaserian” method [136], and we conformed
to it throughout the whole study, from data collection, to data analysis and synthesis,
with the exception of our adoption of a different “coding family” than the ones
suggested by Glaser [137], as explained in Section 4.2.2.2. In divergence to the other
GT stances, during the analysis process of the method described by Glaser [137], a
“core category” is established. The core category captures the most variation in the
data [138] while addressing the main concern of the study participants (see item
@ of Figure 4.1 to position the discovery of the core category within the research
method of this study.) The “Glaserian” GT method provided us with the ability to
gain a fresh and independent viewpoint on ATD, by letting concepts emerge from the
experience of our participants, rather than from preconceived views of researchers.
The principal investigator was not too immersed in the technical debt world prior to
this study, and avoided doing an extensive review of the literature on ATD prior to
the data analysis, thus minimizing possible confirmation biases, and improving his
“theoretical sensitivity” [139]. As prescribed by Glaser [140], we delayed this review
of the literature after our theory emerged, in order to avoid the influence of existing
concepts on the theory. Prior to starting our investigation, we studied the fallacies
and guidelines for grounded theory in software engineering research presented by
Stol et al. [141], in order to avoid common pitfalls, and ensuring the soundness of our
methodology throughout the study. The investigation, including data collection, data
analysis, and reporting, lasted approximately 6 months.

4.2.2.1 Grounded Theory Data Collection

To collect data, we conducted semi-structured interviews with industrial practition-
ers. Participants were recruited first by convenience and then by following theoretical
sampling: we contacted initial participants within our personal network, and then
selected further based on gaps in the emerging theory, or to investigate unsaturated
concepts. This lead us to interview 18 experienced practitioners, with a mean in-
dustrial experience of 17.5 years, from 14 distinct companies in different industrial
domains. We identified via theoretical sampling senior technical leaders as best

109

Chapter 4. Architectural Technical Debt: A Grounded Theory

Table 4.1 — Grounded Theory Participant Demographics

Id | Role | Ex | Domain |Cs [cud
P1 Senior Vice-President of SE 21 | Banking S Cl
P2 Software Staff Engineer 17 | Telecom M Cc2
P3 Senior Director of SE 20 | Enterprise Software | XXL | C3
P4 | Chief Technology Officer 14 | Financial Services M (&)
P5 Senior Software Engineer 22 | Health L C5
P6 Senior Software Engineer 8 Software Tooling M C6
P7 Senior Software Engineer 18 | Software Tooling M Co6
P8 Senior Software Engineer 23 | Software Tooling M C6
P9 | Vice-President of Product 15 | Data Analysis M Cc7
P10 | Senior Software Engineer 12 | Software Tooling M C6
P11 | Senior Director of Technology | 26 | Data Technologies M C8
P12 | R&D Director 27 | Enterprise Software | L Cc9
P13 | Senior Software Engineer 14 | Software Tooling M C10
P14 | Senior R&D Manager 16 | Enterprise Software | L c9
P15 | Chief Software Architect 11 | Cloud Services M Cl1
P16 | Chief Technology Officer 12 | Consultancy S C12
P17 | Co-Founder 33 | Consultancy XS C13
P18 | Founder 22 | Mobile Applications | XS Cl14

Id: Participant identifier; Role: current role of participant; Ex: industrial experience (in years);
CS: company size (XS<20; S<100; M<500; L<5K; XL<10K; XXL>10K); CId: Company identifier.

fitted participants for data collection, given their hands-on experience on a vast
range of ongoing (and concluded) long-lived software projects. Table 4.1 presents an
overview of the participant demographics. Interviews lasted approximately 1 hour
and were conducted face-to-face at the practitioner’s workplace, or for a few via Skype
video-calls when it was not possible to meet in person due to geographic distance.

As the emerging theory should guide the sampling process, we solved the “bootstrap
problem" [142] of GT by starting our first interview with the bootstrapping question
described in Section 4.2.1. Then, the other interview questions emerged iteratively
by following theoretical sampling, in order to let participants express their main
concerns on ATD in their own words. Specifically, the data collection was conducted
in the form of “guided conversations” [143], i.e., in the form of unstructured questions,
formulated to investigate unsaturated concepts emerging in our theory, or gain

110

4.2. Research Method

further details on concepts described by the participants during the interview. As
advised by Rose [144], during the interviews we refrained to influence the scope or
depth of the responses, as doing so could have influenced the data collected, and
lead to the inclusion into the theory of preconceptions of the researchers on the
topic of ATD. We deemed the use of unstructured interviews to collect data as best
fitted for our GT investigation. In fact, unstructured interviews allowed respondents
to use their own way of defining the world, by assuming that no fixed sequence of
questions is suitable for all respondents, enabling participants to raise considerations
the interviewer did not consider [145].

In addition to the unstructured questions, we also utilized a predefined set of de-
mographic questions to collect data on the professional background of participants,
such as current role, and years of industrial experience (see Table 4.1).

Interviews were audio-recorded and transcribed manually by following the denatural-
ism approach, that is, grammar is corrected, interview noise (e.g., stutters) is removed
and nonstandard accents (i.e., non-majority) are standardized, while ensuring a full
and faithful transcription [146] 1

The data collection terminated once we reached theoretical saturation, that is, when
components of our theory are well supported and new data is no longer triggering
theory revisions or reinterpretations [139]. Figure 4.2, which displays the slow in-
crease of cumulative codes w.r.t. the number of participants, shows that we have
achieved this theoretical saturation around participant number 16.

4.2.2.2 Grounded Theory Data Analysis

We followed Glaser’s grounded theory data analysis and synthesis processes to create
our theory: open coding, selective coding, and theoretical coding [136, 139]. Specifi-
cally, we examined the whole body of text transcripts, subdivided them into separate
incidents [136], and labeled them with codes to let the theory concepts emerge. When
possible, codes are generated by directly quoting the incident (e.g., see [S-Q1]). Other-
wise, “synthetic” codes summarizing the semantic meaning and emerging concept of
the incidents were created by the authors. Subsequently, concepts were clustered into
fundamental descriptive categories, which guided the future data collection. Finally,
we established the conceptual relations between the different emerging categories,

1 An initial ad-hoc automated solution resulted to be too literal, e.g., by including repeated portions
of sentences, inconclusive sentences, etc., leading to lenghty transcripts, which would have impacted
negatively the subsequent data analysis.

111

Chapter 4. Architectural Technical Debt: A Grounded Theory

[72]
o 250
g
S 200
Q
& 150
=
5 100
kS
50
St
(]
e
0
: EEETLEERERE2-SETRRE
=R R B R S R
Z L T Y
Participant

Figure 4.2 — Cumulative unique number of codes per participant, showing theoretical
saturation

leading to the formulation of our theory. We express the relationships between codes
as hypotheses via a UML model to precisely describe the relations of different nature
emerging between the categories of our theory (see Figure 4.6).

Differently from Glaser, who used “concept” and “category” as synonyms, we as-
sociate to such terms two distinct levels of theoretical granularity, as also done in
numerous studies utilizing GT, e.g,, [142] and [147]. When required, we use an ad-
ditional abstraction level, referred to as Type, which aggregates distinct concepts of
similar nature in a mid-ranged level of abstraction. The identification of types was
conducted during the theoretical coding phase, when concepts were taken into ac-
count. Specifically, when similar characteristics shared among concepts of the theory
emerged in the memos, a new fype was instantiated, according to the identifying
characteristic shared among the underlying concepts. In summary, our theory entails
four different levels of abstraction, ranked from lower to higher abstraction level:
code, concept, type, and category. An example of such abstraction hierarchy, regarding
the concept of symptom is reported in Figure 4.3.

During the entirety of the coding procedures, we made use of memoing [136]. We
created textual memos to elaborate concepts (i) related to single incidents (e.g., “This
incident exemplifies the impossibility to implement new functionality due to ATD”) and
(ii) orthogonal to multiple incidents (e.g., relations between concepts or categories,
such as “Developer’s intuition can lead both to ATD identification and prioritization”).

112

4.2. Research Method

Symptom

Issue-related 0
Symptom «ﬂQ

Recurrent \Y
Customer QQ‘Q
Issues o

2
Abstraction Level

Component

with Customer N
00
Issues

________________________________ R

"If all you know is that you get lots of customer Q:‘\\
issues in this components...it's probably because R
my architectural debt is not getting addressed.” \®

Figure 4.3 — Example of Abstraction Levels of the ATD Theory

In addition, we adopted word clouds to gain a concise overview of the codes emerging
from each interview. An example of these type of memos is shown in Figure 4.4.

As described in Section 4.2.2.1, we analysed our data immediately and continuously,
using simultaneous data collection and analysis, guided by theoretical sampling.
Additionally, during data analysis, we constantly compared our data, memos, codes,
and categories, in order to identify and keep track of common notions, topics, and
patterns, as they emerged. Similarly, we continuously sorted our memos to evolve the
emerging concepts and categories to best fit our codes, leading to the formulation of a
substantive, cohesive theory. We performed continuous comparison until additional
data being collected did not add new knowledge about the categories, i.e., until we
reached the state of saturation (see Section 4.2.2.1).

It should be noted that numerous concepts included in our theory possess a multi-
faceted nature. For instance, by considering the concept of “technical debt” itself, we
can observe how it can be both a cause, leading to the introduction of additional debt,
and a consequence, e.g., of pre-existing debt which is accumulating. By following
GT principles, we coded multifaceted concepts according to the facet which was

113

Chapter 4. Architectural Technical Debt: A Grounded Theory

i scheduled refactoring

adaptability :

e — 11 [o R
gt respona TS AT GNIMENE v i

rewrite td cluster

expressibility Optimlsm delay refactoring

theory

s 003] @achievement g

delegation

side effectI C Omp 1 eXlty inevitable

value CI API « constraints . gu'f feeling
aemaivsW1d€SPrEad binding
bigger picture * prioritization
compatibility lnadVCI'tCnt modularization
eoning gpeg Additional effort time pressure
compromise : 1mn t competition
eincttcs, CATTYINEG COST camine s

architectural lock in altemative bug technology shift

slow down versioning

communication problem

decomposition block activities evolution
configuration rollback boyscout rule

Figure 4.4 — Example of memo used to gain a summary overview of the codes emerging
from a single interview

deemed most important by participants. This process was adopted in order to ensure
the emergence of concepts from the data gathered, rather than from preconceived
knowledge of the authors. Coding incidents via this strategy allowed the emergence
of issues of importance to the participants to be exposed from their own point of
view, systematically uncovering patterns of which participants might even not be
aware of [148].

Four researchers were involved in both the data collection and analysis phases, where
the first author carried out the coding, memoing, and analysis processes, while the
others collaboratively analysed and reviewed the obtained results through several
iterations.

4.2.3 Theory Evaluation via Focus Groups: Design and Execution

In order to evaluate and refine our theory after its emergence, we applied the focus
group method [149] (item @ in Figure 4.1). This step of our research consisted of
presenting the theory to groups of industrial practitioners, and gathering feedback
based on their discussion to evaluate and complement the theory. Specifically, the

114

4.2. Research Method

Preliminary Steps O
i\ I\
(1 (1
Step 2 Step 3a Step 3b Step 4 Step 5
Step 1 Presentation of Presentation of Discussion on Discussion on Discussion on
Introduction High-level Category, Types, 7| Category, Types, Additional Theory Relevance
Theory and Concepts and Concepts Remarks and Usefulness

Figure 4.5 — Main steps of the focus group sessions

evaluation of the theory was conducted by following the criteria characteristic of the
Glaserian GT method [139], as we employed such stance of GT to construct our ATD
theory, namely:

Cl:
C2:

C3:

C4.

the categories of the theory fit the underlying data;

the theory is able to work (i.e., explain and reason about ATD related phenom-
ena);

the theory has relevance to the domain (i.e., development and management
practices of large and long-lived systems);

the theory is modifiable as new data appears.

We adopted the focus group method to evaluate the theory as it enabled us to effec-
tively and efficiently gain feedback on the theory by allowing participants to compare
their experiences, jointly discuss opinions on it, and release potential inhibitions
with respect to the discussed phenomenon.

Table 4.2 — Focus Group Participant Demographics

FG Id Role Ex | Domain CS CId
FG1 | P19 | IT Architect 15 | Banking XL C15
FG1 | P20 | Principal Architect 26 | Consulting L Cl6
FG1 | P21 | Director Enterprise Architecture 27 | Airline Industry | XXL | C17
FG1 | P22 | Vice-President 34 | Consulting XXL | CI8
FG2 | P23 | ICT Business Manager 25 | Finance L C19
FG2 | P24 | Product Owner, Integration Architect | 13 | Airline Industry | L C20
FG2 | P25 | Enterprise Architect 31 Banking XL C15
FG2 | P26 | Enterprise Architect 36 | Finance M C21
FG2 | P27 | Director 25 | Consulting XS C22

FG: focus group identifier; Id: Participant identifier; Role: current role of participant; Ex: industrial experience
(in years); CS: company size (XS<20; S<100; M<500; L<5K; XL<10K; XXL>10K); CId: Company identifier.

115

Chapter 4. Architectural Technical Debt: A Grounded Theory

As shown in Figure 4.5, each focus group session was organized in five distinct steps.
During Step 1, the purpose of the focus group was presented, and some background
knowledge on architectural technical debt was given, to set a general common ground
on the topic guiding the subsequent discussion. Additionally, during this first step, a
round of introduction among the participants and moderators was conducted, to give
participants confidence to speak up, provide context for the experiences described
by them in the subsequent steps, and foster group dynamics. In the second step, a
high-level overview of the theory, presenting the categories of the theory and their
relations (see Figure 4.6), was introduced. Then, a deep dive into each category of
the theory was conducted. This process consisted in comprehensively presenting
each category, its related types, and concepts (Figure 4.5, Step 3a), followed by a
discussion among the participants about the topic presented (Figure 4.5, Step 3b).
During the discussion of each category (Step 3b), the conversation was guided by
the moderator to assess if (i) the theory reflected the experience of the practitioners,
(ii) any prominent information was missing in the theory, and (iii) the theory con-
tained new or unexpected categories, types, or concepts. Step 3a and Step 3b were
repeated for each category of the theory. After all categories were covered, i.e., the
theory was discussed in its entirety, participants were given the possibility to express
further remarks on the complete theory (Figure 4.5, Step 4). While Steps 3-4 focused
primarily on assessing the GT evaluation criteria C2 and C4 (i.e., the theory works in
practice, and is modifiable according to new data), the last step of the focus group
(Figure 4.5, Step 5) was designed to assess the GT evaluation criterion C3, i.e., if the
theory is relevant to action in the area of ATD, by focusing on the emerged core cate-
gories and concepts [150]. Specifically, this last step consisted in a discussion among
participants about the relevance of the theory they perceived, as well as the potential
usage scenarios of the theory they envisioned. In order to prepare participants, and
ensure that they were well informed of the focus group goal and content, a document
describing the theory and the structure of the focus group was provided to them two
weeks prior their session.

Table 4.2 gives an overview of the focus group participant demographics. The partici-
pants of each focus group session were selected by ensuring a balance of common-
alities and differences in their expertise, to ensure a range of variegated opinions,
while sharing the common background knowledge required to discuss and compare
experiences and opinions. Like for the grounded theory participants, we selected for
the focus groups practitioners expert in the area of software architecture, as a deep
knowledge of the ATD phenomenon is a crucial characteristic, especially in order to
get insightful feedback on the ATD theory. In total, 9 participants were identified and
assigned to one of the two separate focus group sessions used for this study. We opted

116

4.3. ATheory of Architectural Technical Debt

to conduct two separate sessions, as this allowed us to avoid flat group dynamics,
while ensuring that each participant had sufficient time to express their opinion [151].
Focus group sessions lasted approximately 1.5 hours, and were conducted virtually.

In the following section, we document the theory resulting from the execution of the
GT method, refined with the feedback from the focus groups. Further considerations
on the focus group evaluation are reported in Section 4.5.

The emerging theory is the product of both grounded theory and focus groups meth-
ods. For the sake of traceability, concepts included in the theory due to discussions

emerging in a focus group session are denoted with a characterizing icon .

4.3 ATheory of Architectural Technical Debt

Figure 4.6 gives an overview of our grounded theory on Architectural technical Debt
(ATD). In this section we describe the categories emerging from our data, which
constitute the foundation of our grounded theory on architectural technical debt.

The system category represents the system being developed. In this research we fol-
low the definition of “software-intensive system” as defined in the ISO/IEC Standard
42010, i.e., “any system where software contributes essential influences to the design,
construction, deployment, and evolution of the system as a whole” [152]. A system
possesses a certain amount of architectural technical debt.

The ATD category embodies the entirety of the technical debt incurred at the archi-
tectural level in a software-intensive system. Regarding the definition of technical
debt, in this research we follow the 16162 definition, i.e., “a collection of design or
implementation constructs that are expedient in the short term, but set up a technical
context that can make future changes more costly or impossible” [131].

In addition to reporting the categories of our theory theory, in this section we also dis-
cuss the relations emerged between the different categories. In line with the grounded
theory approach, this enables us to both present comprehensively the emerging the-
ory, and offer explanations underlying ATD related phenomena [139] [153].

At the core of our theory lies ATD item, i.e., the category that embodies the instances
of ATD residing in a software-intensive system (for an in-depth description of this
category, see Section 4.3.1). The identification of the ATD item as the core category of
our theory can be observed from the numerous relations between this category and

117

81T

* Person * 0..1] Pprioritization
Symptom ﬁ strategy
* Communication f---- ¥ . influences . =5 | guides
management
displays points to influences [, L strategy ‘ﬁ
addresses - supports
*
1.* 1.%
ATD . Tool
Conseq leads to item affects—>| Artifact
* 1 “*
1 “*

1.*

Cause generates ATD l———possesses—— System

Figure 4.6 — Core categories of the ATD theory and their relations [133]

199 [eIIUYIAL, [eIMIAYIIY F 191dey)

A109Y], papunoin y

4.3. ATheory of Architectural Technical Debt

the other ones reported in Figure 4.6.

At the root of each ATD item lies one or more cause. Each cause can generate one or
more items (see Section 4.3.2. From our data time pressure and business drive are
the main causes leading to the generation of ATD items:

“The plan is one thing, but it'’s not working now, we have to adapt quickly. Whether or
not we meet the coding rules, I proceed. I don’t care. Something is broken, nobody cares
how nicely something fits the architecture, I care if it's gonna break our product. That is
not a computer science issue, it’s a business one.” - P8, Senior Software Engineer [R-Q1]

As causes can generate one or more ATD items, so ATD items can lead to one or more
consequences, e.g., reduced development velocity, higher maintenance cost, impos-
sibility to implement new functionality (see Section 4.3.3). Additionally, in contrast
to the relation between Cause and ATD item, ATD items can also be “dormant”, i.e.,
the items are present in the system, but do not lead to any immediate consequence:

“There was a developer who wrote a component that nobody knows how it works, and
so we are all afraid of touching it. It works well for now, but if something stops working,
or we have to touch that, for example to implement some new functionality, we could
have a problem.” P12, R&D Director [R-Q2]

Consequences can display one or even multiple symptoms, e.g., recurrent customer,
performance, and/or development issues. In this case, a consequence could also not
display any symptom, either because the related ATD item is “dormant”, or because
the observed symptoms are not sufficiently distinct to establish the relation:

“To be honest? I have a bit of a vibe. As a product manager, I'm pretty like face-to-
face and hands on, and I kind of just gauge the winds on the face of developers” P9,
Vice-President of Product [R-Q3]

Symptoms point to one or more ATD items, i.e., observing symptoms displayed by
a consequence can lead to the identification of one or more ATD items. Often, a
multitude of symptoms point to a single, widespread, ATD item:

“You do things like: “How are your bugs?’, “How is your performance?”. All of those
things tell you something. They are indicators. Like code coverage, it tells you some-
thing, but does it really tell you anything? But it’s just one big underlying problem!” P3,
Senior Director of Software Engineering [R-Q4]

Nevertheless, as reported in quote [R-Q3], consequences of ATD items can also not

119

Chapter 4. Architectural Technical Debt: A Grounded Theory

display any clear symptom, making the discovery of related ATD items harder.

Each ATD item can affect one or more artifacts, e.g., software components, test suites,
software development tools, and/or documentation:

“We reached the point where it [architecture] became quite brittle, and it was also
quite difficult to change the test suite, because the architecture was so complex...so
many connectors...and the variance of those connectors!” P7, Senior Software Engineer

[R-Q5]

Similarly, an ATD item can reside in one or more artifacts, i.e., it can be present
simultaneously in various artifacts of different nature, or even occur in the relation
established between two or more artifacts.

ATD items can be addressed via one or more ATD management strategies, e.g., via
systematic time allocation, large-scale rewrites, and/or carry out opportunistic patch-
ing (see Section 4.3.5). Additionally, it is also possible to address multiple ATD items
with a single management strategy (typically via rewrites):

“Usually, I just do a gut evaluation: ifthere is a large disconnect between what the system
does and what it is supposed to achieve, usually it is a big indicator that there are many
problems, and we need a rewrite.” P1, Senior Vice-President of Engineering [R-Q6]

ATD management strategies can be guided by a prioritization strategy, i.e., a strategy
with which ATD management tasks are prioritized along with other development
tasks, such as bug fixes, and implementation of new functionality [154] (see Sec-
tion 4.3.8). Often, prioritization processes are not carried out systematically, and can
consider one or multiple management strategies depending on the addressed ATD
item(s):

“Given three weeks of development time, which architectural debt should we pay down?
Twould say, we're not doing it systematically, but we're probably not coming out with
two very different answers. If something is really painful, we would know.” P9, Vice-
President of Product [R-Q7]

ATD management strategies can also be supported by tools, e.g., static analyzers and
linters, such as Clang Tidy? and SonarQube3. Nevertheless, only in unique instances
practitioners used tools to detect architectural debt issues, such as component de-

2https://clang.llvm.org/extra/clang-tidy
3https:/ /www.sonarqube.org

120

https://clang.llvm.org/extra/clang-tidy
https://www.sonarqube.org

4.3. ATheory of Architectural Technical Debt

pendency anti-patterns via NDepend?. In most of the cases, ATD management
strategies are not supported by any tools, possibly due to their perceived immaturity
or usefulness:

“The really expensive type of debt [ATD], I have not seen a tool which is able to detect
that...” P10, Staff Software Engineer [R-Q8]

An emerging category which is directly related to the ATD item category is person.
The relation between person and ATD items is of a multifaceted nature, as people’s
personal drive, skill set, and awareness (among other concepts, see Section 4.3.9)
can highly influence ATD items, from their establishment to their prioritization, and
resolution.

ATD can lead to the communication of concepts related to it among people work-
ing on a software-intensive system where ATD is present. This constitutes another
emerging category of our theory, it is reported in Section 4.3.10.

Numerous relations of secondary nature between categories were also identified
in our theory. To maintain the documentation of our theory compact, such com-
plementary relations are discussed through the support of cross-references in Sec-
tions 4.3.1-4.3.10, further relating concepts and categories via exemplifying incidents
(e.g., [S-Q3] not only discusses an ATD symptom, but also hints to the inability of
solving complex ATD issues via the described ATD management strategy, namely
opportunistic patching).

4.3.1 ATD Items

An overview of the ATD items residing in software-intensive systems which emerged
in our theory is depicted in Figure 4.7. The relation between elements of Figure 4.7
has to be interpreted as a “is a type of” relation (same applies for Figures 4.8-4.11,
and Figure 4.14). The identified items belong to one of three mutually exclusive types,
namely framework ATD, process ATD, and implementation ATD®. Framework ATD
items are specific to the adoption and adaptation of software frameworks in software
projects. Process ATD items, instead, regard the high-level processes of architecting
and managing software-systems, with particular emphasis on their evolution. Finally,
implementation ATD items focus on lower-level implementation details which, due
to their widespread impact on the maintenance and evolution of a software-system,

4https:/ /www.ndepend.com/
5In the next figures, categories are shown in bold, fypes in italics, and concepts as plain text.

121

https://www.ndepend.com/

Chapter 4. Architectural Technical Debt: A Grounded Theory

become of architectural relevance. The remainder of this section is dedicated to the
description of each concept belonging to the ATD Item category.

4.3.1.1 Framework ATD items

Unfitted Framework. One of the most prominent ATD items related to software
frameworks regards the adoption of a framework which is misaligned with either
the currently implemented architecture or its requirements. This ATD item is often
caused by a lack of comprehensive trade-off analysis of alternative frameworks. As
P14 described:

“We had a discussion on how to build the new front-end in React. At the time there were
reasons that supported our decision, but later on we saw that we didn’t evaluate all the
options.” P14, Senior R&D Manage [ATDI-Q1]

This type of item is often incurred inadvertently. Additionally, its consequences
mostly manifests themselves only over a prolonged period of time, increasing the
effort required to maintain and evolve an architecture containing an inadequate
framework, potentially embedding the framework deeper into the architecture. As
pointed out by P1:

“The technology decision sounded great in theory, but in practice it was a real pain. At
the time it felt like a good idea, but in the long run, the cognitive overhead to deal with
that solution led to a lot of pain, bad code, bugs, and additional effort.” P1, Senior
Vice-President of SE [ATDI-Q2]

Re-inventing the Wheel. This ATD item refers to ad-hoc components developed
in-house, which are chosen over already available components with similar function-
alities (e.g., components available as open source software):

“We basically built our own thing ... why would we build our own persistence library?
That doesn't make sense! It’s just silly!” P11, Senior Director of Technology [ATDI-Q3]

As noticeable in the previous quote, re-inventing the wheel ATD items are particularly
evident when generic functionalities, widely available as open-source software, e.g.,
the mentioned persistence library, are re-implemented in-house.

In addition to the resources required to implement already available components,

122

4.3. ATheory of Architectural Technical Debt

ATD
Item

il

—>

Framework ATD

Unfitted
Framework

Reinventing
the Wheel

Technology
Lock-in

Superflous
Framework

Framework not %

Up to Date

Process
ATD

Implementation
ATD

Complex Problem,
Simplistic Solution

Segment of Code
Affected by TD

New Context,
Old Architecture

The Workaround
that Stayed

T

The MVP
that Stuck

Trial-and-error
Design

Figure 4.7 - Overview of emerging ATD items

123

Chapter 4. Architectural Technical Debt: A Grounded Theory

drawbacks include lower implementation quality, additional maintenance cost, and
lack of documentation:

“We built our own thing ... and now it’s hard to maintain. And now that we have got to
build on top of it, people are getting tired” P8, Senior Software Engineer [ATDI-Q4]

Ad-hoc components are often chosen due to the perceived velocity of developing
anew component instead of getting accustomed to, and adapting, an existing one.
Additionally, as further discussed in Section 4.3.9, personal drive of developers can
influence this decision:

“I thought to be smarter, but I was not ... in the long run, off-the-shelf solutions make
people faster in ramping up, even if you [just] have to adapt them.” P3, Senior Director
of SE [ATDI-Q5]

“People had NIH-Syndrome, not-invented-here [laughs].” P10, Senior Software Engi-
neer [ATDI-Q6]

Framework Lock-in. Related to the previous debt item, ATD can arise due to software
frameworks which, due to their deep embedding into the architecture of a software-
intensive system, become very costly or even impossible to replace. This debt item is
often referenced as harmful if co-occurring with “dormant” ATD items [R-Q2], or if
the lock-in is of technological nature and unreliable (e.g., a third party has complete
ownership of a component and releases a breaking change). As described by P1:

“Sometimes you make something overly-specific, lock in completely into a specific
library or technology. It's about how able your system is to change without crystallizing
in design choices dictated by the need of adaptation.” P1, Senior Vice President of SE
[ATDI-Q7]

An example of framework lock-in was provided by P11, regarding the data layer of
a software-intensive system they worked on. Specifically, during the evolution of
their architecture, SQL became deeply embedded throughout their system. As the
system grew in size, due to scalability concerns, the passage to a NoSQL database
was required. Nevertheless, as the architecture was completely locked-in on SQL, the
system had in the end to be deprecated.

Superfluous framework. Due to its uncertainty, the process of building up technical

credit (see Section 4.3.9) can lead to the achievement of the opposite of its goal,
namely the introduction of new ATD items. In relation to frameworks, efforts spent in

124

4.3. ATheory of Architectural Technical Debt

gaining technical credit can lead to the adoption of superfluous frameworks. Super-
fluous frameworks are characterized by often complex and hard to embed technology
solutions, which implement numerous functionalities that will never be used. P12
described one of such occurrences, referring to the adoption of Apache Tomcat as
web server environment:

“In hindsight we didn’t need it. There was a lot of functionality we could have used,
but it was not useful, and in the end and we didn’t use it. Wait till you need it, then
worry about it. Thinking about it now it was just overkill ... there is no need to go for
the moon when you need to go into the sky.” P12, R&D Director [ATDI-Q8]

The adoption of superfluous frameworks can be due to the inherent optimism bias
characterizing developers (cfr. Section 4.3.9), and the often misplaced assumption
that more complex and expressive solutions are generally better than simple ones. P1
recalled:

“We thought the solution we chose was more expressive, so it should be better. We
assumed we could be able to deal with a more complex thing at the time. We thought
that more complexity and cognitive load was something we could deal with.” P12,
Senior Vice-President of SE [ATDI-Q9]

By considering the prior framework ATD items, we can observe how the adoption
of a certain framework, the choice of utilizing a (potentially unfamiliar) framework
over one developed in-house, and the level of embedment of a framework within a
software-intensive system constitute an act of balance. In fact, the design decision
behind the introduction of such items are not per se suboptimal, but can nevertheless
lead to ATD if the context of a software-intensive system is not correctly interpreted,
or if the trade-off analysis such decisions entail are not analyzed with the required
care.

Framework not Up to Date. As emerging from discussions in both focus groups, ATD
can manifest itself in the form of frameworks present in a software-intensive system
which are not up to date. This type of ATD item, referred in academic literature as
“technical lag” [155], arises when new versions of the used framework are released,
but its update in the system is delayed while continuing development activities on
an outdated version. The repayment of this ATD item is often delayed until the
framework inevitably needs to be updated, or it is changed in its entirety (e.g., due to
the deprecation of a certain version/framework). As noted by P19, this ATD item is
often incurred deliberately, as its consequences are only seldom understood in their
entirety.

125

Chapter 4. Architectural Technical Debt: A Grounded Theory

“You see it [ATD] coming. You could change it [framework version] before. But “it’s still
working. .. why should I update my dependencies?”” P19, IT Architect [ATDI-10]

As noted in the second focus group, a prominent example of not-updated frame-
works are user interface frameworks, which can lead to serious and widespread
consequences if their update is consistently neglected in time.

4.3.1.2 Process ATD items

Complex Problem, Simplistic Solution. Underestimating the problem at hand, and
adopting a simplistic solution to address it, can lead to the implementation of archi-
tectural components which not only are inadequate to support future requirements,
but are in some cases even unfitted to properly satisfy the current ones. Such so-
lutions, often caused by time pressure, are in many cases swiftly replaced, making
the initial investment required to implement them almost vain. P7 described the
presence of this item as follows:

“Changing the new component can be quite challenging, we always have to make sure
we don't end up breaking all the edge cases which are not considered. It can be quite
brittle and so like I said, we can end up kind of fighting with it. It might be difficult to
evolve it to suit our needs.” P7, Senior Software Engineer [ATDI-Q11]

In a way, the forces leading to this ATD item can be considered as opposite to those
leading to the Superfluous framework ATD item. Indeed, the former is rooted in
the underestimation of the problem at hand, whereas the latter is rooted in the
anticipation of a degree of complexity which is never needed.

An example of complex problem, simplistic solution was provided by P7, while de-
scribing the integration of a test suite into a software development kit. The test suite
was intended to test the interface specifications of all new components of a certain
type, referred to as “connectors”. Nevertheless, as this connectors varied greatly in
terms of functionality, the test suite developers had to adhere to resulted to be a
futile exercise. In fact, a large number of corner cases were not considered in the
test suite, and developers discovered to ‘“actively fighting it [test suite]”, trying to
adhere to the generic test suite specifications, while implementing the functionalities
characterizing the components.

New Context, Old Architecture. Another ATD item that emerged in our theory re-
gards not paying continuous effort in keeping the architecture of a software-intensive

126

4.3. ATheory of Architectural Technical Debt

system aligned with its context, leading to an outdated architecture. P12 argued:

“Ifyou do not adapt your architecture over time, that’s when you end up with a big lump
of problems. That'’s were maybe we took too long, 3-4 years passed before we decided
that we had to take the time to fix it [architecture]. And that’s a huge undertaking.”
P12, R&D Director [ATDI-Q12]

Participants mostly reported to incur in this ATD item inadvertently. Nevertheless,
this item can also be established deliberately, e.g., if driven by a business strategy:

“The business was to keep the costs down and make as much profit as possible, and
after 8-10 years, the architecture was seriously showing its age ... ” P11, Senior Director
of Technology [ATDI-Q13]

By considering the example regarding SQL provided for the framework lock-in ATD
item, we can notice how locking-in a specific framework can make a software-
intensive system difficult to evolve, leading to an architecture which cannot keep the
pace with its evolving context.

In this study, we noticed that the time required for an architecture to become mis-
aligned with its context varies greatly according to the specific case considered, as
it depends on the pace at which the context of a software-intensive system evolves.
For example, a software-intensive system developed for the banking domain [156],
may need to evolve at a much lower pace than mobile apps, which are generally
characterized by a rapidly changing ecosystem [53].

The Minimum Viable Product (MVP) that Stuck. A particular instance of new con-
text, old architecture emerging in our theory is an MVP that, while intended as a
temporary “bare-bones” solution, evolved into the architectural foundation of a
system, without properly considering the architectural implications of adopting an
immature artifact as architectural basis. This ATD item often happens in start-up
environments, or during the implementation of a new architectural component, and
is often related to time pressure, lack of architectural awareness, and uncontrolled
software evolution:

“It was an MVP solution that is still in place. And we were constantly broadening the
scope of the problem. So there was no longer time to pay attention to the MVE because
not only the customers had their defects, but we had also to constantly implement new
functionality. So for quite a long time, we just kept adding new functionality, and this
problem was never solved.” P6, Senior Software Engineer [ATDI-Q14]

127

Chapter 4. Architectural Technical Debt: A Grounded Theory

Examples of MVP that stuck provided by participants were prototypes of a new
architecture, immature R&D components, and experimental development branches,
which were adopted (deliberately or inadvertently) as architectural foundations of a
software-intensive system.

4.3.1.3 Implementation ATD items

Segment of code affected by TD. Rather than originating from a single, important,
architectural design decision, ATD can arise from small details regarding the imple-
mentation of architectural components, and the relations between them which, by
accumulating and worsening over time, deteriorate the architecture of a software-
intensive systems. This type of item often manifests itself as dependency issues,
such as architectural tangles, poor separation of concerns, and/or tightly coupled
architectural components. As described by P13, due to the reach of this type of items,
it might be difficult to locate their exact root cause:

“You would say: “Oh, we know what is wrong with this functionality, it’s in this one
place’, but then there is also this other five places that you have to touch, and you end
up not really knowing where the problem is” P13, Senior Software Engineer [ATDI-Q15]

Relating to this ATD item, numerous participants mentioned an “architectural debt
halo”, i.e. a portion of the architecture with hard to define boundaries, where hard to
locate debt resides. In P2 words:

“It takes some awareness to understand you are going down a rabbit hole. But when
you realize it, you can just change a bit in the periphery, what you can see, you fix a bit
of the halo of badness.” P2, Software Staff Engineer [ATDI-Q16]

Prominent examples of this ATD item mentioned by participants were architectural
components implemented under par, e.g., characterized by unsound use of access
modifiers, ambiguous naming conventions, high cyclomatic complexity, and high
cognitive complexity.

The Workaround that Stayed. ATD can be introduced in a software-intensive system
as a temporary workaround, implemented to bypass some architectural constraints,
which over time becomes deeply embedded into the architecture. As described
by P8 in [R-Q1], such workarounds can be brought in deliberately, for the sake of
development velocity, or triggered by unexpected context changes. Nevertheless, the
awareness of the progressive consolidation of the workaround into the architecture

128

4.3. ATheory of Architectural Technical Debt

can be inadvertent:

“somehow we ended up with three pathways through the code, first we had one, then
two, and so on ... there was duplication among the three, but also separate pieces
to each one, that stuff was not isolated nicely ...” P13, Senior Software Engineer
[ATDI-Q17]

Consolidated workarounds can become so embedded into an architecture that, while
their consequences can be evident, it is no more worthwhile fixing them:

“...atthis point...I think it's been deemed too expensive at best to change that [work-
aroundy, relative to the other business priorities we have.” P7, Senior Software Engineer
[ATDI-Q18]

Trial-and-error Design. If an insufficient amount of resources is invested in carefully
designing a component, an implementation of it can be established by iteratively
fixing a suboptimal version of it. This type of ATD item manifests itself as a component
(or a set thereof) which has to be continuously adapted in order to satisfy the current
and new requirements. P2 describes:

“Trying out and then looking back at the component, you can immediately see if
something isn't right, for example if you have a lot of code to do something that should
be simple. And then we can say, we passed the bad, I understand now what I have
to do in version 2. But then the process repeats itself.” P2, Software Staff Engineer
[ATDI-Q19]

The example considered in the previous quote regarded an interface of an embed-
ded system, enabling a software component to communicate with its underlying
hardware. While similar interfaces were developed in the past, in order to discard
legacy implementations, a new interface was developed from scratch. Such inter-
face, retouched multiple times as old requirements were rediscovered, resulted in
a trial-and-error design, accommodating requirements incrementally, without any
structured upfront design.

4.3.2 Causes

In this section we present the root causes of ATD items emerging from our data.
Specifically, we identified two separate type of causes mentioned by the participants,
namely external and internal causes. External causes regard the influence of the

129

Chapter 4. Architectural Technical Debt: A Grounded Theory

context of software-intensive systems on their ATD. Internal causes instead embody
factors inherent to the development and maintenance of the system. As noted during
both focus groups, an external cause often leads to one or more internal causes, i.e.,
a stimulus provided to a software-intensive system in the form of an external cause,
may trigger one or more causes internally. An overview of the ATD causes emerging
in our theory is depicted in Figure 4.8.

4.3.2.1 External Causes

Time Pressure. 16 of the 18 participants acknowledged time pressure as the main
cause of ATD. P11 summarized the concept of time pressure of software development,
which most of the participants reported, as follows:

“In a product you need to hit quarterly targets and what not, always be on the treadmill,
getting things done.” P11, Senior Director of Technology [CA-Q1]

P10 further details this concept by talking explicitly about the relation between ATD
and time pressure:

“The cause [of ATD] is the same as usual, save time!” P10, Senior Software Engineer
[CA-Q2]

As can be evinced also from [R-Q1], under time pressure, architectural quality is often
sacrificed. This is a recurrent theme across all participants. As P2 noted:

“When time becomes tight, the first thing that will fall out is cleaning up the architec-
ture.” P2, Software Staff Engineer [CA-Q3]

The rationale behind the sacrifice of architectural quality for the sake of velocity,
has to be attributed to the large amount of resources often involved in architectural
changes. This concept is described by P13 as follows:

“One thing is always time, it’s quicker to do feature development instead of doing
architectural changes”, P13 - Senior Software Engineer [CA-Q4]

From our data we observe that developers often take architectural shortcuts and
accumulate ATD when the time pressure is high, under the (often incorrect) assump-
tion that these shortcomings will be dealt with at a later stage, as further detailed in
Sections 4.3.8 and 4.3.9.

130

4.3. ATheory of Architectural Technical Debt

Cause

External
Cause

Time
Pressure

Misalignment
Architecture-Context

Passing of Time

%

Business
Pressure

Complex Business
Processes

Internal
Cause

Lack of Knowledge

Unsuitable
Architectural
Decision

Human Factors

Incorrect %

Implementation of
Correct Architecture

®

Lack of Anticipation

Figure 4.8 — Overview of ATD causes

131

Chapter 4. Architectural Technical Debt: A Grounded Theory

Misalignment Context-Decision. If the context of a software-intensive system is not
clearly understood, suboptimal architectural decisions can be taken inadvertently.
Such decisions might lead to the evolution of architectures, not by considering their
real context, but a hypothetical, building on the existing debt. P8 recalled one of such
instances:

“The abstractions we used didn’t really match reality. We thought to know how things
had to be done, but thinking back at it. .. we were completely off!”, P8 - Senior Software
Engineer [CA-Q5]

Clearly understanding the context of a software-intensive systems results to be one
of the paramount factors to mitigate the establishment of architectural debt items:

“It's about the semantics: only if you really know what your concepts are you can
create a good architecture. That's why I think the architecture should deeply reflect the
requirements, the semantics, the domain that your software system supports.”, P17 -
Co-Founder [CA-Q6]

Passing of time. Even if the context of a software-intensive system is well understood
and all correct architectural decisions are made, passing of time will naturally and
unavoidably build up ATD. As noted in both focus groups, ‘aging technologies” is the
most common, and inevitable, manifestation of passing of time as a cause of ATD. A
participant of the second focus group explained:

“Regardless of the effort spent in maintenance, systems are aging. Even if you consider
all potential concerns, the environment changes, and some of the correct architectural
decisions you took in the past are just not valid anymore.” P25 - Enterprise Architect
[CA-Q7]

The passing of time cause is related in our theory to specific types of ATD items,
namely new context, old architecture, and not updated framework: as components
of a software-intensive system slowly become outdated, the architecture further
and further gets misaligned with its context, till a maintenance effort is required to
pay back the “naturally” accumulated debt, e.g., by changing a certain architectural
component, or upgrading a framework to its latest version.

Business pressure. In order to meet requirements of stakeholders, or fulfill commit-
ments taken with them, architectural decisions can be taken, even if the decisions
entail undertaking a considerable amount of ATD. Such type of tactical decisions,
often taken by business departments, prioritize the achievement of a goal over the

132

4.3. ATheory of Architectural Technical Debt

potential consequences in a software-intensive system, either because the conse-
quences are not well understood, or no other option is available. P23 described:

“Business owners do not know how to develop software properly, they push certain
decisions because they have made promises and committed on a result, they want to get
there, even by making compromise because the route to do it nicely is not possible. .. and
this choices create lots of debt, as they do not mind how it is designed.” P23 - ICT
Business Manager [CA-Q8]

4.3.2.2 Internal Causes

Lack of Knowledge. In the presence of an unclear architecture, developers often
introduce ATD (either inadvertently or deliberately), in order to save the time that
should be invested in understanding comprehensively the architectural details.

This situation, often embodied as a lack of, or disorganized, architectural documen-
tation, was described by many participants, including P12, who explained:

“When you are working on an older system, you have lots of constraints that you have
to know about, and they are often not well documented, and so you don’t know what
things will come in your way, things that you have to work around. You are constantly
extinguishing little fires to figure out what is going on, it takes a while ...” P12, R&D
Director [CA-Q9]

In addition to the introduction of ATD, lack of architectural knowledge can also lead
to the obfuscation of ATD items, hence hindering the awareness of the ATD present
in a software-intensive system. P2 describes:

“There was no documentation or tests. You never really understood if the code was
a2

intended like that, if it was intended that way, or if it was just “I will get to this later”.
P2, Staff Software Engineer [CA-Q10]

In both focus groups, participants highlighted that the lack of knowledge leading to
ATD does not have to be strictly architectural: lack of context knowledge, standards,
technology availability, and company-wide progress awareness, are all instances of
lack of knowledge that may cause ATD.

Unsuitable Architectural Decision. ATD can arise by making inadvertently an inap-
propriate, sub-optimal architectural decision. Often, inadvertent design decisions

133

Chapter 4. Architectural Technical Debt: A Grounded Theory

leading to ATD are associated to the lack of context awareness, which result in approx-
imate and/or ill-calibrated trade-off analyses. P14 described one of such instances:

“At the time there were reasons that supported our decision, but later on. .. when we
think back at it, we see that we didn’t evaluate all options.” P14, Senior R&D Manager
[CA-Q11]

The magnitude of the ATD associated to unfitted decisions varied greatly across
participants, with some notable cases where the impact on the success of a software
product was enormous:

“Making that decision didn’t seem important at the time, but we should have considered
the debt associated to it early on. For me, it was a lack in understanding properly the
context. .. the project eventually got killed.” P14, Senior Software Architect [CA-Q12]

Human Influence. A recurrent cause of ATD is the influence of human factors on
ATD. Under this category fall aspects related to personal drive, such as the example
reported in [ATDI-Q6] (including lack of developer expertise) and cognitive biases
(notably the Dunning-Kruger effect [157]). Due to the importance of this topic in our
theory, we further discuss findings related to human factors in Section 4.3.9.

Incorrect Implementation of Correct Architecture. From both focus groups emerged
that, when an architectural design decision is not per se a direct cause of ATD, it is
still possible to incur in ATD if such design decision is not implemented correctly.
The consequences associated to this type of cause are often of severe nature, as the
divergence between designed and implemented architecture leads to an unforeseen
state of the system, undermining the tradeoffs considered when the design decision
was made. P25 concisely stated:

“You can have a brilliant idea, but if it is not implemented correctly, it can be just
debt.” P23, Enterprise Architect [CA-Q13]

Lack of Anticipation. Software-intensive systems need to continuously evolve in
order to be aligned with their ever-changing contexts. If an insufficient amount of
effort is spent in understanding how a software system may need to be adapted
in the future, even an architecture which is well-fitted for its current context, may
lead to steep ATD as the architecture is required to evolve. As discussed in the first
focus group, characterizing, examining, and documenting anticipation can be an
exceptionally hard problem, as understanding the amount of required anticipation is

134

4.3. ATheory of Architectural Technical Debt

not possible. In P22 words:

“This one [decision] is hard to take. How much anticipation? How much in the future
you want to try to look?” P22, Vice-President [CA-Q14]

According to the participants of both focus groups, ATD introduced due to the lack
of anticipation is often more evident in organization where Agile development prac-
tices are in place, as not many architectural design choices appear to be thoroughly
discussed and analyzed with the required depth.

Complex Business Processes. In some cases, complex business processes in place at
a company are translated into an architectural complexity of their software-intensive
systems, leading to ATD. This instantiation of Conway’s law [158] can usually be ad-
dressed, rather than by software refactoring activities, only by reviewing the business
processes in place in a company, in order to mitigate the potential port of business
complexity into the software-intensive system. As noted by the participants of the
second focus group, complex business processes can also slow down the maintain-
ability and evolvability of a software-intensive system, by burdening development
activities with “bureaucratic” procedures of unclear added value.

4.3.3 Consequences

In this section we document the consequences of ATD emerging from our data. Specif-
ically, we identified consequences of 3 different types, namely business-, functionality-
, and product-development-related. In Figure 4.9 an overview of the emerging ATD
consequences, and their associated type, is depicted. As discussed by the participants
of both focus groups, ATD consequences may take a long time before they become
tangible, incrementally worsening till they become visible.

4.3.3.1 Business-related Consequences

Carrying Cost. Often, the consequences of ATD are not immediate, but rather mani-
fest themselves over time. Specifically, a recurrent consequence of ATD is an incre-
mental amount of resources which have to be dedicated over time in maintaining
and evolving software-intensive systems. As P1 described:

“We did not think hard enough of the [architectural] design, its cognitive overload, the
associated carrying costs, how much will take us on a continuous basis to work on the

135

Chapter 4. Architectural Technical Debt: A Grounded Theory

Consequence
. Functionality- Product-
Business-related related —> Development-related
Consequence
Consequence Consequence
Challenging to Difficulties in
Carrying Cost Implement New — Carrying Out
Functionality Parallel Work
Discarding New .
Reduced Velocity Functionality || Persistent .Flaky
. Behavior
Implementation
. Crystallized
Opportunity Loss Architecture

Risk
Exposure

®

Figure 4.9 — Overview of ATD consequences

4.3. ATheory of Architectural Technical Debt

system designed this way.” P1, Senior Vice President of SE [CO-Q1]

The carrying cost associated to ATD afflicts a software product by requiring an increas-
ing amount of resources for development activities, often imperceptible to end-users,
that could be allocated to other tasks. In order to mitigate the negative impact that
the carrying cost can have on customer perception, some participants reported to
actively invest resources to make refactoring efforts tangible to their end-users:

“While doing the refactoring, we also enhanced the front-end, just to let the customer
feel that the product is getting better.” P4, Chief Technology Officer [CO-Q2]

Reduced Development Velocity. Related to the first two emerging consequences,
most participants described one of the main consequences of ATD as a distinct loss of
development velocity. This loss is in most cases associated to additional time required
to understand the architecture, modify multiple components when carrying out small
changes, and fixing bugs which, due to ATD, are hard to locate. P13 explained:

“Development takes much more time than expected, sometimes because you run into
an unknown issue, and other times you just cannot properly size the thing that you are
working on, because the architecture is much more complex then what you expected.”
P13, Senior Software Engineer [CO-Q3]

Opportunity Loss. Due to ATD, opportunities to follow new business avenues can be
lost due to the inability the system in order to accomodate them. P3 described:

“You have to go overtime, make changes, and that’s where the real cost is, because you
spend the time trying to fix those architectural problems, and spending less time in
innovation. People pay for something, and they expect it to work.” P3, Senior Director
of SE [CO-Q4]

The loss of opportunity is proportional to the effort required for ATD management
(see Section 4.3.5). While in the previous incident only part of the resources available
were dedicated to manage ATD, more drastic strategies, such as a major refactoring,
can lead to more severe opportunity losses. P17 recalled one of such instances:

“We lost many months on this [ATD], because there was not added value from a func-
tional point of view. We sacrificed implementing new functionality for refactoring. We
did not loose customers, but it took more than 6 months to refactor everything.” P17,
Co-Founder [CO-Q5]

In order to avoid opportunity loss, it is even possible to deliberately postpone the

137

Chapter 4. Architectural Technical Debt: A Grounded Theory

repayment of debt, and continue to accumulate it till a reactive management strategy
is required. P11 explained:

“We had architectural issues, but we had customers, sales, commitments that we had
to meet. If we stepped away from that, dedicating half of the team to refactoring, we
would not be able to take the new opportunities that came through.” P11, Senior
Director of Technology [CO-Q6]

Risk Exposure. From both focus groups emerged that a prominent consequence of
ATD is exposure to risk. Rather than an ATD consequence which is currently present
and impacting a software-intensive system, risk exposure is a potential consequence,
which may or may not lead to other consequences according to the future evolution of
the software-intensive system and its context. Incurring ATD, and the passing of time
cause, entail a higher exposure to risk, i.e., a higher probability that consequences
may occur. The exposure to risk cause can be subdivided into two separate variables,
namely probability of consequence, and impact of consequence, both of which are
heavily influenced by ATD and the passing of time. As explained by P22 in the first
focus group:

“Risk exposure is a mathematical formula: it [the risk] is the probability of something
failing, multiplied by the impact when it fails. ” P22, Vice-President [CO-Q7]

As observed in the first focus group, while risk exposure is strongly related to business-
related consequences, such consequence can be also seen as crosscutting, i.e., as an
intermediate level between the consequence category and its three associated types.
While this consideration stands true in our theory, for the sake of readability, we
opted to relate risk exposure to its closest type, namely business-related consequence,
rather than introducing an additional abstraction level in the theory.

4.3.3.2 Functionality-related Consequences.

Implementing new functionality becomes challenging. Associated to the carrying
cost, ATD also can affect the effort required to implement new functionalities. This
is often associated with “blurred” responsibilities among architectural components.
P13 describes:

“Adding new functionality was more difficult, because we had all these little pieces: it
was difficult to figure out what they did, and what needed to be done to add a new
feature.” P13, Senior Software Engineer [CO-Q8]

138

4.3. ATheory of Architectural Technical Debt

Difficulties related to the implementation of new functionalities can make it harder
to meet the requirements of the stakeholders, leading to more severe consequences,
such as the postponement of planned releases. As described by P15:

“We never met a release plan, we often postponed releases. Few few days before releasing,
I asked stakeholders if we wanted to go live. And it was a bad idea to do so, we were
still bug fixing. But I did not speak out. The stakeholders had to see it as well, that the
debt was hurting them.” P15, Chief Software Architect [CO-Q9]

Discarding New Functionality Implementation. ATD can seriously affect the ability
to implement a new functionality, to the point that it becomes necessary to com-
pletely discard the related implementation. Especially telling are instances in which
participants recalled the need to implement a trivial functionality, which was dis-
carded due to ATD. One of such instances was described by P6, who recalled:

“The new functionality, if you talked about it, was so reasonable to do...but in re-
ality...it was so difficult to implement in the current architecture that we ended up
scooping it out.” P6, Senior Software Engineer [CO-Q10]

Crystallized Architecture. In the most severe cases, the architecture can become
“crystallized”, i.e., the ATD of a software-intensive system hinders almost completely
the ability to implement new functionalities. One of this rare occurrences was de-
scribed by P4:

“They [software developers] could not even build new features, because of the archi-
tectural debt they were facing. They put workaround on workaround, and then they
couldn’t implement new features, because of this pile of garbage that they built...” P4,
Chief Technology Officer [CO-Q11]

4.3.3.3 Product-development-related Consequences

Difficulties in Carrying Out Parallel Work. Due to poor separation of concerns and
tight coupling among architectural components, ATD can impact also the ability to
carry out parallel development across different teams. This is often occurring in the
presence of architectural anti-patterns such as blob components, i.e., components
encapsulating a big portion of the business logic or data of a software intensive-
system [159]. P14 describes one of such incidents as follows:

“The module became so popular that we just kept building more featureson it ... and

139

Chapter 4. Architectural Technical Debt: A Grounded Theory

now it starts to become a bottleneck, because we have so many teams working on the
same code at the same time, that people start to step on one another toes.” P14, Senior
R&D Manager [CO-Q12]

P1, P14, P5, and P7 recognized that this is due to the cross-cutting nature of software
architecture, especially if the concerns are poorly separated among architectural
components. P1 argued:

“If you cross the boundary and have to touch the architecture, a lot of what is built on it
will change. If the modules are not well isolated, who's working on them will be hold
at bay. You have to say: “No, you're locked!”” P1, Senior Vice-President of SE [CO-Q13]

Persistent Flaky Behaviour. Software-intensive systems afflicted by a severe amount
of ATD can become unpredictable in terms of expected behaviour. This dreadful state
of a system is in most of the cases co-occurrent with a crystallized architecture. Since
in those cases the ATD item causing the issue is often impossible to pinpoint, a rewrite
from scratch of the whole system is often the only viable solution (see Section 4.3.5).
P8 recalled:

“We had to rewrite an entire server side application for a capital market trading app, it
was just randomly crashing. JVM out of memory, synchronized deadlocks, like every
Java nightmare scenario possible. It was a nightmare.” P8, Senior Software Engineer
[CO-Q14]

4.3.4 Symptoms

An overview of the ATD symptoms is presented in Figure 4.10. All participants de-
scribed symptoms which point to ATD items. This led to the emergence of four
different types of ATD symptoms in our theory, namely symptoms related to issues,
resources, performance, and development practices. Similar to the medical domain,
symptoms can point to the potential presence of ATD in a software-intensive system,
especially if multiple symptoms co-occur at the same time. Symptoms are linked to
consequences, specifically, they are consequences that are observable. In contrast,
not all consequences are visible, and they may have different granularity: some could
manifest themselves at the level of an individual ATD item, while some other at the
level of the whole system.

140

4.3. ATheory of Architectural Technical Debt

Symptom
Performance- Development-
1 - R -
ssue-related | Resources related o velated related
Symptom Symptom
Symptom Symptom
Recurrent Growin, .-
. g Inability to "I don't want to
Customer — Maintenance — .
. Scale touch it
Issues Activities
Need of Senior . %
Recurrent L Performance Functionality
— or Specialized — .
Patches Stall Implemented in
Staff
other Component
. Growing %
High Number
Resources Needed Data
of Defects — . .
to Keep the Inconsistencies
— % System Running
Security
Breaches

Figure 4.10 — Overview of ATD symptoms

141

Chapter 4. Architectural Technical Debt: A Grounded Theory

4.3.4.1 Issue-related Symptom

Recurrent Customer Issues. Among all symptoms of ATD, recurring customer issues
is the most apparent one. As P3 explains:

“The best indicator of all are customer issues: if you have an area with lots of recurring
customer issues, either the team is garbage, or you have architectural issues.” P3, Senior
Director of SE [S-Q1].

In addition to helping to localize ATD problems in software-intensive systems, recur-
rent customer issues also guide the timing to start refactoring activities. P4 recalled:

“When we decided to refactor the architecture? It was just the number of customer
issues. Who does not have them? But when we started seeing that the spike in customer
issues was going to affect our growth, it became something that we had to address.” P4,
Chief technology Officer [S-Q2]

Recurrent Patches. Linked to the previous symptom, the presence of an ATD can
be identified by observing which portions of a software architecture are patched
frequently. As the recurrence of patches in an area of code is often not kept track of,
numerous iterations may be necessary before an ATD item is uncovered. In P9 words:

“There’s this kind of hard to pin down feeling, when in order to meet some new need
you are like “okay, it feels weird but I'll patch it, and I'll patch it again, and again, and
again. And after a while, you realize that you're kind of like, always applying kind
of...you're playing whack-a-mole! It can’t be that everything is an edge case!”” P9, Vice
President of Product [S-Q3]

High Number of Defects. As reported by many participants, a high number of defects
localized in a certain area of the code can indicate the presence of an ATD item. In
this context, we refer to defect as a generic problem in the source code of the system,
such as a bug, a security vulnerability, etc. As P13 explained:

“When you have a lot of bugs in an area of code, that means: either that area is complex
by itself, or there is some unmanaged architectural complexity leading to that.” S10,
Senior Software Engineer [S-Q4]

As for the previous symptom, data regarding defect density and recurrence is not
often systematically stored and analyzed to optimize software architecting and de-
velopment processes. This leads to rely on the experience of senior practitioners,

142

4.3. ATheory of Architectural Technical Debt

in order to intuitively detect the emergence of ATD items by considering this symp-
tom. As described by P10:

“Where to fix the architecture is usually decided by experienced people observing that
this area creates a lot of defects over the last couple of months, and we need to look at it
sooner or later.” P10, Senior Software Engineer [S-Q5]

Security Breaches. Security breaches are a recurrent symptom of ATD. Due to the
complexity caused by the ATD present in a software-intensive system, inadvertent
security flaws can be introduced, leading to the unintentional disclosure of private
information to unauthorized parties. Such data leaks can be a strong signal of ATD,
that has to be tackled with a reactive management strategy (see Section 4.3.5) as soon
as the symptom arises. Due to the sensible nature of the subject, participants could
not provide concrete examples of the occurrence of security breaches; nevertheless,
it was recognized as a prominent symptom of ATD in both focus groups.

4.3.4.2 Resources-related Symptoms

Growing Maintenance Activities. The presence of prominent ATD items can be
noticed by the need to allocate a growing amount of resources without observing a
noticeable increase in productivity. P3 summarily described:

“As we added more and more developers, we were not adding many features, why?
Productivity, usability, all those things were not in the architecture.” P3, Senior Director
of SE [S-Q6]

In addition to the growing effort needed to implement new features, concerning
amounts of ATD can be noticed by the need of allocating dedicated teams to mainte-
nance and refactoring activities. This results to be a common practice which, due to
the severity highlighted by this symptom, is often followed by a major refactoring or
a rewrite from scratch (cfr. Section 4.3.5.2). An occurrence of this ATD symptom was
described by P9 as follows:

“We basically had to subdivide our hub team into two, one team dealing only with bugs,
and one dealing with features. It was brutal.” P9, Vice-President of Product [S-Q7]

Need of Senior or Specialized Staff. Due to the complexity that ATD items entail,
their presence can be noticed by the growing need to on-board senior staff into

development teams. As discussed by P11:

143

Chapter 4. Architectural Technical Debt: A Grounded Theory

“You notice it [ATD] by the increasing need to bring in senior people. Because that
means that there is something that requires deep, profound understanding. And if
there is a major shortcoming, you may have to know something very very deep in order
to see it. That usually hints at an emergent area that you will need to tackle.” P11,
Senior Director of Technology [S-Q8]

Related to the person and communication categories of our theory (see Section 4.3.9
and Section 4.3.10), seniority is also required in order to effectively expose the pres-
ence of ATD items. In most of the incidents recalled by practitioners, only senior staff
possessed the knowledge and confidence necessary to openly discuss and address
ATD. P2 shared his personal experience on this:

“As long as I was junior, I could not say “Hey, this architectural pattern sucks, let’s do
something about it”. 1 was more quiet. When I was able to have a louder voice. .. it all
started with being noisy and seeing what senior people did to clean up.” P2, Software
Staff Engineer [S-Q9]

As noted in both focus groups, in addition to senior staff, this symptom may manifest
itself also in the need to on-board staff with a particular set of skills. Such specialized
staff, often possessing “outdated” skills, may point to the need of modernization of
a software-intensive system, and constitute a contingent liability due to the scarce
availability of such skill in the current job market. Participants of the first focus group
agreed on the need of programmers familiar with COBOL, a language first appeared
in 1959 and still widely adopted in the business sector [160], as a prominent example
of the need of specialized staff symptom.

Growing Resources Needed to Keep the System Running. As noted in the second
focus group, a symptom of the presence of ATD is a growing number of resources
required to keep the system running. Rather than resources needed to evolve or
maintain a software-intensive system, this symptom embodies a continuous amount
of resources that have to be allocated to sustain the system. Resources associated to
this symptom can be both of monetary nature (e.g., cloud provider commissions),
or manual effort (e.g., manual interventions required to handle corner cases). An
example of this type of symptom was described by P19, who recalled:

“Due to our design, we needed to use a hybrid cloud model. And this [decision] caused a
lot of network traffic. And, as you need to pay for network traffic, accounting started to
tell us "Hey, how come you are spending so much money now?’ ” P19, IT Architect [S-

Q10]

144

4.3. ATheory of Architectural Technical Debt

4.3.4.3 Performance-related Symptoms

Performance issues which are hard to address can also be a symptom of ATD. From
our data, two types of performance issues emerged, namely inability to scale and
performance stalls. P3 illustrated this symptom as follows:

“You can feel it [debt] around performance, you can feel that the architecture is not
good enough, because you can feel the performance problems that you fix, a lot of those
exist because they are not architected well” P3, Senior Director of SE [S-Q11]

Inability to Scale. Inability to scale refer to the presence of scalability issues in
software-intensive systems due to ATD-related problems. This is a recurrent symptom
among our participants, and is often characterized by a swift increase of data to be
processed. P14 recalls:

“One of the biggest architectural problems we had related to architectural debt was
dealing with scale. The system could not cope with the new amount of data, it couldn’t
work with the current state of the architecture.” P14, Senior R&D Manager [S-Q12]

Architectural shortcomings that are identified by considering scalability issues often
point to debt items which require a considerable effort in order to be fixed, such as
the re-implementation of various portions of an architecture. P14 describes:

“We thought “the system is built that way’, but at the time we did not think that we
had to scale up that much, and we had to rethink stuff, we had to update things to the
newer standards.” P14, Senior R&D Manager [S-Q13]

Performance stall. Performance stalls indicate performance bottlenecks present in
software-intensive systems which cannot be solved without architectural refactoring.
P3 described this symptom as follows:

“With performance, if you can really just move it around but not solve it, that is an
indicator that you are doing something architecturally wrong.” P3, Senior Director of
SE [S-Q14]

Performance stalls can lead to the investment of a conspicuous amount resources to
carry out small optimization of an architectural deficiency, which in reality can only
be with a proper, structural, architectural refactoring. As P14 states:

“Even if you put in a lot of hack to make it faster, you cannot fundamentally make a
change, it is an unsolvable problem. If you have unsolvable problems, that's because of

145

Chapter 4. Architectural Technical Debt: A Grounded Theory

an architectural decision which is just not right.” P14, Senior R&D Manager [S-Q15]

4.3.4.4 Development-related Symptom

“I don’t want to touch it”. This symptom of our theory deals with human intuition
and sensitivity. Rather than deriving from a systematic analysis, this symptom repre-
sents the instinctual refrain of software developers to modify a certain component in
which ATD resides. R12 describes one of such instances, associated with a “dormant”
ATD item:

“Developers will often tell you if something stinks, right? There is always something
which is hard to work with, maybe it'’s a piece of code that no-one wants to touch, that’s
a symptom! Why does no-one want to touch it? Because it’s [bad]! It might do its job
well, but no one wants to touch it! [...] Developers: they are the best source of truth
when it comes to how healthy your code is.” P12, R&D Director [S-Q16]

Functionality Implemented in other Component. From both focus groups emerged
that the presence of ATD in a component can be noticed if functionalities, which
should be implemented in that component, start to appear in other components
instead. This may indicate that evolving the component where ATD resides results to
be too cumbersome, and hence the implementation of that functionality has to be
delegated to one of its surrounding components. As P21 illustrated:

“You see it [ATD] in the compensation by other components. You have a component
which is not good enough anymore, and you see functionality appearing in the sur-
rounding components, which are interfaced with that component, but those function-
alities just don’t belong there.” P21, Director Enterprise Architecture [S-Q17]

Data Inconsistencies. As discussed in the first focus group, data inconsistencies is
another symptom which can point to the presence of ATD. Specifically, this symptom
manifest itself as multiple instances of the same data, stored in different portions of
software-intensive system, which are not consistent with one another. Prominently,
this symptom arises when organizations merge different software-intensive systems,
but do not have the time to carefully design and implement the integration. This
leads to the adoption of architectural shortcuts, disregarding to avoid the storage of
the redundant yet divergent data, often represented in multiple formats (e.g., dates),
in different portions of the system. As an example provided by a P22, when booking
an airline ticket upgrade by utilizing reward miles, the loyalty program website may

146

4.3. ATheory of Architectural Technical Debt

indicate that the upgrade is confirmed, while the official airline site shows the upgrade
status as pending, and it is impossible for the user to find out which status is correct
until they board the plane.

4.3.5 Management Strategies

Six managements strategies to cope with ATD emerged from our data. Interestingly,
such strategies focus on the management of ATD items, rather than resolving their
root causes. By inspecting the ATD causes, we can conjecture that this is due to the
generic nature of the causes (with special emphasis on the external ones), leading
management strategies to address them to fall out of scope of the theory investigation
topic. We identified three types of management strategies, namely active, reactive,
and passive. An overview of the strategies is depicted in Figure 4.11, and further
described in the remainder of this section.

4.3.5.1 Active management strategies

Active strategies are based on the acknowledgment of the presence of ATD in a
software-intensive system, and the development of a plan to actively manage it. In
the following we present the three active management strategies emerging from our
grounded theory.

Boy Scout Rule. This management strategy is often referred to by our participants
as “The Boy Scout Rule”, which borrows from the “Always leave the campground
cleaner than you found it” camping rule. Based on this metaphor, developers ac-
knowledge the presence of ATD, and pay back the debt in small incremental steps
while carrying out other development activities on a software component, such as
the implementation of a new functionality or bug fixes. As P1 described:

“I generally advocate in “stealing time”, when a component has bothered you enough, I
would just say: fix it, and do not tell anyone. If you are already working on that area of
code, just take some extra time to refactor it.” P1, Senior Vice-President of SE [MS-Q1]

However, it is important to stress that this strategy can be difficult to apply in practice
since ATD items are hard to fix in small increments, unlike other forms of TD. For
example, the switching towards a different programming language, substituting a
third-party component or platform, or refactoring a deeply tangled subsystem can

147

Chapter 4. Architectural Technical Debt: A Grounded Theory

Management
Strategy

il

Active
Management
Strategy

Reactive
Management
Strategy

Boy Scout Rule

Passive
Management
Strategy

Opportunistic
Patching

I

Systematically
Dedicate Time

Neglect

Major
Refactoring

Technical Credit

Rewrite from
Scratch

Figure 4.11 — Overview of ATD management strategies

4.3. ATheory of Architectural Technical Debt

have a pervasive and costly impact on the architecture of the system, potentially
requiring considerable effort.

Systematically Dedicate Time This management strategy entails systematically al-
locating time in order to repay the accumulated ATD. Most participants described
allocating a fixed percentage of development time per-sprint to refactor ATD items.
The most recurrent percentage of time dedicated to ATD refactoring results to be
between 20% and 30%, with the exception of P1 and P9, who reported 10% and 50%
respectively. In a singular instance, P12 jokingly described allocating an entire day
per-sprint exclusively to ATD refactoring activities:

“We have a Lannister day, you know, because Lannisters always pay their debts [laughs].”
P12, R&D Director [MS-Q2]

Technical Credit. This management strategy regards the investment of resources to
improve the architectural maintainability and evolvability of a software-intensive
system prior to the emergence of ATD items. This strategy aims to mitigate the
future establishment of ATD by estimating and proactively addressing portions of the
architecture which could slow down future development. While some participants
described this strategy from a theoretical standpoint, the common agreement among
participants is that, due to time pressure and the uncertain outcome of this strategy,
itis hardly ever adopted. P3 explained:

“You are spending time in trying to make something perfect. When do you have that
time for that? Where do you take the investment? You do not get paid by “I'll make
it evolvable”, you spend days or weeks in something that might not pay off, who can
afford that?” P3, Senior Director of SE [MS-Q3]

4.3.5.2 Reactive Management Strategies

Reactive strategies entail that, while the presence of ATD in a software-intensive
system is acknowledged, its management is postponed until the repayment becomes
unavoidable (e.g., an ATD item prevents the development of a new feature). The
following reports on the three main reactive strategies emerging from our data.

Opportunistic Patching. This strategy, rather than aiming at resolving the ATD

present in a software-intensive system, deals with its occurrence by investing the
minimum resources necessary to bypass the limitations imposed by the ATD. This

149

Chapter 4. Architectural Technical Debt: A Grounded Theory

often results in small patches, or temporary architectural workarounds, which build
upon the existing ATD. As described in [S-Q3], opportunistic patching rarely achieves
the resolution of the root cause of an ATD item, but can rather point to the underlying
problem. A similar situation was described by P11:

“It was architectural debt, but we were able to squeeze around it by doing little incre-
mental changes here and there, which did not touch the architecture much, but slightly
improved things. .. we were just kicking the can down the road. . . in retrospective we
were just patching, patching all the way.” P11, Senior Director of Technology [MS-Q4]

Major Refactoring. Due to the severity of the ATD present in a software-intensive
system, it can become necessary to methodically eradicate it, even at the cost of
sacrificing other development activities. This constitutes a major undertaking, which
can cause the loss of competitive advantage of a software-intensive system, and is
characterized by investing a conspicuous amount of resources. Many participants
referred to this strategy as “biting the bullet”, to express the severe influence of this
strategy on other development activities. Under this category fall architectural refac-
toring activities carried out by entire developer teams. Due to the major implication
of carrying out major architectural refactoring and the uncertainty of its outcome,
timing this strategy can be a complex problem. P11 explains:

“There is always some inertia, you always have to overcome this lump of “when is the
right time?’, because there is never a right time. You have to decide when it is the right
time. Usually it would be based on how painful it is. It has to reach some sort of crest
before you realize: “OK this is enough now’, you bite the bullet, and try to do something
about it...” P11, Senior Director of Technology [MS-Q5]

Rewrite from Scratch. In the most severe cases, the only way to cope with the
crippling ATD accumulated in a software-intensive system is declare “technical debt
bankruptcy”, and conduct a tabula rasare-engineering of a software intensive-system.
This process, often referred to by practitioners simply as “rewrite”, consists in re-
implementing large portions of a software-intensive system without re-using source
code, and is conducted by extracting from the old system its functional- and non-
functional requirements, and subsequently re-implementing the requirements in a
new system. P13 recalls:

“At some point we had to refactor the product, it had architectural issues. There were
some big things that we had to fix, and so we had to rewrite the product entirely. .. we
had no other choice!” P13, Senior Software Engineer [MS-Q6]

150

4.3. ATheory of Architectural Technical Debt

Rewriting a software product from scratch provides the opportunity not only to pay
off in one go all the accumulated ATD, but also to gain technical credit by associating
to the rewrite a software modernization process [161], i.e., upgrading the architecture
by adopting newer architectural styles, stacks, technological frameworks, etc. In
addition, the green-field nature of the rewriting process provides the possibility to
get rid of old bad development practices, which potentially led to the establishment
of ATD in the first place. As P9 describes:

“I'really wanted the product to go faster. And so I said, please choose a different stack, use
a different repo, use a different team, so that we don’t inherit all that legacy stuff. And
so we basically had to stop development in the old way, port all the features over, and
build it [the product] on the most new shiny tech that people like.” P9, Vice-President
of Product [MS-Q7]

While software rewrites can provide exceptional benefits, they also entail a very high
risk, as they are characterized by an uncertain outcome, potentially leading to the
complete loss of the resources invested in them. P1 clearly explained:

“I really like the rewrite pattern. .. people are scared by it, but I did seven. You just
develop them on the side. They are hard to pull off, but they work great.” P1, Senior
Vice-President of SE [MS-Q8]

As hinted to in the previous incident, software rewrites are often carried out in
parallel to daily development activities, e.g., via a dedicated team. This resulted to be
a common practice in the experience of the participants. Nevertheless, in the most
extreme cases, product rewrites can require most of the resources available. One of
such instances was recalled by P8 as follows:

“It was a six month effort non-stop rewrite. No new features. 1 saw the entire department
go under ... it was just a nightmare.” P8, Senior Software Engineer [MS-Q9]

4.3.5.3 Passive Management Strategy

The passive management strategy, rather than aiming to actively pay back ATD,
attempts to cope with it by avoiding to address ATD items.

Neglect. Participants described strategies in which, while the negative impact of the
ATD residing in their system might be evident, the cost involved in fixing it was not

151

Chapter 4. Architectural Technical Debt: A Grounded Theory

worth addressing it. In such cases, development activities are carried out at a slower
pace, embracing the ATD, and building upon existing debt.

“Sometimes you have a lot of edge cases but you just, you know the cost of.. . you know
it’s bad, you know you don’t want to do it, you know there’s a better way, but the better
way isn't worth it.” P9, Vice-President of Product [MS-Q10]

As noted by the participants of the second focus group, in specific instances neglect
may be a sound strategy to adopt, as the interest of ATD might have to be never paid
back, or might be completely amortized by other necessary development activities,
e.g., the substitution of an architectural component, that has to be changed for
motivations other than the ATD it accumulated.

4.3.6 Tool

In this study, the adoption of tools to explicitly identify and manage ATD did not
emerge as an established industrial practice. As described by P10 in [R-Q8], such
tools are either unknown by practitioners, or simply unutilized. This resulted to be a
recurrent theme across participants. We conjecture that this finding could be caused
by either (i) the perceived immaturity of ATD tools, (ii) the perceived usefulness of
ATD tools, or (iii) a current knowledge gap between research advancements and
industrial practices.

While no ATD tool appears to be actively used, participants mentioned the use of
source code quality analyzers and collaborative code review tools, which are often
embedded in the development workflows (e.g., via Git pre-commit hooks®). Specif-
ically, SonarQube resulted to be the most established tool, while other prominent
ones were Clang Tidy, Git Gerrit”, FindBugs®, and PyCharm®. Associated to such
tools are the concepts of: quality gates, which are often customized by developer to
fit their needs; warnings, used to enforce software quality standards of committed
code; and, automated refactorings, used to automatically fix small software quality
shortcomings.

Bhttps://git-scm.com/book/en/v2/Customizing- Git- Git-Hooks
“https:/ /www.gerritcodereview.com/
8http://findbugs.sourceforge.net/

9https:/ /www.jetbrains.com/pycharm/

152

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://www.gerritcodereview.com/
http://findbugs.sourceforge.net/
https://www.jetbrains.com/pycharm/

4.3. ATheory of Architectural Technical Debt

4.3.7 Artifact

ATD items can affect and reside in one or more artifacts. Commonly, given the
widespread nature of such architectural debt items, numerous artifacts are simul-
taneously affected by a single item. An overview of the concepts constituting the
artifact category of our theory is reported in Figure 4.12 and described below.

Artifact

T T 1

Software

Test Suite Documentation
Component

Figure 4.12 - Overview of ATD concepts related to artifact

Architectural component. The ever-present artifacts in which ATD items manifests
themselves are architectural components. Such portions of the codebase, encapsu-
lating one or more functionalities of a software-intensive system, are in most cases
the root location where ATD items are originating. In rare instances, ATD items can
also spawn from the relations established between components, e.g., due to debt
accumulated in an Application Programming Interface (API), or due to over-complex
dependencies. P13 describes:

“We don't even understand the whole code. If some data gets corrupted in that connector,
it is hard to tell where the data came from. And that component is very connected to
the other ones, and some portions of the code do not follow any pattern. ” P13, Senior
Software Engineer [A-Q1]

Test Suite. Test suites result to be often affected by debt items residing in architectural
components. In fact, the increasing complexity and design issues residing in the
architecture of a software-intensive system is frequently reflected in its test suite,
which also grows in complexity, loses effectiveness, and becomes harder to maintain

153

Chapter 4. Architectural Technical Debt: A Grounded Theory

(cfr. [R-Q5)).

Documentation. Architectural debt items can be reflected in a partial, absent, or
even erroneous documentation of the architecture of a software intensive-system.
Remarkably, this is often due to the growing complexity of an architecture, and/or
a loss of overview over the architectural structure of a software-intensive system.
Documentation artefact affected by ATD can lead to vicious cycles, in which the
resulting documentation debt is both the consequence and the cause of new debt.
P17 described:

“There is no documentation. .. when someone new comes on the team we have to explain
the whole architecture, but are we always doing it right?” P17, Co-Founder [A-Q2]

In a peculiar case recalled by P9, the documentation of a software product itself,
which reached further away than controllable, hindered the evolvability of a software
architecture.

We are kind of fighting against our own success. There are hundreds of tutorials, which
would now be wrong. And so we have this sort of like mass of backwards compatibility
that allows some changes to be made and other that don’t. P9, Vice-President of
Product [A-Q3]

4.3.8 Prioritization Strategies

The following discusses our findings related to how the refactoring of ATD items is
prioritized with respect to other development activities, such as feature development
and bug fixes. Prioritization strategies can guide management strategies of active
nature, as reactive and passive strategies respectively manage ATD only when strictly
necessary and not at all.

From our results emerged that often ATD is kept track of, e.g., by characterizing back-
log items according to the classification of Kruchten [154], who makes the distinction
between functional features, bug fixes, architectural features, and technical debt.
Nevertheless, while ATD items are often traced, prioritizing their refactoring with re-
spect to to other development activities does not follow an established methodology.
As P10 states:

“We fear we do not have a scientific method here... it is basically gut feeling. We do
not have any research around what needs to have the highest priority.” P10, Senior

154

4.3. ATheory of Architectural Technical Debt

Software Engineering [PR-Q1]

This “gut feeling” is a recurrent theme among participants on how ATD items are
prioritized. Due to the difficulties associated with quantifying the impact of ATD,
practitioners do not adopt systematic prioritization approaches; rather, they adopt
informal ones, to balance their ATD refactoring activities with other development
activities, as reported also in [R-Q7]. P3 further clarifies this concept:

“Twould say, find your balance, do the minimum necessary. It is not a science, I think
it’s an art. And why do large companies fail? Because at some point that balance is
tilted.” P3, Senior Director of Software Engineering [PR-Q2]

4.3.9 Person

This category deals with concepts related to the human nature of software profession-
als. As can be deduced from Sections 4.3.4 and 4.3.8, people can support the discovery
and prioritization of ATD items, and are ultimately at the origin and resolution of
many of them.An overview of the concepts constituting the person category of our
theory is reported in Figure 4.13 and described below.

Awareness. To be able to manage ATD one must first be aware of its presence in a
software-intensive system. Sharing knowledge about ATD items, their magnitude,
causes, and consequences, enables gaining a common understanding of the ATD
presence, leading to finer-grained strategies to cope with it. P4 describes:

“What important is the culture of knowing about the debt. We have to be extremely
conscious about it. Every developer has to be aware about “I am incurring debt now,
Twill have to pay this at some point”. And this is a very good example of a developer
who is aware of it.” P4, Chief Technology Officer [PE-Q1]

Personal Drive. Participants often reported “the personal drive of individuals” being
at the origin of the identification, management, and resolution of ATD items. People
championing for a certain ATD item are usually the ones who are affected by it on
a daily basis, and actively advocate for its resolution. One of such occurrences is
described by P6:

“It comes down to socializing it [ATD item]. You have to be [an] advocate for it. Bring it
up in group meetings and one-on-one with certain people. Make sure that they absorb

155

Chapter 4. Architectural Technical Debt: A Grounded Theory

Personal Responsibility and
Drive Ownership
Awareness > Person <—— Low
Morale
.. Optimism Seniority and
Intuition Bias Skill Set

Figure 4.13 — Overview of ATD concepts related to person

it, and hold it in the same kind of severity that you do.” P6, Senior Software Engineer
[PE-Q2]

Low Morale. ATD can have a deep negative effect on developer morale. Due to the
encompassing and complex nature which ATD entails, the debt caused by ATD items
can affect development activities over a prolonged period of time, leading to severe
consequences on the morale of developers. P2 describes:

“From a human perspective, if you wake up every day and you walk around in mud,
are you motivated in doing it? You don’t put much effort in it. Which then spirals in
not getting much done. .. and then ends up with people leaving. .. ” P2, Software Staff
Engineer [PE-Q3]

The detachment between personal drive and a software intensive system due to ATD
described in [PE-Q3] is further detailed by P15:

“The people that left before, were just able to cope with the debt, clock out after work,
and dealt with the problems the next day without much thought.” P15, Chief Software
Architect [PE-Q4]

156

4.3. ATheory of Architectural Technical Debt

Seniority and Skill Set. Seniority and skill set can play a decisive role in ATD related
phenomena. On one side, lack of necessary skill sets can lead to the introduction of
ATD, due to a lack of fitted resources to address properly an instance at hand. P14
recalls:

“We had experience in monolithic applications, and that’s the key reasons why we
stayed with this gigantic code base. I wish we could have evaluated other options, but
back then nobody in our team had the experience...it’s a bit of a pain right now. P14,
Senior R&D Manager [PE-Q5]

On the other hand, seniority and adequate skill sets are crucial in order to solve
complex ATD items. Participants often described seniority as a decisive factor to
address ATD for two main reasons: (i) senior developer are able to gain a better
“holistic” view of software-intensive systems, and (ii) junior developer refrain from
addressing ATD, due to the magnitude and resonance of changes carried out at the
architectural level. P5 explains:

“Junior people don't want to change the architecture. Few people are confident enough
to do so, there is a difference between imagining a change and pulling it off, a lot of
people shy away from it.” P5, Senior Software Engineer [PE-Q6]

Intuition. As described in [S-Q3], [S-Q16] and [PR-Q1], intuition and “gut feelings”
can affect ATD by enabling to identify and prioritize ATD items. Additionally, personal
intuition is also referenced by our participants as playing a role during the evaluation
of the root causes, consequences, and magnitude of ATD items. P7 describes:

“It’s a discussion about the gut feeling of how big something is. We don’t have any story
points associated with them, any well-defined number, it’s just based on what each of
us knows, what the problems entail, and how we can solve them.” P7, Senior Software
Engineer [PE-Q7]

Optimism Bias. From our data emerged that inherent optimism of software develop-
ers and alike can deeply influence ATD. While optimism is crucial for the success of a
software product, it can also constitute a cognitive bias which hinders development
activities. P3 explains: “Everything seems possible! It’s just ego. This is always the
problem. Think of software development, it’s the art of making things possible, right?
We can do it, of course we can! How long it will take is a different question. .. developers
have to be optimist, otherwise they don't even start.” P3, Senior Director of SE [PE-Q8]

Our participants reported a wide range of cognitive biases associated to the opti-

157

Chapter 4. Architectural Technical Debt: A Grounded Theory

mism one, such as wishful thinking, self-serving bias [162], and the Dunning-Kruger
effect [157]. Such biases notably lead to the emergence of the planning fallacy phe-
nomenon [163], as described in [PE-Q8]. In addition to planning fallacies, the opti-
mism bias and other related ones can lead also to the introduction of ATD. P6 reports:
“When we made this decision we assumed that, as our interactions were simple, they
will continue to be simple. Plus, as they're all SQL databases, we assumed that they're
probably pretty similar. So it’s very easy to say that, as they are similar, “let’s just pretend
that they're all the same”. And that was just a bit of optimism, but it resulted in many
problems.” P6, Senior Software Engineer [PE-Q9]

Responsibility and Ownership. People working on a software-intensive system can
be mapped to specific ATD items residing in the system. This type of mapping has
a twofold nature. On one side, ATD items can be traced back to the people who
intentionally or inadvertently introduced it. On the other side, ATD items can be
assigned to specific people who take ownership of those items, and are in charge of
managing them. As discussed by the participants of the first focus group, a systematic
mapping of ATD items to people can support the management of ATD by distributing
responsibilities across development teams.

“If you don'’t have clear responsibilities and accountabilities, who feels responsible for
the ATD?” “... only the seniors ... " P21, Director Enterprise Architecture, and P22, Vice
President [PE-Q10]

4.3.10 Communication

We identified 4 main concepts related to the communication category, namely expo-
sition, impediments, blame, and communication with stakeholders, as depicted in
Figure 4.14 and described in the following.

Exposition. Rising awareness among developers, managers, and the like, of the pres-
ence of ATD items results to be an important aspect steering ATD management and
prioritization strategies. As described in [PE-Q2], pointing out the rise and establish-
ment of ATD items can build a common knowledge among developer teams, leading
to a comprehensive and shared viewpoint of the ATD present in a software-intensive
system, which could not be established individually. P10 describes: “Engineers get
frustrated that they can’t implement functionalities fast enough, so they complain
and get vocal about it. This creates a situation where the architectural debt gets more
awareness.” P10, Senior Software Engineer [COM-Q1]

158

4.3. ATheory of Architectural Technical Debt

Communication

] I

Communication
Exposition Impediments Blame with
Stakeholders

Figure 4.14 — Overview of ATD concepts related to communication

Impediments. Related to the communication of ATD, data showed that creating
awareness on the severeness of the ATD present in a software-intensive system is
not always an easy task. This problem often lies in the communication between
developers and management teams, potentially due to unclear consequences and
symptoms associated to ATD items. Sometimes this leads to the negation of existing
ATD, which can be detrimental to personal drive, and morale of developers. In this
regard P8 stated: “It resembles a Dr. Phil Show intervention. To fix a problem, you have
to acknowledge that there is one.” P8, Senior Software Engineer [COM-Q2]

Blame. Incurring ATD inadvertently, or leaving undocumented the rationale behind
deliberately incurring it, can lead to friction among people working on a software-
intensive system. In fact, without a proper knowledge of the circumstances in which
the debt occurred, undesirable discussions can arise, often finger-pointing individu-
als who incurred in the debt. P4 describes:

"People know when they are incurring architectural debt. And if the people leave,
afterwards it’s a blame game on who is the culprit. Developers blame the old ones for
taking bad architectural technical decisions, because they were not in their position.”
P4, Chief Technology Officer [COM-Q3]

Communication with Stakeholders. Related to communication of ATD, in our the-
ory emerged difficulties in communicating the presence of ATD to the stakeholders

of a software product. As simply expressed by P4:

159

Chapter 4. Architectural Technical Debt: A Grounded Theory

“People pay for something, they bought it and expect it to work, and then time passes
and the product evolves, and course they expect it to work, always, forever!” P4, Chief
Technology Officer [COM-Q4]

As ATD accumulates, implementing new functionality becomes more challenging.
Similarly, also the issues related to development impediments become more difficult
to be discussed with the stakeholders. P3 describes:

“It [the product] should have been maintained without adding new functionalities. .. hard
to communicate that to customers, because they demand “why don’t you add more
features to it?’, but don'’t know that adding more features takes longer, is harder, causes
more problems in an old stack.” P3, Senior Director of SE [COM-Q5]

In order to mitigate potential issues related to stakeholder communication, a com-
mon strategy adopted is to deliberately spend efforts in making maintenance efforts
tangible to stakeholders, giving the impression that the product is still evolving, even
when almost exclusively refactoring activities are carried out (cfr. [CO-Q2]).

In extreme cases, the impediments related to communicating ATD to stakeholders
can become so prominent, that it may be necessary to deliberately highlight the issues
present in a software intensive-system, in order to convince that a major refactoring
activity is necessary (cfr. [CO-Q9]).

4.4 Related Work

As recommended by Glaserian GT principles [136], to mitigate confirmation bias, we
reviewed the related literature after building our theory. From the inspection of the
ATD corpus, we identified four studies related the closest to ours [164, 165, 72, 166]. In
particular, in these researches we identified a set of concepts that complement ours
and, as such, can be used as further enrich our theory. An overview of the identified
concepts is documented in Table 4.3.

Note that concepts identified in the literature which emerge in our theory under
a different category (e.g, in [165] “parallel development” is categorized as a cause,
rather than a consequence), are not considered as complementary concepts to our
theory. In fact, such divergence is exclusively due to the perception of our participants
and the applied coding strategy (see Section 4.2.2.2), rather than a concrete difference
of content. The remaining of this section is dedicated to a further discussion of the
literature review findings.

160

4.4. Related Work

*SUIQISAS QAISUIUI-ATRMIJOS JO 2INJIANYD

SULI0)IUOIA
PUE QUIUWINSBIJA]

-Ie 9y} 0] oy1oads 1gop [BIIUYDA) JO JUSWATRURW PUR KSoneng ‘uonedynuIPY
uoneOYNUIPI Ay} Je pawre sassadoid payroddns-joo], N— QATIOY ‘uond99q ALV [zL] 1v 12 19yseg
“way) 159)
0) SWISIUBYOAW JO YOr[aY) pue sjuduwaiinbar Ayrenb
Sunmsse uoneuaweduwr ue jo yor[“271 ‘sjuswraanb sjuwdwRImbay Aend)
-91 [RUOTIOUNJ-UOU FUISSAIPPE 0] SWISTUBYIAW JO OB | LV SS9901d woN LV SSAIppY 03 Ayjiqedesuy [2L] v 12 193sog
‘aLv Suriojoejax
mau Juronponur ‘AJIAnoe SurIojoejol pajo[dwod-uoN asne) TeuraIu] pajardwod-uoN | [G97] v 12 TunIRN
*SANIATOE SULIO)
-OBJa1 0] AUO pue Juado[oAdp 0} PAJBIIPIP AUO ‘S}o3 JdueudUIB puL
-pnq 1ounsIp om) ojur 193png J[qe[reae jo uoneredog asne) [eurayuy 193foad 103 193pnq ydg | [G91] 7 12 UNIRIN
“Anpiqeirea Sut
-wododn umouyun Jo 10] & UOBIIPISUOD UT) 0) Sey sage)s AIea ur
jer) 2IoNYOIe pue usIsep v Surugep ur Anoyig asne) [euraIXyg S9seD Isn Jo Ayurepaddup) | [G91] v 12 UNIRI
"aIMoNTYOIE (O7102ds-1XAU0D) Y} UT USPPIQIOJ PAId
-pISu0d are Yorym (S[oAd] jusuodwod juarspip je ofd aly
-urexa 10J) saroudpuadop [erm3oyore Jo odussaid ayJ, wo IV | uonejuswordwy uone[oIA Aduspwadaq | [S91] v 12 UNIR
juowrdo[eadq
"LV 01 9np pauwiojiad s1sa) Aressadouup) | 9duanbasuo) 1onpoid Supsay, snongaadng | [$9]] v 12 runtey
*sanI[eUONOUN] Je[ruls juawaduwr 03 pasn suId)
-jed [eanoIyore / uSIsop JudIIp 1o ‘pardde suon
-UQAUOD QUIRU JUAIRJIP 82 "WA)sAs ay) InoysnoIy) sued
Justsuod jday jou are jey) sororjod pue suryed woN LV ALV Ssed01g Jo fyruxoyrun-uoN | [$97] v 12 TUNIRI
'sauo o1iqnd jo peasur S[JV areatrd Sur[[es sjuau
-odwoo 10 ‘s1ojowered Aueur 00) UrLIUOI JBY) SPOYIAU awv
82 ‘W) Jo 9snSIW 3} Jo S[JVy Jo uStsop rewndogng wo gLV | uonejuswoduy sIdVv rewmdoqng | [#97] 7v 12 TunIe
Juauodwod pasnal e ojur padnoid
jou pue A[ojeredos paSeurw SI YOIYm ‘WISAS Y} JO aLy
sired JUQISYIP UT (EOTIUDPI JOU JT) 9POI IB[IUIIS AIIA wo gLV | uonejuowolduy asnay feumdoqns | [$97] v 12 TUNIRI
uonuyaq K1039reD) odAL, 1doouo) 90In0§

9IN)BIAI] 9Y) UI PAyNUapI A109Y) Ino 03 s1daouod Areyuswa[dwo) — £'% 9[qel,

161

Chapter 4. Architectural Technical Debt: A Grounded Theory

Martini et al. [164] present a multi-case study adopting some GT techniques, while
our investigation systematically applies the GT methodology. Accordingly, the two
works use different techniques for data collection, incident coding, and results syn-
thesis (cf. Section 4.2 of this study and Section 2 of [164]). Regarding the results, [164]
presents a taxonomy of ATD items and a model of their effects: the specific ATD items
reported in Table 4.3 are complementary to the ones emerging in our theory; the
effects are categorized into causes, phenomena, and extra activities and the specific
concepts resemble the categories cause and ATD management strategy emerging in
our theory, which in turn resulted in a richer number of categories e.g.,tool.

A previous work of the same authors [165] zooms into the evolutionary nature of
ATD and its accumulation and refactoring over time, e.g., the causes specific to ac-
cumulation. Our work is complementary by emphasizing the theoretical structure
underlying ATD instead. Overall, similarities and complementarities are promising
for a future comparative analysis between the results of [164, 165] and our substan-
tive theory, with the ultimate goal of formulating a formal theory. A formal theory
is the widest form of GT, constructed by using formal concepts. Such theoretical
construct applies to the conceptual area it has been developed for, and commonly
spans over a set or family of several substantive areas [167]. In our case, a formal
theory could potentially regard the role that architectural technical debt plays in the
implementation and maintenance of software-intensive systems.

Besker et al. [72] conducted a systematic literature review to define a descriptive
model of ATD. By comparing the findings of such study with our theory, we can
observe a noticeable gap between the results of the two studies. In fact, numerous
aspects reported in the model of [72], such as ATD detection, ATD identification, ATD
measurement, ATD monitoring and related concepts, did not emerge in our theory.
Rather than attributing the absence of such concepts to unsaturation, we conjecture
that such divergence in results is due to the research methodology followed. In fact,
we can observe that the missing concepts are related to ATD aspects which, while
actively discussed in academic settings (e.g. ATD identification [1]), did not yet get
traction in industry (e.g., see [R-Q8]). From this finding we can conclude that more
action research is needed to bridge the gap between studying ATD and dealing with
it in practice.

A broader review of the literature shows that the most studied type of technical debt
is source-code ATD [1] [168], such as ATD related to component dependency [118] or
modularity [43]. This typology of ATD emerged in our theory as a specific concept of
the ATD Item category, namely implementation ATD. This category is also mentioned

162

4.5. Theory Evaluation Results

in Brooks’s popular book “The Mythical Man Month” [169], where a recurrent theme is
to “plan to throw one away”, i.e., designing a system (and organization) by envisioning
change, as it will eventually happen. Moreover, the workaround that stayed ATD item
is extensively discussed in Fowler’s book titled “Refactoring: improving the design
of existing code” [170], again with a primary focus on TD at the source code level.
The “re-inventing the wheel” ATD item is instead discussed in Szyperski’s book [171],
where design reuse is advocated as the practice of sharing certain aspects of an
approach across various projects, thus avoiding to re-invent the wheel across projects
and organizations. The book also presents various techniques for addressing this
ATD item, e.g. using software libraries for sharing solution fragments, interaction and
subsystem architectures. Other kinds of ATD items, such as segments of code affected
by TD have been studied exclusively in narrower pockets of research [1] [168] [45],
and are mapped to our category new context, old architecture. In [172], Martini et al.
identified the information required to prioritize ATD. By comparing their findings
to our theory emerges again the current lack of awareness of research findings in
industrial contexts, as in our theory prioritization emerged as a mere “gut feeling”
(see Section 4.3.8). The literature further investigates other emerging categories, such
as TD management strategies [87], and the impact of TD on morale [173], but does
not systematically focus on the architectural level as we do.

4.5 Theory Evaluation Results

In this section, we document the evaluation results of our theory, carried out by
leveraging the focus group method presented in Section 4.2.3. Specifically, we base
the evaluation of our theory on the four criteria presented by Glaser [139], as we
followed such GT stance to construct our theory. In the following, the assessment
results of each evaluation criterion is discussed separately.

4.5.1 CI1: Theory Fit to Underlying Data

This first criterion evaluates if the categories of the theory are a good representation
of the underlying data, i.e., if the categories are able to suitably characterize the inci-
dents collected for this study. By inspecting the incidents collected via the grounded
theory method, we observed that, while minor facets and details of the incidents
were seldom missing in the theory documentation, all data points resulted to be
represented in the theory. Additionally, via the focus group method, we observed
that the theory is also well-suited to fit new data related to the elements of the the-

163

Chapter 4. Architectural Technical Debt: A Grounded Theory

ory, as recurrently participants not only recognized all the theory elements, but also
provided additional examples of them according to their personal experience.

4.5.2 C2: Theory Workability

This criterion assesses if the theory is able to work, i.e., to explain and support
reasoning on the phenomenon under study. In the focus group sessions, participants
recognized from their experience the elements reported in the theory, and only in
a few cases further clarifications were required to detail the meaning of a concept,
which was afterwards acknowledged (e.g., in the case of the “TD Halo” ATD Item).
Recurrent sentences expressed by participants such as “I recognize them [theory
elements] a lot”, and “T have examples of this [theory element]” provided us confidence
that the theory provides a faithful representation of the phenomenon, is relatable
by practitioners, and is able to work in practice. Strengthening the achievement
of theory workability, during the focus group sessions, we noted that participants
recurrently adopted elements of the theory, such as category, types, and relations,
to frame their own examples, reason about their experiences, and discuss about
potentially missing elements.

4.5.3 C3: Theory Relevance

The third criterion of Glaserian GT evaluation entails the assessment of the relevance
to action a theory possesses in the area it purported to explain. In order to analyze
this criterion, during the focus groups, a dedicated discussion was conducted on
how the practitioners would use the theory in their current practice. According to
participants, the theory eases the communication and sharing of knowledge related
to ATD in practice, by providing a common terminology to use, and a methodical view
of how the phenomenon is structured, which is often lacking in industrial contexts.
This enables practitioner to adopt a shared lexicon of ATD, rather than adopting an
individual one, and leveraging an encompassing overview on how such concepts are
related, in order to collectively reason on ATD instances.

Secondly, practitioners detailed how the theory provides the ability of gaining aware-
ness of ATD in practice, enabling them to understand in a systematic way the ATD they
are facing, put it into perspective, and gain further insights into what is happening.

Another element pointing to the relevance of the theory is its use for training. Partici-
pants described that, while the notions present in the theory may be familiar to senior

164

4.6. Verifiability and Threats to Validity

software architects, these are not well known by junior colleagues. By utilizing the
theory as the basis for training, it is possible to provide less experienced practitioners
with knowledge on ATD, to gain further understanding on the phenomenon, and
manage it collectively with deeper familiarity in present and future occurrences.

Finally, participants expressed interest in adopting the theory for analysis and docu-
mentation purposes, either to (i) assess the current state of ATD and analyze situa-
tions (e.g., via a checklist representing the elements of the theory), (ii) include the
theory in their of documentation practices, or (iii) detect ATD instances based on the
symptoms documented in the theory.

4.5.4 C4: Theory Modifiability

The last criterion entails the evaluation of the modifiability of the theory as new
data appears. In order to evaluate this criterion, we assessed if our theory on ATD
was modifiable according to the new concepts that emerged during the focus group
discussions. This led to the modification of the theory by including 12 new concepts
discussed by the focus group participants (depicted with the ® icon in Figures 4.7-
4.13), and additional insights in other already present concepts (e.g.,, the relation
between external and internal causes). We note that, while new concepts were
introduced in the theory, and other concepts were modified, the “kernel” of the
theory, i.e, its categories, types, and relations, remained unvaried. This further
confirms the attainment of theoretical saturation in the GT study, while proving the
modifiability of the theory as new data appears.

4.6 Verifiability and Threats to Validity

We ensure the anonymity of our participants, their companies, and their collabora-
tors. Hence, we keep confidential their identifying details, under the human ethics
guidelines governing this study.

Accordingly, and as customary in grounded theory (e.g., [147]), the verifiability of
our results should derive from the soundness of the research method followed. We
therefore provide in Section 4.2 an in-depth description of the research method we
followed throughout our investigation, and (within space constraints) reference as
much as possible to direct quotes from our participants (albeit excerpted).

165

Chapter 4. Architectural Technical Debt: A Grounded Theory

A potential threat to validity is the theoretical sensitivity of the principal investigator
(cfr. Section 4.2.1). In fact, the author resulted to be already exposed to the ATD
research body of knowledge for one year prior the study execution. Nevertheless,
we do not deem this as a major threat to our investigation, as the relatively limited
exposure provided the researcher sufficient knowledge to improve his sensitivity,
while limiting the possibility to introduce preconceptions and concepts consolidated
during multiple years of experience in the field. In order to mitigate this threat,
all the authors of this study refrained from investigating the literature till after the
establishment of our theory.

A threat to generalizability of our results is entailed by the sample of participants
that took part in this study. As detailed below, the presented theory has not to be
considered as absolute or final, as it emerged from the experiences and knowledge of
the involved participants, with additional considerations extrapolated from the state-
of-the-art academic literature. To mitigate this threat, we interviewed practitioners
from 22 distinct companies of different sizes and working in different domains. By
conducting focus groups, we assessed that this threat did not appear to significantly
affect the version of the theory established before the focus groups were conducted.
Hence, we remark that this threat may potentially affect with a higher probability the
results of the focus group method.

As any grounded theory study, our investigation establishes a mid-range substantive
theory, that is, a theory where elements belonging to the studied context can be
transferred to other contexts with similar characteristics [136]. We hence do not
claim our theory to be absolute or final, and we highly welcome its extension, e.g., by
adding detail to emerging concepts of our theory, or even unveil new concepts and
categories that did not emerge in this investigation.

4,7 Conclusion

Our investigation provides empirical insights into the challenges faced by practition-
ers when dealing with ATD. From our study emerge eleven interrelated categories
regarding ATD, leading to a cohesive theory of ATD that connects its causes, conse-
quences, symptoms, management strategies, etc. We made a deep-dive into those
categories by grounding our findings in the knowledge of experienced software
practitioners. Notably, among other results, from our investigation emerge sets of
symptoms, consequences, and management strategies on which future research,
methodologies, and tooling, can be based. By carrying out an evaluation of the theory

166

4.7. Conclusion

via focus groups, we confirmed that the theory fits its underlying data, is able to work,
has relevance, and is modifiable.

A research avenue we find particularly interesting exploring is the further study of
ATD symptoms, with particular emphasis on quantifiable ones, in order to deter-
mine which symptoms are best suited as foundation for novel ATD identification
and management techniques, e.g., by leveraging the method presented in [54]. An-
other interesting research direction is about the definition of methods and techniques
to (i) automatically identify the components of the system which require immediate
attention from the ATD perspective (we call them ATD hotspots) and (ii) recommend
developers which actions should be taken for paying off the ATD accumulated in
those components. Additionally, we are interested in studying the use of the theory
in practice, e.g., by conducting case studies with industrial partners and ad-hoc as-
sessments of ATD instances via our theory. Finally, as discussed in Section 4.4, we
are interested in combining the theory built in this paper with other complementary
theories in order to build a unified formal theory of architectural technical debt.

Acknowledgments

We express our sincere gratitude to the 27 participants who took part in this study, for
their time, support, and passion, which made this investigation possible. Additionally,
we would like to thank Eltjo Poort, for his support. This research was conducted under
the approval of the University of British Columbia Research Ethics Board, application
number: H19-01125.

167

Technical Debt
in Android
Applications

169

In the first part of the manuscript, we studied the ATD phenomenon without focusing
explicitly on any specific development context, technology, or software ecosystem.
Nevertheless, some derivative findings of the first three chapters of the thesis pave
the way for a novel research direction. From the literature study presented in Chap-
ter 2, we observed that no ATD identification approach has been proposed to target
specifically the Android ecosystem, even if it is to date the most popular mobile
ecosystem'?. From the findings of Chapter 4 we observed that the characteristics of
ATD can vary greatly according to the specific context considered. Hence, to detect
ATD at at a refined level of granularity, it is possible to develop ATD identification
and management techniques that focus on specific technologies, or software ecosys-
tems. Focusing on a specific development context allows to consider ATD instances
that do not appear in other contexts, and to examine ATD items specific to certain
technologies and development frameworks. Finally, from the findings of Chapter 3,
we observed that ATD analyses can be successfully shaped according to the specific
context at hand.

Based on the findings of the first part of the thesis, we dedicate this second part
to investigate TD and ATD specific to the Android ecosystem. To the best of our
knowledge, TD and ATD in the Android ecosystems remains a very marginal research
branch, considered exclusively in the work presented in this thesis. Hence, as no
other supporting literature was available to us, we started to investigate the topic by
conducting a preliminary study, presented in the following chapter (Chapter 5). In
such chapter, opening our investigation on TD and ATD in the Android ecosystem,
we assess the evolution of one of the most prominent quality attributes impacted by
TD, namely maintainability. This provided us a better understanding of the context
at hand, on which Android-specific ATD studies could be based. In Chapter 6 instead,
we propose an ATD identification approach to tackle ATD in the Android ecosystem,
and a set of architectural guidelines through which ATD can be identified, managed,
and prevented.

10https://gs.statcounter.com/os- market-share/mobile/worldwide

171

https://gs.statcounter.com/os-market-share/mobile/worldwide

How Maintainability Issues of
Android Apps Evolve

"If I test out android," Phil Resch
prattled, "you'll undergo renewed
faith in the human race.”

Philip K. Dick
“Do Androids Dream of Electric
Sheep?”

This chapter is based on [3 1. Malavolta, R. Verdecchia, M. Bruntink , B. Filipovic and P. Lago, On the
Evolution of Maintainability Issues of Android Applications, IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2018. [51]

173

Chapter 5. How Maintainability Issues of Android Apps Evolve

This chapter constitutes the “bootstrap” investigation which opens the research
thread specific to the investigation of architectural technical debt of Android ap-
plications. Specifically, the research presented in this chapter reports the answer
to the fourth research question of this thesis (RQ4). In order to answer RQ4, we
designed and conducted an empirical study on 434 GitHub repositories containing
open, real (i.e., published in the Google Play store), and actively maintained Android
apps. We statically analyzed 9,945 weekly snapshots of all apps for identifying their
maintainability issues over time. We also identified maintainability hotspots along
the lifetime of Android apps according to how their density of maintainability issues
evolves over time. More than 2,000 GitHub commits belonging to identified hotspots
have been manually categorized to understand the context in which maintainability
hotspots occur. Our results shed light on (i) how often various types of maintainability
issues occur over the lifetime of Android apps, (ii) the evolution trends of the density
of maintainability issues in Android apps, and (iii) an in-depth characterization of
development activities related to maintainability hotspots.

174

Contents

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Introduction v v i it ittt i e e 176
Background0 ittt 178
StudyDesign it i i i e 179
5.3.1 Goal and Research Questions 179
5.3.2 ContextandDataset 180
5.3.3 DataExtraction, 185
5.3.4 DataAnalysis 187
Resultsttt it iiieeeenenenennas 190

5.4.2 RQ4.2. How does the density of Android maintainability issues
evolveovertime? 191

5.4.3 RQ4.3. What are the development activities in which main-

tainability hotspotsoccur?o 197
Discussionttt ittt ittt 199
5.5.1 Observations 199
5.5.2 Best Practices for Android Developers 203
ThreatstoValidity. o v ittt 203
RelatedWork. ot ittt ittt it ittt e ee e 205
Conclusionand FutureWork 207

175

Chapter 5. How Maintainability Issues of Android Apps Evolve

5.1 Introduction

Mobile apps dominate our world today, showing no signs of slowing down market
growth anytime soon [174]. As of March 2017, there are more than 2.8 million Android
applications available, with more than one thousand apps being published every-
day [174]. Android applications are not only being published in large numbers, they
are also being consumed by users in large numbers. According to the official Android
developer portal [175] there are more than 1.5 billion downloads from Google Play
Store every month. A platform of such a large scale leads to an extremely crowded
market and fierce competition. If developers are to succeed in such a competitive
environment, it is of paramount importance that the mobile apps they produce are
of extremely high quality.

Software maintenance is the activity of modifying a software product after its delivery
in order to improve performance, add functionalities or perform corrective tasks on
the existing product [176]. Software maintainability can be defined as the property of
software that provides insights about how easily a software system (in this case an
Android app) can be maintained [176]. In principle, apps with higher maintainability
can be released and updated with less effort and provide the users with high quality
features. Maintenance can be seen as one of the most important activities within the
mobile app lifecycle. For example, updates of widely popular mobile apps like Face-
book are consistently published on a daily basis [177]. Apart from the official Android
guidelines [178], there is very little evidence about Android apps maintainability.

In this chapter we present a large-scale empirical study on the evolution of statically-
detectable maintainability issues across the Android ecosystem. In particular, we refer
to “maintainability issue” as code that is classified as high risk by the Software Analy-
sis Toolkit (SAT) [179], a toolset that was developed by the Software Improvement
Group (SIG) [180].

From a methodological perspective, we firstly built a dataset of 434 Android apps that
are (i) open (i.e., available as open-source projects in GitHub), (ii) real (i.e., distributed
through the Google Play Store), and (iii) actively maintained (i.e., no single-commit or
toy projects). Then, we (i) mined their GitHub repositories and extracted 9,945 weekly
snapshots! from 106,689 commits, (ii) analysed each snapshot via an industrial tool
for static analysis, and (iii) identified the occurrences of 5 types of maintainability
issues in each snapshot. Afterwards, we manually analyzed 1,230 apps for building

1A “snapshot” is defined as the state of a repository after a week of active development, i.e. a week in
which at least one commit occurred.

176

5.1. Introduction

areusable taxonomy of the trends in which the density of maintainability issues of
Android apps can evolve over time. In order to do so, we considered the notion of
commit-level issue density (cd) [181] reported in Formula 5.1.

Moreover, we identified 3,374 maintainability hotspots, defined as the points along
the lifetime of an Android app where developers are injecting an anomalous number
of maintainability issues with respect to the current app size. Finally, in order to
understand the context in which maintainability hotspots occur, we investigated on
the (self-reported) activities performed by developers in the context of all identified
maintainability hotspots. We carried out the latter step by manually inspecting
and categorizing 2,112 GitHub commits belonging to the identified maintainability
hotspots by conducting independent content analysis sessions.

The main contributions of this chapter are:
« a characterization of the frequency of maintainability issues in Android apps;

« a taxonomy and characterization of the evolution trends of the maintainability
issues’ density in Android apps;

« a characterization of maintainability hotspots for Android apps, together with
an investigation about the Android development activities performed when those
hotspots occur;

« the replication package of our empirical study containing its results, raw data, and
mining- and data analysis scripts.

The target audience of this chapter includes both Android developers and researchers.
We support developers by providing a set of actionable and evidence-based insights,
which can be used for improving the maintainability of Android apps; we support re-
searchers by objectively characterizing the state of the practice about maintainability
of Android apps.

Chapter structure. Section 5.2 provides background information. Section 5.3 presents
the design of the study. Section 5.4 presents and discusses obtained results. Sections
5.6 and 5.7 describe threats to validity and related work, respectively. Section 5.8
closes the paper and discusses future work.

177

Chapter 5. How Maintainability Issues of Android Apps Evolve

5.2 Background

Software maintainability. This study relies on the software quality model defined in
the ISO/IEC 25010 standard [182]. The standard defines a generic software quality
model composed of the following characteristics: functional suitability, performance
efficiency, compatibility, usability, reliability, security, maintainability and portability.
There, software maintainability is defined as the degree of effectiveness and effi-
ciency with which a product can be modified to improve it, correct it or adapt it to
changes in environment, and in requirements [182]. The ISO/IEC 25010 software
quality model further divides software maintainability into 5 sub-characteristics:
modularity (degree of change impact of one component w.r.t. others), reusability
(degree to which an asset can be used to build other systems), analyzability (extent
to which a software product can be analyzed, with the goal of identifying parts to
be modified), modifiability (extent to which a software product can be modified
without lowering its quality), and testability (extent to which a software product can
be tested).

Source code quality tools. In order to minimize maintenance costs, developers
can track and improve their source code quality with the help of open-source tools.
For example, Lint [183] is an Android Studio source code scanning tool. The Lint
tool provides support in finding potential bugs and optimization improvements
with respect to security, performance, usability, correctness and internationalization.
Another open-source solution is FindBugs [184]. It reports nearly 300 different bug
patterns in Java and reported bugs are categorized and assigned a priority level.
SonarQube [185] is also a prominent open source static code analyzer. It focuses on
the detection of bugs, code smells and security vulnerabilities. SonarQube currently
supports more than 20 programming languages including Java and offers a vast
range of customization parameters for ad-hoc analyses. PMD [186] is a popular
source code analyzer, able to find common programming issues such as empty catch
blocks, unused variables etc. PMD supports a variety of different languages, among
which are Java and XML, making it suitable for analyzing source code of Android
applications. Furthermore, PMD provides support for identification of duplicated
code in Java source files. Another freely-available tool is CheckStyle [187]. Although
it does not identify bugs, it allows Java developers to write code that adheres to coding
standards, thus increasing code readability. JArchitect [188] is instead a commercial
static analysis tool that, in addition to code metrics, provides capabilities to inspect
the quality of software architecture through dependency analyses and validation of
architectural rules. SciTools Understand [189] is another commercial tool aimed at
providing an overview of a software product through a mix of code metrics analyses

178

5.3. Study Design

and dependency visualization techniques.

In this study we use SAT, a toolset developer by SIG, a software consultancy company
providing insights into software systems’ source code quality. SAT is based on the SIG
maintainability model, which defines metrics to measure ISO 25010 maintainability
based on source code. SIG has used this model in a consulting practice for the past 10
years, measuring hundreds of systems and billions of lines of code. The model works
by comparing individual code-level metrics to a database consisting of several hun-
dreds of software systems, thus producing (relative) ratings, and finally combining
the code-level ratings into ratings for the ISO 25010 maintainability characteristics
(i.e., analyzability, modifiability, testability, modularity, reusability) [190].

Empirical studies have shown that the metrics used by the SAT tool are correlated
with the maintainability issue resolution performance of software developers [191].
Since the model relies on source code measurements, rather than functional or
behavioural characteristics of a software product [192]. As such, this model is a very
good candidate for this study due to its compliance with the well-acknowledged
ISO/IEC 25010 standard and to the full automation enabled by the SAT analysis tool.
SAT allows us to automatically perform static code analysis on snapshots of multiple
apps, and provides maintainability metrics for further statistical analysis.

5.3 Study Design

To provide objective and replicable findings, a complete replication package is avail-
able to reviewers as part of this submission?, including the source code of all the
developed mining and analysis software, and raw data.

5.3.1 Goal and Research Questions

The goal of this study is to analyze the source code of Android mobile apps for the
purpose of characterizing their evolution and determining best practices with respect
to its maintainability from the viewpoint of software developers, in the context of
open-source apps published in the Google Play Store. The related research questions
are described in the following.

RQ4.1 - Which are the most recurrent types of maintainability issues in Android apps?

2https:/ /github.com/ICSME/ReplicationPackage2018

179

Chapter 5. How Maintainability Issues of Android Apps Evolve

By answering this research question we can comprehensively characterize which are
the most recurrent maintainability issues during the evolution of Android apps. This
enables developers and researchers to get a better understanding of Android-specific
maintainability issues through empirical evidence, lying the groundwork for the
efficient management of maintainability issues in Android apps.

RQ4.2 — How does the density of Android maintainability issues evolve over time?

RQ2 investigates whether the evolution of the density of maintainability issues ex-
hibits identifiable characteristics (i.e., specific trends). Specifically, it provides insights
about how each type of maintainability issues tend to remain/grow/decrease in An-
droid apps over time, potentially with a negative or positive impact on the overall
maintainability of the app in future releases. The trends emerging from this study
can guide developers in classifying their own apps, comparing them with others, and
take action depending on the level of maintainability they want to achieve.

RQ4.3 — What are the development activities in which maintainability hotspots occur?

RQ4.3 aims at identifying the relation between the activities performed by developers
and the occurrence of maintainability hotspots. Intuitively, a maintainability hotpot
is an anomalously high value appearing in the maintainability time series of an
app (refer to Section 5.3.4.3 for the formal definition of hotspot). The identification
of those relations will help in understanding what are the Android development
activities that are more sensible to the injection of each type of maintainability issues.
Android developers can use this information for (i) better planning code refactoring
sessions, (ii) better planning their code review sessions (e.g., steering the assignment
of code reviews), (iii) taking special care of their code quality when performing tasks
belonging to activities highly correlated with maintainability issues.

5.3.2 Context and Dataset

5.3.2.1 Context selection

Since this study is focused on real-world Android apps for which we can track their
maintainability and development activities over time, the context of this study con-
sists of a set of Android apps that (i) are freely distributed in the Google Play store
and (ii) have their versioning history hosted on GitHub.

180

5.3. Study Design

5.3.2.2 Dataset building

The dataset building process of this study is similar to the one proposed in [193].
As shown in Figure 5.1, we consider the following initial sources: GitHub, FDroid,
and Wikipedia. From Github, a custom search was performed that targeted all the
repositories containing a link to a Google Play Store app page in their readme files®.
The second source for our dataset is FDroid [194], a largely known online catalogue of
free and open-source Android projects. From this catalogue, a search was applied that
locates apps that contain: a) a link to the respective GitHub repository, and b) a link to
the respective Google Play store page. The third source is a Wikipedia [195] containing
a maintained list of free and open-source Android applications. We performed a
manual selection from this list. The merging step (1) of the three considered data
sources resulted in a total of 9,400 apps.

Some of the apps were not published on the Google Play store, and were therefore
excluded (2). This occurs if developers decide to remove the app from the store or
if Google takes down apps for violating some publishing policies. Next, duplicate
entries have been removed (3).

In the next filtering step we identified repositories containing actual Android app
source code (4). This filtering step has been done by considering only the repositories
containing the mandatory AndroidManifest.xml file.

Then, we filtered out repositories which did not contain an Android manifest file in
the source code folder (5). The rationale for this step is that the folder containing
the Android manifest file should also contain the complete source code for each
application.

In order to avoid inactive or unmaintained repositories [100], we considered only
repositories with at least 6 commits and having a lifetime span of at least 8 weeks
(6). The 6-commits threshold corresponds to the median of the number of commits
for all considered repositories before this filtering step, while the 8-weeks threshold
comes from the fact that 8 weeks is the average development time for an Android
app [196].

We further cleaned up the dataset by filtering out all those GitHub repositories con-

31n order to do not occur into the GitHub limit of 1,000 results per search, we stratified our search
queries by date range so that each search resulted in less than 1,000 results. The whole set of considered
dates ranges from the creation of GitHub (i.e., Jan 1, 2001) to the day in which searches were performed
(i.e., May 2, 2017)

181

81

1) Merging 2) Google Play 4) Android 6) Inactive GitHub
sources > link existence filtering manifest filtering repositories filtering
(9,400) (4287) (6,454) (2,238)
A
|
i Y \ 4 \
: 3) Duplicates 5) Android root 7) Forks, changed dates,
! filtering folder filtering tool issues filtering
FDroid crawler l GitHub crawler (6,619) (4,756) (1,410)
(397) | (8,950) Commits metadata
A | A (106,689) v
|
' ____19) Collect commits 8) Commits frequency
metadata filtering
(106,689) (434)
P 4 T
Wikipedia ﬁ(_______________________________ J
FDroid (53) GitHub

GitHub repositories
(1,410)

Figure 5.1 - The dataset building process

aajoaq sddy proxpuy jo sanssy Ajiqeurejure]l Moy g 1d1dey)n

5.3. Study Design

taining (i) commit dates which were manually modified by developers (our study has
a strong emphasis on the time dimension), (ii) forks of other repositories (to avoid
duplicates), and (iii) source code not analyzable by the SAT tool, e.g., Kotlin-based
apps (7).

The last filtering step involved (i) the identification and removal of all the snapshots
for which there were no commits in the GitHub repositories (in our study we exclu-
sively focus on the active snapshots and we avoid the noise produced by periods
of inactivity, e.g., due to holiday breaks) and (ii) the subsequent filtering of all the
GitHub repositories having less than 8 snapshots after the snapshots removal (8).
After this step, our final dataset contains 434 GitHub repositories containing open,
published, and actively maintained Android apps, for which an analyzable commit
history is available.

Finally, we extracted all commits of the main branch of each GitHub repository,
leading to a total of 106,689 commits (9).

5.3.2.3 Demographics
In the following we provide an overview of the apps included in our dataset.

As shown in Figure 5.2, the median app of the dataset results to be developed for 16
active weeks of development (hereafter, snapshots).

bl) - Pomamoam® ® o

10 20 50 100 200
Number of snapshots per app

Figure 5.2 — Distribution of snapshots per app

As we may expect, the number of commits per app is characterized by a high vari-
ance, ranging from a minimum of 12 to a maximum of 2,407 commits per app. The
median app of the dataset has 123 commits (see Figure 5.3).

The number of commits per snapshot varies from a minimum of 1 commit (which

183

Chapter 5. How Maintainability Issues of Android Apps Evolve

T T T T T T I
10 20 50 100 200 500 1000 2000

Number of commits per app

Figure 5.3 - Distribution of commits per app

was required in order to characterize a snapshot as active) to a maximum of 251
commits. The median snapshot is composed of 6 commits (see Figure 5.4).

1 2 5 10 20 50 100 200
Number of commits per snapshot

Figure 5.4 — Distribution of commits per snapshot

Regarding the period of development, we ensured that the apps within our dataset
are heterogeneous, in order to do not bias our study due to some specific versions of
the Android platform. In particular, the earlier app development start date is close
to the initial release of the Google Play market (end of 2008) till early 2017 (close to
when our crawling process was executed, see also Section 5.3.2). In Figure 5.5 the
development start date of all the apps is reported.

Finally, by considering the number of unique contributors per app, the median
shows that apps developed by 3 unique contributors result to be the most common
in our dataset. Out of the 434 apps considered, only 72 resulted to be developed
by a single contributor, making us reasonably confident that our dataset does not
contain a large number of toy or demo apps (which usually are committed by a single
developer). In Figure 5.6 the distribution of number of unique contributors per app
is depicted.

184

5.3. Study Design

I T I T I I T
2008 2009 2011 2012 2013 2014 2015 2016

Development start date per app

Figure 5.5 - Distribution of development start date per app

Number of unique contributors per app

Figure 5.6 — Distribution of unique contributors per app

5.3.3 Data Extraction

Snapshots Extraction. This study considers the evolution of maintainability issues of
an Android app as a sequence of snapshots (S1, S2, ..., Si), where a snapshot is defined
as a set of source code files of an app at a given point in time. A time-windowing
approach has been adopted and closely follows the approach presented in the work
by Di Penta et al. [181]. A snapshot series can be extracted from an app’s GitHub
repository by considering all the commits performed between the begin and end
of a snapshot interval. For this research, the time interval between two snapshots
in a snapshot series is defined as one week, mainly because it has been empirically
shown that Android apps are updated once a week or less frequently [197]. Once
the snapshot series has been obtained, each app repository has been cloned and
subsequently checked out for each snapshot in the series.

In total, the whole analysis process of extracting snapshots and applying static code
analysis to each snapshot spanned a period of 2 months. Furthermore, a total of
800 million LOC has been processed, and more than 7 thousand GB of file system

185

Chapter 5. How Maintainability Issues of Android Apps Evolve

resources has been considered across 98,487 snapshots.

Maintainability Issue Density Identification. In this step we used the Software Anal-
ysis Toolkit (SAT) to process every snapshot of each app, producing the source code
metrics related to maintainability issues of Android apps. The total static code analy-
sis processing of all snapshots took 12.45 days, with an average of 8.73 seconds per
snapshot. As mentioned before, the metrics in SAT are based on the ISO/IEC 25010
quality model. The model underlying SAT measures the properties of a software
product at four levels of abstraction, namely: unit, module, component and overall
system level. In the context of this study, unit is a Java method, a module is a Java
class, a component is a Java package, and a system is the whole app.

In this study, we consider the maintainability issues defined by SAT ([179]), namely:

* Unit Size (US): Units exceeding 30 lines of code®.

¢ Unit Complexity (UC): Units exceeding 10 McCabe Cyclomatic Complexity [107].

¢ Unit Interfacing (UI): Units having more than 4 (formal) parameters.

¢ Module Coupling (MC): Modules exceeding 20 incoming dependencies (eg.
method invocations, class extensions, interface implementations).

¢ Duplication (DP): Code clones of at least 6 lines of code. SAT detects type-1
clones [201] after a cleaning process that removes empty lines and comments.

e Maintainability (MT): The total count of occurrences of the previous issues

types.

Once the maintainability issues have been identified, a unified and comparable
measure of their amount is needed, in order to allow for objective comparisons
between apps with different size and between different issue categories. Therefore,
in this study we consider a notion of commit-level issue density (cd) [181], defined as
follows:

cdl =1 |J xI/NKLOC,, (5.1)

xt—:]f.a

where i uniquely identifies one of the categories of maintainability issues according
to the ISO/IEC 25010 quality model (e.g., unit size, unit complexity), a is the app
being considered, c, € C, is a commit in the GitHub repository of a, I éa is the set of
identified issues of type i in the repository of a after checking it out at commit ¢, and

4The thresholds for maintainability issues have been defined based on the results of empirical studies
involving the SAT tool [198, 199, 200].

186

5.3. Study Design

NKLOC,, is the number of thousands of lines of Java source code in the repository
of a after checking it out at commit c. Intuitively, cd indicates the number of issues
belonging to a specific category that are introduced by a commit, normalized by
considering the current size of the repository. Being S, the set of all weekly snapshots
of a, the issue density dﬁa ofeach s, € S, is defined as cdéa, where c is the last commit
performed within the time window of s,,.

5.3.4 Data Analysis

5.3.4.1 RQ4.1

In order to test whether the issue types exhibit a significant difference w.r.t. issue
density, we adopt the omnibus Kruskal-Wallis test, i.e., a non-parametric test for
testing the difference among multiple medians. In order to avoid potential threats to
validity due to fishing rate we adjust the significance level by means of Bonferroni
correction [202]. In addition to the Kruskal-Wallis omnibus test, in order to assess if
there is a significant difference between the pair-wise comparison of issue types, we
conduct a series of two-tailed Mann-Whitney tests. This is not required in order to
test the null hypothesis, i.e. that all means of the issue density among issue types is
equal. Nevertheless we use this statistical tests to get further insights in the data. As
the previous test, the Bonferroni correction is used to adjust the significance level.
This latter process consists in dividing the significance level by the number of tests
performed (i.e., the total number of possible pairwise-combinations of issue types).

Apps characterized by long-lasting active development might affect the results due
to their high number of snapshots present in the dataset. In order to mitigate this
potential threat to internal validity, the above presented tests are carried out both on
the complete dataset of snapshots and the median values of the snapshots aggregated
per app. Due to space limitations, and as the results do not significantly differ, in the
result section we report the results relative to the analysis of the complete dataset.

5.3.4.2 RQ4.2

For each app a and maintainability issue i, we firstly create a time series representa-
tion T'S!, by temporally ordering all the density values d! across all snapshots s € S,
of a. The time of the first and last observations of each TS, are set to the timestamp
of the first commit among the set of all commits C, of a and the timestamp of the
end of the time window identified by the last snapshot in S, respectively. The period

187

Chapter 5. How Maintainability Issues of Android Apps Evolve

of each TS/, has been elicited by (i) building the periodogram of T'S%, (defined as the
vector of frequencies at which the spectral density of a time series is estimated [203]),
(ii) considering its dominant frequency f, and (iii) converting f to the time domain
by dividing f by 1.

As initial exploration, we check if the obtained time series exhibit a stationary be-
haviour. From a statistical perspective, the mean and variance of a stationary time
series are constant over time [204] (i.e., it has no trend over time). We apply to each
TSZ the Augmented Dickey-Fuller test (ADF) [205] (with @ = 0.05), which is a unit
root test for stationarity with Hy = the time series has a unit root (it is non-stationary)
and H; = the time series does not have a unit root (i.e., it is stationary). We adjust the
obtained p-values via the Bonferroni correction since we are applying the ADF test 6
times, one for each type of maintainability issue. From this preliminary test, apps
result to be mostly non-stationarity for all types of maintainability issues, motivating
us to further inspect their exhibited trends.

We decompose each T Sil into its seasonal, trend and irregular components [206]
using the STL algorithm [207]. Intuitively, given a time series, STL iteratively extracts
its seasonal component by lossless smoothing of the seasonal sub-series (e.g., the
series of the first values of all seasons, of the second values of all seasons, etc.). Then,
the seasonal values are removed, and the trend component is extracted by smoothing
the remainder. The irregular component is computed as the residuals from the
seasonal plus trend fit [207]. We use the STL algorithm as it does not assume any
distribution of the time series, it has been successfully used in previous software
engineering studies [202, 208], and an efficient implementation is available as an
open-source R package®.

For answering RQ4.2, we perform a qualitative study on the plots of the trend com-
ponents of all TS%. Since the manual analysis of all the collected trend components
is infeasible, we randomly selected a sample composed of 205 apps and analyzed
their trend component for each type of maintainability issues® (summing up to 1,230
distinct trends), and manually scrutinize and categorize them into relevant groups by
applying the open card sorting technique [209]. To minimize bias, two researchers
have been involved in this activity and the results have been checked by a third re-
searcher. This activity resulted in a two-levels taxonomy of maintainability issues
trends. In Section 5.4.2 we present each category in the taxonomy and its frequency

Shttp://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html
6By considering 205 apps we achieve a 95% statistically significant sample of the 434 apps of our dataset
with a 0.05 confidence interval.

188

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html

5.3. Study Design

within our dataset.

5.3.4.3 RQ4.3

We answered RQ4.3 by following two main phases. The first phase targets the identifi-
cation of maintainability hotspots along the lifetime of an Android app. Given an app
a and its density time series T'S;, (one for each type of maintainability issue), the set
of maintainability hotspots H/, is defined as follows:

Hy={sj1(dj, —d;,)>0(TSp), j=2,...,ITSyl,s; € TSG) (5.2)

S(j-1

where dg'j is the density of the maintainability issue of type i in snapshot s; and o is

the standard deviation of the density values along the time series T'S ; In other words,
we consider as hotspot every snapshot s; in which the density of a maintainability
issue i w.r.t. its preceding snapshot s(;_1) is higher than the standard deviation of
the whole time series of i. We build upon this standard-deviation-based strategy
since (i) it is not feasible to build upon more advanced models for outliers detection
(e.g., ARIMA [210]) for all 434 apps since they require delicate manual tuning for
each app and (ii) it is computationally efficient. Despite its apparent simplicity, an
independent manual exploration of a subset of the apps by two researchers confirms
that this strategy proves effective in correctly identifying maintainability hotspots.
This phase led to the identification of 3,374 maintainability hotspots over 46,873
GitHub commits.

In the second phase, we consider GitHub commit messages as indicators of the actual
activities performed by developers and we manually analyze the commits performed
during the occurrence of maintainability hotspots. As manually analyzing all 46,873
GitHub commits is unfeasible, we build a representative sample of commits for each
type of maintainability issue (95% confidence level, 0.05 confidence interval), leading
to a set of 2,112 unique commits to be manually analyzed. To this aim, we conduct
content analysis sessions [211] on all 2,112 commit messages and categorize them
according to the taxonomy of self-reported activities of Android developers proposed
and empirically validated by Pascarella et al. [212].

For answering RQ3, we present and discuss (i) the frequency and distribution of
maintainability hotspots within the whole dataset of Android apps and (ii) how
frequently each category of Android developers’ activities appears in maintainability
hotspots (i.e., it was assigned to a commit message during the content analysis),
leading to the identification of those development activities which are potentially

189

Chapter 5. How Maintainability Issues of Android Apps Evolve

more related to maintainability issues. Finally, we reuse the publicly-available dataset
of 5,000 manually categorized commits produced in [212] as ground truth for all
commits i.e., commits either belonging to maintainability hotspots or not. We test
the possible relationship between the activities performed in all commits and those
performed in commits belonging to maintainability hotspots; we use a Chi-Square
test to assess the relationship and Cramer’s V to establish the effect size [202].

5.4 Results

In this section we report the results which emerged from the analysis of the gathered
data.

5.4.1 RQA4.1. Which are the most recurrent types of maintainability
issues in Android apps?

To answer RQI we inspect how the maintainability issues of the collected apps are
distributed among the different maintainability issues considered. We therefore plot
in Figure 5.7 the violins plots of the complete distribution of issues per type.

o
& . l
8,

Type of maintainability issue

Figure 5.7 - Distribution of unique contributors per app

By considering the totality of maintainability issues, we see that on average almost
18 issues, spread out throughout the different issue types, are present every NKLOC

190

5.4. Results

(M=15.65, m=17.87)". The aggregated maintainability issue distribution is reported
in the leftmost violin plot of Figure 5.7. From the remaining violin plots we observe
that the issue density varies among the different issue types. From the Kruskal-
Wallis omnibus test we evince that the distributions significantly differ (p-value<
2.2-1071%). We hence reject the null hypothesis, i.e. that all means of the issue density
among issue types is equal. From an additional pair-wise comparison between
issue types we see that all issue types occur with different rates. The most recurring
maintainability issue results to be duplication (M=7.393, m=10.230), followed by unit
size (M=4.290, m=4.249), unit complexity (M=1.4510, m=1.6150), unit interfacing
(M=0.7736, m=1.1030), and module coupling (M=0.6258, m=0.6746). Apart from
duplication and to a certain extent unit size violations, the remaining issue types
present only small differences in distribution.

Code duplication is the most recurrent maintainability issue in Android apps,
followed by unit size violations, unit complexity violations, unit interfacing
violations and module coupling violations. In our dataset, the overall main-
tainability of the analyzed apps is highly impacted by code duplication issues.

Not all code duplicates are bad [213]. We conjecture that the higher frequency of
code duplication issues is primarily due to the Android programming idiom and code
duplication in Android can be related to the templating phenomenon due to the
activity-intent-based idiom of the Android programming model. Nevertheless, idiom-
based templating can lead to introducing bugs (if not carefully used) and overlooking
inconsistencies [213], which might be remarkably detrimental for the maintainability
of mobile apps.

5.4.2 RQ4.2. How does the density of Android maintainability is-
sues evolve over time?

Firstly, we assess if the density of maintainability issues exhibits a stationary trend
in time. We applied the ADF test for obtaining the number of stationary and non-
stationary apps for each type of maintainability issue. As shown in Table 5.1, the
ADF test reveals that 93.01% of all apps exhibit a non-stationary behaviour (p-value

"Where M is the median value and m the mean value.

191

Chapter 5. How Maintainability Issues of Android Apps Evolve

< 0.008), whereas only 6.99% are stationary in at least one type of maintainability
issue.

Table 5.1 - Number of stationary and non-stationary trends per maintainability issue

type

Maintainability issue Stationary Non-stationary

MT 1 433

uUs 4 430

Ul 61 373

MC 67 367

ucC 37 397

Dp 12 422
TOTAL 182 (6.99%) 2,422 (93.01%)

This finding provides evidence that, according to our dataset, the density of main-
tainability issues in Android apps is not stable over time. This means that Android
developers actually have an impact on the overall maintainability of their apps over
time. Under this perspective, the instantaneous value of déa can be used for keep-
ing the maintainability of apps under control and taking informed decisions when
planning for maintainability-related activities (e.g., refactoring sessions).

The vast majority of apps do not exhibit a stationary behavior across all types
of maintainability issues.

As the majority of apps does not exhibit stationarity, we further inspect their trends
as detailed in Section 5.3.4.2. The manual analysis of the 1,230 trend components led
to the elicitation of the taxonomy presented in Table 5.2. The taxonomy objectively
represents the categories in which the density of maintainability issues of Android
apps can evolve. The taxonomy is composed of two levels, where the first one repre-
sents trends with similar overall characteristics (e.g., density growth or reduction),
whereas the second level represents trends at a finer grain (e.g., stable increase, valley).
Figure 5.8 shows an example of each trend category of the taxonomy.

192

5.4. Results

Table 5.2 — Taxonomy of evolution trends

Trend category Description
Growth (G) In the first weeks the app has a low density of maintainability issues, fol-
lowed by an overall non-decreasing trend
Increase (I) The density follows a generally increasing trend (some minimal decreasing
parts could be present)
Stable Increase (SI) The density is relatively low in the initial weeks, then it gradually increases

throughout the whole lifetime of the app
Increasing Plateau (IP) The density reaches plateau(s) after an overall non-decreasing trend
Plateau Increasing (PI) The density is stable and relatively low in the first weeks, then it increases
for the whole lifetime of the app

Reduction (R) In the first weeks the app has a high density of maintainability issues,
followed by an overall non-increasing trend

Decrease (D) The dual of I
Stable Decrease SD) The dual of SI
Decreasing Plateau (DP) The dual of IP
Plateau Decreasing (PD) The dual of PI

Mixed (M) Mixed trend where the density of maintainability issues grows and declines
over time
Hill (H) The density is relatively low in the initial weeks, it gradually increases up
to a certain peak, and then it gradually decreases
Valley (V) The dual of H
Anomalous (A) It does not fall into any of the previously defined categories
Constant (C) The density of maintainability issues is the same over time
Constant (C) Same as C

193

Chapter 5. How Maintainability Issues of Android Apps Evolve

SGit (IP)

BitcoinChecker (D)

MLManager (PD)

CineTime (H) RadyoMenemenPro (V) PixelDungRemix (A) android-simple—gameapi (C)

Figure 5.8 — Examples of evolution trends of the density of maintainability issues of
Android apps

In order to effectively interpret the manually gathered results, we represent the
frequency of each trend across issue types in the heatmap in Figure 5.9. We evince
that the trend category G (composed of I, SI, IP, and PI) is the most recurrent. For
the majority of maintainability categories new issues are introduced over time in the
apps by following different increasing trends. Only seldom are maintainability issues
resolved.

Of the subcategories composing G, IP is the most recurring one. We conjecture that
this is the result of the introduction of maintainability issues in the early stages of
development, followed by a “saturation period”. This later period of the IP trend is
attributed to a higher awareness that is given by developers to maintainability issues
after reaching a certain level of technical debt. From this recurrent trend we observe
that developers, while not actively resolving issues, avoid to introduce more in the
more mature stages of the app, potentially before maintainability issues become
unmanageable in number. Issues characterized by an initial period of stability before
increasing (PI) are less frequent: if maintainability issues are introduced, usually it
starts from the early development stages.

The only exceptions opposing the higher occurrence of the G trend can be observed
for the issues of type UI and DP, which exhibit more frequently an H trend. This can

194

5.4. Results

MT- .

Us- . . ¥ 40
uc- 30
Ul.- . 20

MC - 10

n

| Sl P PIL D SO DP PD H V A C

Figure 5.9 — Evolution trends by maintainability issue types

be caused by the nature of such type of issues. In fact, UI issues manifest themselves
as Java methods become more complex, directly impact development time required
to use them, and can be easily spotted by developers. Hence, after a period of
initial growth, effort might be spent to resolve such issues and avoid cumbersome
development activities in the future. A similar reasoning can be applied to the H trend
of DP issues: while due to time constrains DP issues can be acceptable at initial stages
of development, in time resolving such apparent issues can be a valuable activity
which eases future development.

From the lower frequency of R trends (D, SD, DP, PD) we evince that only seldom
development activities lead to a consistent decrease of maintainability issues. This
may be attributed to scarce effort put into structured refactoring processes aimed to
improve and maintain apps’ software quality.

Constant trends also result be less occurrent. We can conjecture that this is due
to the selection criteria adopted to systematically filter the weeks of development
considered in our dataset. In fact we selected exclusively active weeks of development,
i.e. when changes were carried out on the apps, which reflected in a changing number
of issues.

195

961

300 MT-Jg [| |
I us-m
200 YC-l | ||
U]
MC -
100 —
oP- \
¥ @ P (&2 D o0 (@ XXX QL0 K LORLARCID @2 @ 2 N N Y
S R L S s S
&P Q@ & N Q%14 2 2N Yo d X & O N0
S AN N S P S A A SPOCENY AN XN ,%«%;04 3% R @0\,\&\/@@%@6&\/ s
DT O ¥, 08 2 092 B - o IO Foa® & Y VTG BN DK EN OO0 ST, - OGN
CNE SRS OER L2 07 O LB IS “, &« & KON SN I IS
RIS SN O AN & O &N KERES &) oA Q0 ®
wWhoo oY @ SEe® P F QU WSS & ¥ ., &
v Aol A /Q /Q\ P o0 .’O-‘.QQ‘ /%\ (9 ? ’«
[o & \
o o O < 2
N o
e
<

Figure 5.10 — Frequencies of Android development activities performed during a maintainability hotspot

aafoaq sddy proapuy jo sanss| AJifiqeureiure]y Moy *c 1a1deyD

5.4. Results

The scarce occurrences of anomalous trends (A) shows that our taxonomy proved
to be effective, and encompassed the vast majority of the trends of maintainability
issues analyzed.

Unit interfacing and code duplication issues result to be outliers, displaying
a hilllike trend, which can be motivated by the nature of these issues. Only
seldom maintainability of apps exhibits an overall decrease or constant trends
in time.

5.4.3 RQ4.3. What are the development activities in which main-
tainability hotspots occur?

As anticipated in Section 5.3.4.3, we identified a total of 3,374 maintainability hotspots
involving 46,873 GitHub commits. Their descriptive statistics are reported in Ta-
ble 5.3.

Table 5.3 — Descriptive statistics for the hotspots of each maintainability issue type
per app

Issuetype Min. Max. Median Mean SD CV

MT 0 6 1.0 1.38 1.03 0.75
Us 0 6 1.0 1.35 1.03 0.76
uc 0 8 1.0 1.16 1.09 0.94
Ul 0 8 1.0 1.16 1.09 0.94
McC 0 7 1.0 1.31 1.16 0.88
Dbp 0 6 1.0 1.41 112 0.79

SD = standard deviation, CV = coefficient of variation.

Overall, the number of maintainability hotspots per app ranges between 0 and 8, with
amedian of 1 (similar values for the mean and standard deviation). The low values
for standard deviations also tell us that the distribution of the number of hotspots
across apps is very compact, with a strong tendency towards one hotspot per app.

197

Chapter 5. How Maintainability Issues of Android Apps Evolve

Maintainability hotspots do not occur often in the lifetime of each app. Nev-
ertheless, on average each app has at least one maintainability hotspot.

Now we zoom into the activities performed by developers during the occurrence of
maintainability hotspots. To do so, we manually categorized 2,112 commit messages
according to a taxonomy of self-reported Android development activities[212]. The
taxonomy entails a wide variety of different activities at different levels of abstrac-
tion (e.g., bug fixes, functionality implementation, release management, access to
sensors, etc.). The taxonomy is composed of two levels, where the first layer groups
together activities with similar overall purpose (e.g., app enhancement, bug fixing,
API management), whereas the subcategories (49 items) in the lower level provide a
finer-grained categorization [212]. Figure 5.10 shows the frequency of each category
of Android developers’ activities across the various types of maintainability hotspots®.
The colour of each tile reports the sum of all occurrences of each development activ-
ity in correspondence of a hotspot of a specific type of maintainability issue (note
that multiple activities can be assigned to each hotspot). The order of development
activities follows the rank of most frequent activities in Android apps, as emerged in
[212] (e.g., group A is more frequent than group B, activity A.1 is more frequent than
activity A.2).

Overall, our categorization follows the same trends identified in [212], with the most
prominent categories of activities being app enhancement (specially for new and
updated features), followed by (app specific) bug fixing, and project management. In-
terestingly, the category user experience improvement is quite frequent in the presence
of hotspots (+7.28% more than it is for "standard" commits, i.e., commits unrelated
to hotspots), specially for those activities related to the graphical user interface (E.1 -
GUI). This result can be an indication that Android developers should pay special
attention when working on the business logic related to buttons, Ul layouts, event
listeners, etc., as those activities are potentially more related to the presence of main-
tainability hotspots. Moreover, we noticed an increase also for the category Android
lifecycle (+2.86% w.r.t. all commits), which refers to the activities about the manage-
ment of Android components lifecycle events and transitions (e.g., the onCreate
of Activity). Finally, also the Documentation category exhibits an increase in fre-
quency when maintainability hotspots occur (+ 3.23%); this kind of activities refers

8In Figure 5.10 we depict in bold the top level categories and in plain text all the subcategories of the
taxonomy.

198

5.5. Discussion

to adding/refining comments in the source code and working on the documentation
of the app (e.g., description of the app, its requirements, Ul mockups). This result
happened for 85 commits and was quite unexpected as in principle this category
should not be related to maintainability at all. A deeper investigation reveals that
all snapshots containing the 85 documentation-related commits include also other
commits, which may be related to other development activities playing a role in the
occurrence of hotspots. Nevertheless, the co-occurrence of documentation-related
activities and maintainability hotspots may be an indication that commits chrono-
logically close to documentation-oriented activities are correlated with hotspots. We
leave this analysis for future work.

In order to better characterize how Android development activities may be correlated
with maintainability hotspots, we test if there is a significant difference between
the frequencies in our categorization of 2,112 commits and the ones observed in
the 5,000 manually categorized commits in [212]. It is important to note that the
commits categorized in [212] have been randomly selected, they can belong either
to maintainability hotspots or not. For all maintainability issue types we obtained
a statistically significant measure of correlation between these two categorizations
(p—value < o, where o = 0.008 because of the Bonferroni correction), allowing us to
reject the null hypothesis that the two categorizations are independent. The Cramer’s
V test reveals a small effect size for all maintainability issue types (0.19 < V = 0.22).
Together, those results (i) confirm our preliminary exploration that the frequencies of
Android development activities in commits belonging to maintainability hotspots
are in line with those involving all commits and (ii) such a relationship is only weak.

Maintainability hotspots in Android apps tend to occur independently of the
type of development activities performed by developers. Activities related to
the GUI and the management of the Android lifecycle are slightly more prone
to co-occur with maintainability hotspots.

5.5 Discussion

5.5.1 Observations

The obtained clusters constitute a foundation for having an up-to-date overview of
maintainability trends of Android apps, bringing a number of interesting observa-

199

Chapter 5. How Maintainability Issues of Android Apps Evolve

tions. Firstly:

Most of the applications follow a rather stable evolution trend, with higher
oscillations in the initial phases of the project.

Indeed, the most noticeable differences and instability in evolution trends were
found in the first quarter of the development timeline of an app, suggesting that
this period is the most unstable and brings the most source code changes. This is
understandable, as app development evolves rapidly at the beginning of the project,
with numerous functionalities being added or removed throughout development; it
is also understandable that few changes to the source code appears at later stages of
the timeline when the app has been likely already published or almost finished.

When looking at the identified clusters of evolution trends of each category of main-
tainability issues:

Unit-related categories (i.e., unit size, complexity, and interfacing) follow sim-
ilar evolution trends, with slight changes in the magnitude of their respective
issue densities.

However, within the three unit-related issue categories, unit size and unit complexity
exhibit similar trends both in evolution and in density. Unit interfacing exhibits more
stability with respect to the evolution trends, containing numerous apps with stable
low densities over time. The density of the duplicated code issue is generally much
higher than other categories of issues. This finding suggests that:

Duplicated code poses numerous threats to maintainability of Android apps,
as it constitutes most of the overall maintainability issues. Duplicated code
blocks in general are not trivially removed, implying that these redundant
code blocks can cause significant maintenance efforts at later development
stages.

The duplication evolution trends suggest that duplicated code that is introduced
at the beginning of the application development becomes increasingly harder to

200

5.5. Discussion

identify and remove over time, as the decreasing trend noticed in the highest density
cluster exhibits only a slight decrease. Furthermore, with the noticeable constant
growth, whether sharp or steady, in the remaining clusters, it can be said that:

Regarding code smells, the stable cluster in this category contains most of the apps and
shows the lowest density values of the three identified evolution trends, suggesting
that:

[Developers seem to already address code smells effectively.]

In the cluster exhibiting a sharp decline evolution trend, it can be seen that apps that
start out with a high density of code smells swiftly decrease the density over time. The
same decrease can be noticed once again after the small increase in the same cluster,
suggesting that developers may have more ease in removing these code smells issues
from their apps. Planned bug fixes are common in the software development, and
could also explain the decreases in density of code smells issues over time.

We found also several interesting implications regarding maintainability issues across
Android components. For what concerns Android activities, we can observe that

Android activities heavily suffer from code duplication (the highest propor-
tion across the whole study).

If on the one hand this finding can imply that Android developers should be proactive
in avoiding to duplicate code when developing the activities or their apps in order to,
e.g., avoid having to change many parts of the source code when fixing a bug in an
activity. On the other hand, this finding may be unveiling an intrinsic problem of the
Android programming model, which is leading developers to duplicate code within
activities. A better investigation of this result is left for future work.

We noted that Android services exhibit the highest number of maintainability issues
per component, suggesting that:

201

Chapter 5. How Maintainability Issues of Android Apps Evolve

Android services can contain a high number of code smells (they have the
highest proportion in the whole study, together with broadcast receivers) and
code duplication is recurrent as well.

This finding can be due to the fact that services do not have a user interface and
developers may have the perception that a bug in an Android service may not be
perceived by the user. We are planning to investigate on this reflection via a qualitative
study involving developers interviews.

Considering that Android broadcast receivers are generally used as a means of com-
munication between different apps, we suggest to keep these components as simple
as possible. Indeed our study reveals that:

Android broadcast receivers exhibit a low number of maintainability issues
per component, however, they exhibit the highest percentage of code smells
of the whole study and a fairly high percentage of unit size and duplication.

The implication above is related to the so-called broadcast receiver’s connector envy,
presented by Bagheri et al. in [214]. Indeed, Bagheri et al. empirically discovered
that Android broadcast receivers poorly separate concerns, resulting in deficiencies
that affect maintainability and efficiency; this finding is also confirmed by our study,
where the most recurrent maintainability issues in broadcast receivers are related to
code smells, duplication, unit size and unit complexity.

Content providers receivers exhibit the least average amount of maintainability issues
per component, however we can notice surprising trends with respect to the other
Android components. Specifically:

Android content providers exhibit the highest percentages of issues related
to unit size, unit interfacing, and unit complexity of the whole study.

We can conjecture that the number of issues related to unit interfacing is higher be-
cause content providers heavily rely on the use of interfaces to allow communication
data sharing between apps. Content providers also exhibit the highest amount of
unit size and unit complexity issues compared to other components. This finding

202

5.6. Threats to Validity

may suggest that more attention should be paid to managing the size and number of
interfaces of Android content providers with respect to other Android components.

5.5.2 Best Practices for Android Developers

The following best practices can serve as a guidance for new and experienced Android
developers. This set of best practices is actionable, meaning that it can be considered
as a pragmatic checklist for reducing the overall application maintenance efforts,
alongside improving overall app’s source code quality. The Android maintainability
best practices extracted from this study are the following:

BP; : Developers should avoid duplicating code in their apps, as it is one of the
most recurrent and severe maintainability issues, which may cause significant
maintenance efforts at later development stages.

BP, : Developers should pay special attention to duplicated code when working on
Android activities, as they are especially keen to suffer from this kind of issues.

BP; : Developers should pay special attention to code duplication while developing
Android services, alongside code smells (for the same reason as BP;).

BP, : developers should pay special attention to checking the quality of the code
of broadcast receivers, possibly using analysis tools such as Android Lint or
FindBugs.

BPs5 : Developers should keep content providers manageable with respect to their
size, complexity and the amount of input parameters (for the same reason as
BP)).

BPg : Developers should avoid introducing complex logic in Android content
providers and keep their source code as simple as possible from the begin-
ning of the project.

BP; : Developers should measure and track the codebase of the app early from the
beginning of the project with respect to its maintainability in order to keep
predictable maintenance efforts.

5.6 Threats to Validity

Construct validity. The results of this study are based on the current implementation
of SAT, the used static code analysis tool. It is hence paramount that the tool was
implemented and configured correctly. This major threat was mitigated through
different strategies. Firstly, the tool documentation is made available in order to

203

Chapter 5. How Maintainability Issues of Android Apps Evolve

detail the maintainability issue detection processes and the configuration settings
adopted. Furthermore, interviews have been conducted with the tool developers to
investigate the details related to the identification of the identified maintainability
issues. Additionally, an inspection of several detected issues across issue categories
was performed manually. Finally, the SAT tool is utilized on a daily basis in industrial
settings, and was also utilized in previous researches carried out by independent
researchers [215], [216], [217].

An additional threat to construct validity is constituted by the representativeness of
the selected apps. This threat was mitigated by carrying out an in-depth data quality
assurance process (reported in Section 5.3.2.2). In addition, we ensured that the data
was encompassing and heterogeneous in terms of development lifespan, number of
commits, and number of contributors etc. (see reported in Section 5.3.2.3).

Conclusion validity. The most prominent threat to conclusion validity is constituted
by the data extraction and analysis processes adopted to gather the results. In order
to mitigate such major threat to conclusion validity, we strictly adhered to a set
of a priori defined data extraction and analysis processes. Such processes were
explicitly conceived to gather and analyze significant data to answer our research
questions. The totality of the data extraction and statistical data analysis processes are
reported in their entirety in Section 5.3.3 and Section 5.3.4 respectively. In addition,
areplication package with the raw data and statistical data analysis scripts is made
available for the complete reproducibility of the results.

The majority of the statistical tests produced sound p-values, far below the chosen
significance level of 0.05. To minimize the error rate of the results, the Bonferroni
correction was adopted to adjust the significance level, when required. In order to
further mitigate potential threats to conclusion validity, the data analysis process was
jointly discussed by the researchers and the results were inspected independently.
The level of agreement, especially for the manual labeling processes, was assessed by
means of the Cohen’s kappa statistics. Disagreements were jointly discussed in order
to scrupulously align the data extraction and analysis processes and ensure a high
quality level of the gathered results.

Internal validity. As repositories containing the app source code differ in structure,
it is possible to obtain false results with the inclusion of non-app related source code
(e.g., third party libraries or code developed for other platforms). This threat has been
mitigated both before and during the static code analysis. Firstly, the root app folder
containing the Android source code has been identified for each app repository,
and subsequent repository metrics have been collected only for the source code

204

5.7. Related Work

contained within this directory. Also, the SAT tool allows the selection of different
files during static code analysis, and this was exploited in the sense that .jar files and
library directories have been excluded from the analysis.

Another threat relates to the exclusion of component-related maintainability metrics
from the measurements. In order to ensure the envisioned quality of the analyzed
data, an in-depth data quality assurance process was carried out (see Section 5.3.2.2).
All instances presenting inconsistencies led to the total exclusion of the entire app
data from which the instance belonged to. In this way, we were able to strictly control
the quality of the analyzed data by including exclusively the apps of which every piece
of data adhered to our quality criteria.

External validity. In this study we consider a set of Android apps sampled from a
real-world setting. This was possible by considering exclusively Android apps which
are published on the Google Play Store. In order to further mitigate potential threats
to external validity, we ensured that the apps considered were representative of the
apps present in the Android ecosystem. From an inspection of the gathered dataset
the apps resulted to be highly heterogeneous in terms of size, development lifetime,
number of contributors etc. (see section 5.3.2.3). We hence deem our dataset as
representative of the current trends identifiable in current Android mobile apps.

This research considers Android apps published in GitHub since we require access
to their full versioning history. We do not target app binaries in the Google Play
store as it only provides the latest release of each app. Further, we are interested
in the maintainability issues introduced by developers in the Java code of their
apps; in Google Play only the binary code of the app is available, which may be
structurally different from the source code produced by developers (e.g., because of
code obfuscation). Nevertheless, due to the high heterogeneity of the dataset (see
Section 5.3.2.3) and the presence of all the considered apps in the Google Play Store,
we do not deem this as a major threat to external validity.

5.7 Related Work

The state of the art on the maintainability evolution of Android apps is quite scarce,
yet it exhibits some related work on Android source code quality and software evolu-
tion.

Hecht et al. [197] presented an approach for performing static code analysis on

205

Chapter 5. How Maintainability Issues of Android Apps Evolve

Android app’s bytecode and detecting software antipatterns. They analyzed the
evolution of the quality across 3,568 versions of 106 different Android apps obtained
from the Google Play Store. They identified relationships between antipatterns and
five different quality evolution trends. This work ties into our research with a similar
methodology and focus on quality aspects and their evolution in the context of mobile
(Android) apps. Differently, we focus on maintainability-related issues (rather than
software antipatterns) and on how development activities are related to them. Our
research scope involves the analysis of over 400 Android apps, compared to the 106
analyzed in [197].

Di Penta et al. [181] analyzed the evolution trends of statically detectable vulnera-
bilities of software projects. For the detection of vulnerable source code lines, they
have used 3 different static code analysis tools, namely Splint, Rats and Pixy. Three
different networking systems were analyzed by means of executing the static code
analysis tools on different snapshots of the system. This study is methodologically
similar to ours. However, the subjects and therefore the outcomes of their study differ
from ours, as we are specifically focussing on Android apps and their maintainability,
as opposed to vulnerabilities in source code of generic software systems.

Tufano et al. [218] investigated on when and why code smells are introduced in a
software project. Their study involves investigating the circumstances and rationales
behind bad code smells introduction, and is conducted on a change history of 200
open-source projects. Our research is specific to Android apps, and thus our results
are more fine-grained with respect to the ones obtained in [218]. The focus of our
study is on maintainability-related issues at a higher level of abstraction (i.e., units,
models, and components) w.r.t. Tufano et al. who focus on fine-grained code smells
at the level of source code.

Similar to our research, Koch [219] set out to analyze the evolution of open-source
software systems on a large scale. Utilizing the data of 8,621 projects coming from
SourceForge, the evolutionary behaviour of the systems was characterized by ap-
plying both linear and quadratic models to the systems, where the quadratic model
outperformed the linear one. Furthermore, the evolutionary behaviour has been
modelled as a function of lines of code and time since the first commit. Both Koch’s
and our study focus on large-scale, open-source systems. However, we focus on
Android apps and Android-specific development activities.

206

5.8. Conclusion and Future Work

5.8 Conclusion and Future Work

In this opening chapter of Android specific ATD, we uncovered the frequency and
evolution of the overall maintainability issues of Android apps. Our results show
that code duplication is the most recurrent maintainability issue (RQ4.1), which is
intrinsic in the Android programming model and can be mitigated by a more careful
programming style. In general, notwithstanding the issue type, maintainability issue
density grows until it stabilizes, but issues are seldom fully resolved, which represents
an important hidden lack of quality. Also, maintainability hotspots are independent
from the type of development activity (RQ4.3), which means: whatever you do, your
development style will matter.

In the closing chapter of this thesis, we further narrow our research scope by pre-
senting an approach to automatically detect ATD present in Android apps, and a
set of architectural guidelines aimed at guiding the identification and mitigation of
Android-specific ATD.

207

Identifying Architectural Tech-
nical Debt in Android Appli-

cations through Compliance
Checking

The first 90 percent of the code
accounts for the first 90 percent of the
development time. The remaining 10
percent of the code accounts for the
other 90 percent of the development
time.

Tom Cargill

This chapter is based on:

® [R. Verdecchia, Identifying Architectural Technical Debt in Android Applications through Compliance
Checking, IEEE/ACM International Conference on Mobile Software Engineering and Systems (MobileSoft),
2018 [52]

[@ R.Verdecchia, I. Malavolta, and P. Lago, Guidelines for Architecting Android Apps: A mixed-method
Empirical Study, IEEE International Conference on Software Architecture (ICSA), 2019, [53]

209

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

This chapter reports the investigation carried out to answer our last research question
included in the thesis (RQ5). Specifically, this chapter presents an approach aimed at
automatically identifying Architectural Technical Debt in Android applications. The
proposed approach leverages different techniques, ranging from architectural guide-
lines extraction, to the establishment of a reference architecture via metamodeling,
architecture reverse engineering, and compliance checking. The content of this chap-
ter documents an ongoing research endeavor, and includes (i) the outline of an ATD
identification approach tailored for the Android context, and (ii) a mixed-method
empirical study combining semi-structured interviews and multivocal literature re-
view to systematically synthetize a set of 42 evidence-based Android architectural
guidelines.

210

Contents

6.1 Introduction

6.2 Approach Overview

6.3

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

Step 1: Android architecture guideline extraction

Step 2: Android reference architecture establishment.

Step 3: Reverse engineering of implemented architecture .

Step 4: Compliance checking

Step 5: Quantitative assessment of compliance violations . .

Guidelines for architecting Androidapps

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

Study Design

Research questions

Research Method

Results

Threats to Validity

RelatedWork

Conclusions and Future Work

. 215

216

216

217

218

218

220

225

238

240

242

211

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

6.1 Introduction

In the past decade a drastic media consumption shift towards mobile devices took
place. As a result, smartphones and tablets are nowadays more used than desktop
computers [174]. It is hence not surprising that the development of mobile applica-
tions experienced an exponential growth in recent times. The shift towards mobile
development was supported by the advent of dedicated app stores, such as Google
Play and Apple App Store, where millions of mobile applications are available nowa-
days. Mobile application development results to be a highly competitive business,
which on one hand can lead to high profits, but on the other hand it is sensible to
the introduction of errors which may have a tremendous financial impact [220]. The
mobile application business model is tightly coupled with users satisfaction, who
can efficiently express their opinions through app reviews and rating systems. It is
hence paramount, in order to ensure the user satisfaction and revenue of mobile
applications, to be able to promptly and efficiently release new versions of mobile
apps in order to introduce new features, fix bugs, and in general rapidly adapt to
users’ needs.

By considering the fast pace at which mobile applications need to evolve, Architec-
tural Technical Debt (ATD) results to be a crucial yet implicit factor of success. This
led recently to the official release of a set of Android architectural components aimed
to lower the apps complexity and provide a recommended Android architecture’.

ATD is defined as sub-optimal design decisions which hinder the evolvability and
maintainability of software applications over time. By identifying, resolving, and
monitoring ATD of mobile applications, it is possible to enable them to rapidly
adapt according to users’ needs. While ATD has a substantial impact on the overall
quality of software systems, its presence is hard to uncover due to its complexity
and lack of tool support [8].

In this research we present a novel approach, based on architecture reverse engineer-
ing and compliance checking, for identifying ATD hotspots in Android applications.
The presented approach is, to the best of our knowledge, the first one conceived
specifically to identify ATD in Android applications.

Lhttps://developer.android.com/topic/libraries/architecture

212

https://developer.android.com/topic/libraries/architecture

6.2. Approach Overview

6.2 Approach Overview

In the literature several techniques aimed to identify ATD can be found [50]. Among
these, a typology of approaches focuses on identifying ATD by comparing the ar-
chitecture of the implemented software applications with a reference architecture.
Occurrences where the implemented architecture is non-compliant to the envisioned
reference architecture are regarded as potential ATD Items (ATDIs). This typology of
approaches is particularly interesting as design guidelines can be directly embedded
in the reference architecture. Building on such concept, the reference architecture
can even be composed exclusively of architectural guidelines aimed at avoiding ATD.
The approach presented in this research, conceived to identify ATDI of Android ap-
plications, is based on this intuition. The approach consists of five steps, namely:
(1) architectural guidelines extraction, (2) establishment of an Android reference
architecture, (3) reverse engineering of implemented architecture, (4) compliance
checking, and (5) quantitative assessment of compliance violations. In the remainder
of this section the steps constituting the approach, depicted in Figure 6.1, are further
detailed.

6.2.1 Step 1: Android architecture guideline extraction

The first step of the approach consists in the identification of architectural guidelines
that Android applications should adhere to in order not to incur in potential ATD.
The data sources adopted for the extraction of architectural guidelines to construct
the Android reference architecture are complementary and heterogeneous, in order
to be as encompassing as possible, and consist of:

o Official Android Guidelines: Official Android documentation available online,
such as the Guide to App Architecture?;

* Academic researches: Peer-reviewed research papers considering architectural
guidelines of Android applications, e.g. the study of Bagheri et al. [221];

« Grey literature: Non-academic writings on the topic available online, e.g. articles
featured in Android related websites and blogs;

» Developer interviews: Semi-structured interviews with Android developers to
validate and complement the data extracted from the above mentioned data sources.

2 https://developer.android.com/topic/libraries/architecture/guide.html; Accessed 27 February 2018.

213

https://developer.android.com/topic/libraries/architecture/guide.html

vIic

Official
Android
Documentation
Step 1: Android architecture
Academic guideline extraction
Researches
Android Validation and
Guideline | quality
Extraction assessment
Grey
Literature
Developer
interviews

Android ure

Step 2:
Reference
Architecture
Establishment

guidelines textual
transcript

Architecture

Android
Reference

Android
Reference
Model

oCL

Constraints

Android

Step 3:
Implemented

e
reverse

ing

APK

o
architecture

Step 4:
Compliance
Checking

Step 5:
Quantitative
Assessment

Non-adherence
items

Figure 6.1 — Android ATD hotspot identification approach overview

Android
ATD
Hotspots

Suppay) souerduio) ysnoxyp

suonedrddy prorpuy ur 1qa([eITUYI3], [eINIINIYIIY SUIAJnuap] °g 11dey)

6.2. Approach Overview

A quality assessment is conducted on the extracted architectural guidelines in order
to ensure the soundness of the findings, remove possible duplicates, etc.

The output of this step is a textual transcript of the identified Android architectural
guidelines.

6.2.2 Step 2: Android reference architecture establishment

This step consists of the formalization of the textual transcript produced in Step 1.
This process is required in order to effectively format the data for the subsequent
automated analysis described in Step 4. Specifically, this step consists in developing
a software model which conveys the information of the architectural guidelines
extracted in Step 1. The resulting model is referred to as Android reference model. The
reference model conforms to a chosen architecture description language (ADL). In
particular, the Acme ADL? results suited for this process.

In addition to the Android reference model, in order to complement it with the
information which cannot be exhaustively represented in form of a software model,
a set of constraints expressed through the Object Constraint Language (OCL) are
defined. The combination of the Android reference model and OCL constraints is
what is jointly referred to in this document as Android reference architecture.

The output of this step is an Android reference architecture composed of Android
architectural guidelines in form of a software model and complementary OCL con-
straints.

6.2.3 Step 3: Reverse engineering of implemented architecture

This step consists in the retrieval of the architecture of an implemented Android
application through the analysis of its source code or APK. Specifically, this step is
constituted by the automated reverse engineering of the most prominent Android
architectural components (i.e. Activities, Services, Content providers, and Broadcast
receivers) of an Android application and the relations between such building blocks
in terms of connectors and ports. This process was first proposed by Bagheri et al.
[221], who also provided empirical evidence of its effectiveness. Due to the poten-
tial complexity of this process, this step has to be carried out by utilizing dedicated

3http://www.cs.cmu.edu/ acme/

215

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

architecture reverse engineering tools, e.g. the ACME-Generator tool* available on-
line. Note that to ease the compliance checking process (Step 4) both the ANdroid
reference architecture and the implemented architecture must either (i) adhere to
the same metamodel or (ii) be linked by a suitable model-to-model transformation
being able to bridge models conforming to them.

The output of this step is the reverse engineered architecture of an implemented
Android application.

6.2.4 Step 4: Compliance checking

Subsequent to the establishment of the Android reference architecture and the im-
plemented architecture, a compliance checking process is carried out. During this
process, items of non-adherence of the implemented architecture w.r.t. the An-
droid reference architecture are identified and stored for subsequent analysis. Due
to its complexity, this step has to be carried out through the aid of tools, e.g. the
model comparison tool EMFCompare®. In order to carry out a sound compliance
checking process and reduce the number of potential false positives, the compliance
checking has to consider a semantic comparison logic. This can be achieved by
utilizing the extension and customization mechanisms offered by the majority of
modern model comparison tools.

The output of this step is the set of the non-adherence items of the implemented
architecture w.r.t. the Android reference architecture.

6.2.5 Step 5: Quantitative assessment of compliance violations

Once the set of non-adherence items is computed, it is possible to analyze the gath-
ered data to identify which architectural elements of the implemented architecture
violate the highest number of Android architectural guidelines. Such identified items,
referred to as Android ATD hotspots, are stored for a final manual inspection to
prioritize them, select which require refactoring, etc.

The output of this step is the set of Android ATD hotspots, i.e. the components of
the implemented architecture which contain the highest number of non-adherence
items w.r.t. the Android reference architecture.

4https://github.com/arsadeghi/ACME- Generator. Accessed 27th February 2018.
Shttps:/ /www.eclipse.org/emf/compare/. Accessed 27th February 2018.

216

https://github.com/arsadeghi/ACME-Generator
https://www.eclipse.org/emf/compare/

6.3. Guidelines for architecting Android apps

6.3 Guidelines for architecting Android apps

Android is accounting for more than 85.9% of global smartphone sales worldwide
[222], leading thousands of developers to choose Android as their first go-to develop-
ment platform [223]. In the last quarter of 2018 more than 2.6 million Android apps
were available in the Google Play, the official Android app store [224].

For surviving in such a highly competitive market, it is fundamental for app devel-
opers to deliver apps yielding high quality in terms of e.g., performance, energy
consumption, user experience. Developers are investing great efforts to deliver apps
of high quality and with short release times. In this context, a well-architected An-
droid app is beneficial for developers in terms of maintainability, evolvability, bug
fixing (e.g., resource leaks), testability, performance, etc. The most recent releases
of the Android platform are putting more and more emphasis on the architecture
of the apps, with a special focus on architecturally-relevant components®, such as
those belonging to Android Jetpack’, the recently introduced collection of Android
software components. However, how to properly architect Android apps is still highly
debated and subject to conflicting opinions, usually influenced by technological hypes
rather than objective evidence.

The goal of this research is twofold: (i) to characterize the state of the practice on
architecting Android apps and (ii) to provide a set of evidence-based guidelines for
supporting developers while architecting Android apps. Given the relatively low ma-
turity of the subject and its tight connection with industry, we apply a mixed-method
empirical research design that combines (i) semi-structured interviews with Android
practitioners in the field, and (ii) a systematic analysis of both the grey (e.g., websites,
on-line blogs, etc.) and white literature (i.e., academic studies) on the architecture
of Android apps. Specifically, starting from 5 interview transcripts and an initial set
of 306 potentially-relevant primary studies, through a rigorously-defined and repli-
cable process, we select 44 data points, i.e., either interview transcripts or primary
studies belonging to the grey/white literature. We analyze each data point in order to
characterize how developers architect Android apps, what architectural patterns and
practices Android apps are based on, and their potential impact on quality attributes
such as maintainability. Finally, a set of 42 guidelines for architecting Android apps is
systematically synthesized from the obtained practices. The emerging guidelines are
organized around 4 themes including the most adopted architectural patterns and

6https://developer.android.com/topic/libraries/architecture
"https:/ /developer.android.com/jetpack

217

https://developer.android.com/topic/libraries/architecture
https://developer.android.com/jetpack

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

principles when developing Android apps (e.g., Model-View-ViewModel®). The main
contributions of this study are:

¢ interviews of 5 practitioners that provide qualitative information about archi-
tecting Android apps;

* asystematic analysis of the grey and white literature about architecting Android
apps;

* aset of 42 evidence-based guidelines for architecting Android apps;

¢ the replication package of the study.

The target audience of this chapter includes both Android developers and researchers.
Specifically, this study benefits (i) developers by providing evidence-based guide-
lines for taking action towards improving the architecture of their Android apps, and
(ii) researchers by objectively characterizing the state of the art and practice about
architecting Android apps.

The remainder of the chapter is organized as follows. The design of this study is
presented in Section 6.3.1, followed by the reporting and discussion of the main
results in Section 6.3.4. Threats to validity and related work are described in Sections
6.3.5 and 6.3.6, respectively. Section 6.3.7 closes the chapter.

6.3.1 Study Design

In this section we report the research questions (Section 6.3.2) and the steps of our
mixed-method study (Section 6.3.3).

6.3.2 Research questions

RQ5.1: Which are the general characteristics of the architecture of Android apps?
This question can be refined into:

RQ5.1.1: Which architectural patterns are considered for architecting Android apps?
This research question aims at understanding which architectural styles/patterns®
are considered for architecting Android apps. This provides us with a better under-
standing of current Android architecture practices, and sets the context for the next

8https:/ /developer.android.com/topic/libraries/architecture/viewmodel
9For the sake of space, from this point onwards, “architectural style” and “architectural pattern” will be
jointly referred to as “architectural pattern”.

218

https://developer.android.com/topic/libraries/architecture/viewmodel

61¢

Step 1: Mixed-Method Study (MMS) Planning

Protocol
Definition T

MMS RQs
Goal Definition Definition
[

Step 2b: Practitioners Interviews

Contact >
Potential ICionc!uct -
Interviewees nterviews

Interview
Results

wnte ()

Literature | - Google

Roview {_Scholar Initial Search
P oogle

Literature | g2

Review Engine

Step 2a: Multivocal Literature Review (MLR)

Application of
Selection Criteria

participate in
Snowballing '-
b4 < Primary A Android
Studies | - Developers
(MLR)

-

.

Step 5: Reporting W
MMS
Reporting
MMS | G B I

Step 4: Data Synthesis W (
Data

Data

Combined Study
Results
(Answers to RQs)

Study

Synthesis

Extraction

Merge

Data Points

Figure 6.2 - Mixed-Method Study (MMS): process overview

sdde proipuy Sunsaiyore 10§ SaUIEPIND ‘g9

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

research questions.

RQ5.1.2: Which libraries are referenced while considering the architecture of Android
apps? With this question we aim at identifying the programming libraries regarded
as most influential while architecting Android apps. This provides further data on
the technologies considered in order to support Android architecting processes.

RQ5.2: How to guide developers when architecting Android apps? This research
question constitutes the core of the study. By answering it, we aim at synthesizing
a set of architectural guidelines for architecting Android apps. This provides practi-
tioners with actionable guidance when architecting their Android apps, and supports
researchers in future investigations on Android architecture.

RQ5.3: Which quality requirements are considered when developing and reasoning
about the architecture of Android apps? Today developing apps of high quality is
fundamental for surviving in the Android market. This research question aims to
understand which quality requirements (QRs [225], e.g., performance, usability, main-
tainability) are taken into account when dealing with the architecture of Android
apps. This provides a good understanding of which QRs are potentially impacted the
most by architectural decisions.

6.3.3 Research Method

In order to answer the research questions, we adopt a mixed-method approach
consisting of a multivocal literature review [226] integrated with the results of semi-
structured interviews with Android practitioners. An overview of the entire process
is shown in Figure 6.2, while Figure 6.3 shows the number of selected data points in
each step. The remainder of this section describes the key individual steps, Step 2a
through 4.

6.3.3.1 Multivocal Literature Review (MLR)

The literature review is performed by rigorously following well established guidelines
for conducting software engineering literature reviews [74, 227]. The guidelines
are complemented by additional ones specifically targeted for the inclusion of grey
literature in multivocal studies [228]. To have full control over the number and quality
of the literature considered, the literature review is designed as a multi-stage process,
reported below.

220

6.3. Guidelines for architecting Android apps

['\

Initial Application of N Data points
search selection criteria Snowballing merge
o : : 5
Google é 06 . 6 7 :
Scholar ' ' H
H 116 '
___#100 . 5
%0 e . |
e ¢ ¢ 5
Android Contact potential Conduct :
Developers interviewees interviews

Figure 6.3 — Steps of the Mixed-Method Study (MMS)

Initial Search. In order to identify the potentially relevant white literature (WL)
studies, a research query is executed on Google Scholar. We opt for such digital
library as (i) its adoption constitutes a sound choice to determine the initial set of
literature for snowballing processes [229], (ii) from a preliminary execution of the
search query it results to be more inclusive w.r.t. Scopus and IEEE Explore, and (iii)
the results of the query can be processed automatically via tool-support.

Listing 6.1 shows the search string we use. The query is purposely designed to be
generic, in order to be as encompassing as possible while selecting a significant set of
potentially relevant studies. The execution of the query for the WL returns 206 hits.
Regarding the initial search of grey literature (GL), the query reported in Listing 6.1 is
executed on the regular Google Search Engine by omitting Google Scholar specific
syntax (i.e., the “intitle” keywords). The search engine is selected in accordance to the
recommendations for including GL in software engineering multivocal reviews [228].
Due to the high volume of returned results, we limit the search to the top 100 results
as stopping rule. This number proves also to be the theoretical saturation point [228]
of the returned results.

221

1

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

(intitle:architecture (*@\textbf{OR}@x*) intitle:
architectural (*@\textbf{0OR}@*) intitle:architect (*Q@\
textbf {0OR}@*) intitle:architecting) (*@\textbf{AND}@*) (
intitle:android (*@\textbf{OR}@*) intitle:"mobile app")

Listing 6.1 — Search query used for automated search of white literature

Application of Selection Criteria. The search results are then filtered in order to
obtain an initial set of primary studies by applying a set of well-defined inclusion
and exclusion criteria. In order to systematically control the quality of the primary
studies, three sets of criteria are defined: one general (i.e., applying for both WL and
GL), one specific to WL, and one specific to GL. A paper is included only if it satisfies
all inclusion criteria and none of the exclusion ones.

In order to further ensure the quality of GL primary studies, a subset of 5 quality-
evaluation criteria presented by Garousi et al. is adopted [228]. A 3-point Likert
scale (yes=1, partly=0.5, and no=0) is used to assign the quality scores. A GL study
is considered of sufficient quality if it scores at least 2 out of 5 total points. Table 6.1
reports the considered selection criteria.

As recommended in [73], two researchers inspect a random sample of the studies. For
assessing the objectivity of this phase the inter-researcher agreement is measured,
achieving a substantial agreement Cohen Kappa value of 0.79, falling slightly below
the one recommended in [230], equal to 0.80.

The application of the criteria terminates with the inclusion of 6 WL primary studies
and 16 GL primary studies.

Snowballing Process. Once the preliminary set of primary studies is defined, we con-
duct a snowballing process. Regarding WL, we adopt a standard iterative backward
and forward snowballing process [229]. During this process, 629 potential relevant
studies are analyzed, leading to the inclusion of 1 additional primary study. For
the GL, due to the high volume of primary studies to be considered, we limit the
snowballing to the links referenced in the GL primary studies (i.e., we do not consider
backward links), and stop the process after the first iteration. A totality of 16 new
primary studies is included through this snowballing process.

222

6.3. Guidelines for architecting Android apps

Table 6.1 — Selection criteria for the multivocal literature review

Type

Description

General-Inclusion
General-Inclusion
General-Exclusion
General-Exclusion
General-Exclusion
General-Exclusion

Studies focusing / software architecture

Studies focusing on design or development of Android apps
Studies not published in English

Duplicate or extensions of already included studies

Studies which are not available

Studies not focusing on native Android applications, e.g.,
Unity-based videogames, web-based apps

WL-Exclusion
WL-Exclusion
WL-Exclusion

Secondary or tertiary studies
Studies in the form of editorials, tutorials, books, etc.
Studies which have not been peer reviewed

GL-Exclusion

GL-Exclusion
GL-Exclusion
GL-Exclusion

GL-Exclusion
GL-Exclusion
GL-Exclusion

Studies reporting exclusively the basic principles about the
Android platform and its architecture

Studies reporting exclusively abstract best practices
Studies reporting only trivial Android implementations
Studies reporting an implementation without a discussion
of its benefits and/or drawbacks

Studies written for promotional purposes

White literature

Videos, webinars, etc.

GL-Quality
GL-Quality
GL-Quality
GL-Quality
GL-Quality

Is the publishing organization or the author reputable?
Has the author published other studies in the field?
Does the study add value to the research?

Is the presentation of the study of high quality?

Is the study supported by evidence, e.g., examples/data?

223

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

6.3.3.2 Practitioners Interviews

In order to complement the data extracted from the MLR, we conduct semi-structured
interviews with Android practitioners. This step consists in designing a survey based
on our research questions, contacting potential interviewees, conducting the semi-
structured interviews, and post-processing the interview results. Interviewees are
selected via convenience sampling by exploiting our collaboration network. Develop-
ers are required to be affiliated to different companies, belong to distinct business
domains, and possess at least 5 years of Android development experience. Out of 18
contacted practitioners, 5 result to be available for the interview. Interviews range
between 30 and 60 minutes.

6.3.3.3 Data Processing and Extraction

After the collection of the WL/GL primary studies and survey results, referred jointly
as data points, the resulting 44 data points are uniformed and merged into a sin-
gle pool. Subsequently, we extract from the data points the information necessary
in order to answer our research questions. The data necessary to answer RQ5.1 is
extracted by inspecting the data points, and subsequently identifying which architec-
tural patterns and libraries are considered. In order to extract architectural practices
(RQ5.2) we conduct iterative content analysis sessions [99] involving two authors of
the paper. Finally, to answer RQ5.3, the data points are inspected to extract which
QRs are deemed to be impacted by architectural decisions. The entirety of the data ex-
tracted is mapped to the originating data points for the sake of backward traceability
and replication purposes.

6.3.3.4 Data Synthesis

Finally, the extracted data is processed and synthesized in order to answer our re-
search questions. In order to answer RQ5.1 and RQ5.3 the extracted data can be
processed quantitatively. Differently, in order to answer RQ5.2, we carry out a key-
wording process [80]. This process consists of grouping the architectural practices
extracted from the data points according to their semantic similarity. This is achieved
by labelling the single practices with representative keywords. The process is iter-
ated by refining the keywords, till the grouped practices can be merged into a single
guideline. Practices mapped to a guideline in this fashion are referred to as sup-
porting practices. The first round of keywording leads to the identification of the
general themes considered, while the subsequent ones to the formulation of the

224

6.3. Guidelines for architecting Android apps

guidelines. Figure 6.4 summarizes the relationships between the elements of the
resulting catalogue of guidelines.

For more details on the research method, research execution, and extracted data,
we refer the reader to the replication package of this study'®. The package is made
available with the aim of supporting independent verification and replication. It
contains (i) the rigorous research protocol defined a priori which we follow, (ii) the
entirety of the search and selection execution data, (iii) the raw data extracted from
the data points, and (iv) the documentation of data analysis processes accompanied
by the relative results.

Catalogue
extracted from

1 | | | |
Data [Android] [MVP] [MVVM] [Arcﬁi'feac’:ure]

points

<

organizes

supports

Figure 6.4 — Relationship between the elements of the catalogue of guidelines

6.3.4 Results

6.3.4.1 RQ5.1: Characteristics of Architecting Android Apps

Android architectural patterns (RQ5.1.1) The inspection of the extracted data lead
to the identification of 7 architectural patterns considered when developing Android
apps.

Als)Ighown in Figure 6.5, the most recurrent pattern results to be Model-View-Presenter
(MVP), which is reported in 18 data points. Model-View-ViewModel (MVVM) results
the second most frequent pattern. This could be associated to the recent introduc-
tion by Google of the ViewModel architectural component!'!. Due to its potentially
drastic impact on Android architecture development, we expect the MVVM pattern to
experience a fast growing trend of adoption in the coming years. Clean architecture
principles [231] appear also to be frequently considered in the context of architect-

0https://github.com/AndroidGuidelines/ReplicationPackage
Whttps://android- developers.googleblog.com/2017/05/android- and- architecture.html

225

https://android-developers.googleblog.com/2017/05/android-and-architecture.html

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

Number of data points

C C
47% @@ YA 1%
Architectural Pattern

Figure 6.5 - Overview of architectural pattern recurrence

ing Android apps. Some data points also report ad-hoc custom solutions, such as
MVP extended through manager classes, message-driven architectures, and archi-
tectures heavily relying on RxJava. Nevertheless, such architectural solutions appear
to be fragmented and slightly less popular. Other architectural patterns, i.e.,, Model-
View-Controller (MVC), View-Interactor-Presenter-Entity-Router (VIPER) [232], and
hexagonal architecture [233], result to be only scarcely considered.

Findings for RQ5.1.1 (Android Architecture patterns): MVP is the most con-
sidered pattern, followed by MVVM. Clean architecture principles applied to
Android apps are also frequently discussed. Heterogeneous ad-hoc solutions
are also considered.

Libraries considered while architecting apps (RQ5.1.2)

An overview of the most recurrent libraries referenced when discussing Android

chitecture are repqrted jn Figure 6.6.
%fot surplrlirseing y,Pfg((}avzgéI}s tHe most mentioned library. RxJava enables a crucial

programming paradigm for mobile apps, namely reactive programming. By adopt-
ing reactive programming, it is possible to efficiently deal with concurrency and
asynchronous tasks, which are inherent to the mobile context. The second most
recurrent library is Dagger'3, a framework maintained by Google which implements

12https://github.com/ReactiveX/RxJava
Bhttps://google.github.io/dagger/

226

https://github.com/ReactiveX/RxJava
https://google.github.io/dagger/

6.3. Guidelines for architecting Android apps

] Il Generic

g 17 Android specific

a

© 15

3 10 9

Y

o s 4 3

é 1 1 1 1 1 1 1 1 1

> Reys Oy Sorn Rep. Rop Mo, 705, Rop Rep,. Mo, Moo, /. Esp. Co, Ao

> Ny e, e, o %5 o e 00472‘ O, ‘606\ {ro Y Oy, O‘%J/ " 'Of@s ’)7,77 fo/z.
r Tk R Dy Ye Mt S0 "y, 4;:@

Library ©

Figure 6.6 — Overview of library recurrence

the dependency injection pattern. This library constitutes a popular choice in or-
der to manage dependencies, and potentially avoids unnecessary boilerplate code.
JetPack, a recently released official Android library focusing on architectural compo-
nents, is less popular. While the architectural relevance of such library in the Android
ecosystem is clear, the lower occurrence of such library can be attributed to its re-
cent release, and hence to the time required for its adoption. The other referenced
libraries, like Retrofit, Robolectric, Mockito, are less recurrent, potentially due to
their lower architectural relevance, hence pointing to a well scoped selection of data
points. Interestingly, only 8 out of the 15 libraries reported are explicitly conceived
for Android (see Figure 6.6). This shows that the Android architecture is “open", i.e.,
influenced by many generic libraries. In addition, of the Android specific libraries,
only a few focus on architecture (JetPack, Moxy'4, and Mosby'®).

Findings for RQ5.1.2 (Architecturally relevant libraries): RxJava is the most
referenced library, followed by Dagger, JetPack, and Retrofit. Approximately
half libraries are Android-specific, while only few focus specifically on An-
droid architecture.

14 https://github.com/Arello- Mobile/Moxy
5https://github.com/sockeqwe/mosby

227

https://github.com/Arello-Mobile/Moxy
https://github.com/sockeqwe/mosby

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

6.3.4.2 RQ5.2: Android Architecture Guidelines

In order to answer RQ5.2, a total of 212 architectural practices are extracted from the
selected data points. The first round of keywording leads to the classification of the
practices into four emergent themes: general Android architecture, MVP, MVVM, and
Clean Architecture. By applying recursively the keywording process, the practices are
further clustered, till the synthesis of 42 architectural guidelines, reported in Table 6.2.
As proxy for maturity of the guidelines, we utilize the number of supporting practices
(SP) of each guideline. For the sake of conciseness, in the remainder of this section,
we discuss the top-5 guidelines for each theme. The complete description of the
entirety of the guidelines, supported by concrete source code examples, is available
at a dedicated website available online!®.

General Android Architecture Guidelines

The first and most recurrent theme regards generic architectural practices for An-
droid, i.e., not specific to any particular architectural pattern. In total, 120 practices
are collected and synthesized into the following 15 general Android architecture
guidelines reported in Table 6.2 and further detailed below.

A-1: “Decouple components and explicitly inject/manage the dependencies among
them’”.

While not strictly necessary, utilizing a dependency injection framework can dras-
tically simplify the management of dependencies between Android architectural
components. This supports a clean decoupling of architectural components and
avoids unnecessary boilerplate for connecting them. Doing so not only improves the
maintainability of the app, but also improves its testability by providing the possibility
to inject mock implementations. The Dagger framework is commonly recommended
to inject dependencies and solve problems afflicting reflection-based solutions.

A-2: “Design components as independent entities as possible, build them around the
features of the app and make them Android-independent”.

As also remarked by two interviewees, a recurrent problem arises when common
functionalities are not provided in base classes. This often leads to duplicated code,
reducing the maintainability and testability of the app. Ideally, components should be
independent from each other and their business logic should be clear and explicitly
separated. By quoting one of the data points “your architecture should scream
the purpose of the app". Decoupled components make it easier to focus on app
functionalities and their issues, without dealing with bloatware. Additionally, this

18https://androidarchitectureguidelines.github.io/

228

https://androidarchitectureguidelines.github.io/

6.3. Guidelines for architecting Android apps

Table 6.2 — Generic guidelines for architecting Android apps

Generic Android Architectural Guidelines

ID #SP Architectural guideline

A-1 18 Decouple components and explicitly inject/manage the dependencies among
them.

A-2 17 Design components to be as independent as possible, build them around the
features of the app and make them Android-independent.

A-3 16 Counter the tendency of Activities to grow too big in size due to functionality/re-
sponsibility bloat.

A-4 14 Strive towards separation of concerns in your architecture, where each component
has well defined responsibility boundaries, a purpose, (set of) functionality, and
configuration.

A-5 10 When starting a new project, carefully select a fitting architectural pattern to adhere
to.

A-6 8 Organize your Java/Kotlin packages and files either by layer or by app feature.

A-7 7 Take full advantage of libraries. Do not try to reinvent the wheel and loose time by

implementing boilerplate code. Focus on what makes your app stand out from the
rest and delegate what is left to libraries.

A-8 7 Locally cache data for supporting offline-first experience.

A-9 6 Use exclusively interfaces to let app modules communicate. This protects the
architectural structure and helps defining a clear responsibility of modules.

A-10 5 Avoid nested callbacks, as they could lead to a “callback hell”. Approximatively,
more than 2 levels of callbacks are considered to reduce maintainability and un-
derstandability. This problem is commonly fixed by taking advantage of the RxJava
library.

A-11 4 Employ well-defined and accepted coding standards, as they improve both code
understandability and maintainability.

A-12 3 Use a dedicated module to persist as much relevant data as possible. This data
source should be the single source of truth driving the UL

A-13 3 Take into consideration the lifecycle of Android components (e.g., Activities and
Services) — also with respect to other components — and design them as short-lived

entities.

A-14 1 Have special care in designing background tasks, especially by considering the
apps’ lifecycle.

A-15 1 Use permissions consistently. Every component of an app that has a permission

must be declared also at the app level.

ID = guideline identifier, #SP = number of supporting practices.

229

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

enables a higher testability of the core logic of the app by making components unit-
testable (ideally without requiring an emulator). Finally, by decoupling the business
logic from frameworks, more emphasis is put on the business logic, making an app
more testable, maintainable, and of low technical debt.

A-3:“Counter the tendency of Activities to grow too big in size due to functionality/re-
sponsibility bloat”. Android Activitiesshould ideally contain exclusively logic handling
the user interface (UI) and operating system interactions. Nevertheless, a common
architectural issue consists of delegating too many functionalities and responsibili-
ties to a single Activity. This leads to Activities slowly becoming god-classes. As the
Android framework does not support the reuse of methods implemented in activities,
code tends to be directly copied into other ones, increasing code duplication and
impacting negatively the app’s maintainability. Additionally, testing might become
a challenging task, as complex business logic could reside in Activities, which by
themselves result arduous to unit test. Finally, as activities are kept in memory at
runtime, “god-activities” can lead to the deterioration of apps’ performance.

A-4: “Strive towards separation of concerns in your architecture, where each compo-
nent has well defined responsibility boundaries, a purpose, (set of) functionality, and
configuration”.

Architectural components of an app should have a single, well defined, responsibility.
As a component grows bigger, it should be split up. By following the single responsi-
bility principle, the app architecture naturally supports the structure of developer
teams and development stages. Additionally, monoliths are detected in the early
stages and modules become testable in isolation. Finally, if the app is built using Gra-
dle, modularization can improve the performance of the build process and ease the
development of Instant apps!”. It is important to notice that, while modularization
may imply little effort if considered early in the project, it might become an extremely
expensive process in later development stages.

A-5: “When starting a new project, carefully select a fitting architectural pattern to
adhere to”.

Picking the right architectural pattern (e.g., MVP or MVVM) for the context and
business goals of the app is a crucial decision. By adhering to an architectural pat-
ter selected a priori, separating responsibilities into components becomes a more
straightforward process, and the growth of architectural technical debt is hindered.
It is important to note that, when a certain level of adaptability/maintainability
is not required, the selection of an ill-suited architectural pattern might lead to

17https://developer.android.com/topic/google- play-instant

230

https://developer.android.com/topic/google-play-instant

6.3. Guidelines for architecting Android apps

over-engineering. Choosing the architectural pattern to adopt is hence a non-trivial
decision which should be taken by considering the context of apps, and their busi-
ness/organizational goals.

MVP-specific Android Architecture Guidelines
The second most considered theme regards practices related to the MVP architectural

Table 6.3 —- MVP-specific guidelines for architecting Android apps

MVP-specific Architectural guidelines
ID #SP Architectural guideline

MVP-1 9 Provide Views with data which is ready to be displayed.

MVP-2 5 Presenters should be Android- and framework-independent.

MVP-3 5 Access (and cache) the data provided by Models via app-scoped dedicated compo-
nents.

MVP-4 4 Clearly define contracts between Views and Presenters.

MVP-5 4 The lifecycle of Presenters should follow the lifecycle of the Views, but not by
replicating the complexity of the lifecycles of Android components.

MVP-6 3 Avoid to delegate too many responsibilities to Presenters, as they have the tendency
to become bloat classes.

MVP-7 2 Make Presenters dependent on Views, and not Activities.

MVP-8 2 Views are passive and should always manage and expose only their state.

MVP-9 2 Strive towards putting as much of the app’s business logic as possible in Presenters.

MVP-10 2 Inject dependencies to Presenters into the Views when instantiating the Presenters,
as this reduces coupling issues and null checks.

MVP-11 1 If an app has multiple Presenters, do not let them communicate with each other.

MVP-12 1 If necessary, retain fragments for avoiding memory leaks due to configuration
changes in the activities.

ID = guideline identifier, #SP = number of supporting practices.

pattern. In total, 40 practices are collected and synthesized in the 12 MVP-specific
guidelines reported in Table 6.3 and further detailed below.

MVP-1: “Provide Views with data which is ready to be displayed”.

The view layer of Android apps tends to become bloated with responsibilities, and
hence becomes harder to maintain. In order to alleviate such problem, Activities and
Fragments can be provided with preprocessed data ready to be displayed. This can be
achieved by delegating data-processing tasks to one or more dedicated components.
In such manner, Activities and Fragmentsare relieved from the task of transforming
and filtering domain-specific data, potentially improving the testability and usability
of the app.

231

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

MVP-2: “Presenters should be Android- and framework-independent.”.

To abstract Presenter components from the implementation details, Presenters
should ideally avoid dependencies to the Android framework. This also entails
not creating a lifecycle in Presenters, as it may hinder their maintainability and
evolvability. In order to access app resources and preferences, View and Model com-
ponents can be used instead, respectively. Additionally, by developing Presenters
as only dependent on Java, the testability of Presenters drastically improves, as now
non-instrumented unit-test cases can be written for such components.

MVP-3: “Access (and cache) the data provided by Models via app-scoped dedicated
components”.

When developing an Android app, a common issue which might emerge is related
to restoring the state of Views. This issue can be solved by adapting slightly the
architecture of apps. Specifically a data manager component (e.g., a data store or
Jetpack Repository) can be introduced. This component is responsible for data related
tasks such as fetching data from the network, caching results or returning already
cached data. By scoping such component at the app level and not at the one of single
Activities, issues relative to restoring View states, e.g., in the occurrence of a screen
orientation change, are solved through an architecturally maintainable solution.

MVP-4: “Clearly define contracts between the Views and the Presenters”.

Before starting to develop a new app feature, a good architectural practice consists
in writing a contract documenting the communication between the View and the
Presenter. The contract should document for each event in the View which is the
corresponding action in the Presenter. By implementing contract interface classes,
the source code of apps become more understandable, as the relation between the
View and the Presenter is explicitly documented.

MVP-5: “The lifecycle of Presenters should follow the lifecycle of the Views, but not by
replicating the complexity of the lifecycles of Android components”.

By having callbacks related to the Activity lifecycle in Presenters, Presenters become
tightly coupled to Activities lifecycle. This can have a negative impact in terms of
maintainability. From an architectural perspective, Presenters should not be respon-
sible for data-related tasks. It is hence advised not to retain Presenters. An alternative
solution would be to use a caching mechanism to retain data, keep Presenters state-
less, and destroy Presenters when their corresponding Views are destroyed.

MVVM-specific Android Architecture Guidelines
Another recurrent theme identified in the practices regards the MVVM pattern. In
total, 24 practices are collected and synthesized in the 10 MVP-specific guidelines

232

6.3. Guidelines for architecting Android apps

Table 6.4 - MVVM-specific guidelines for architecting Android apps

MVVM-specific Architectural Guidelines

ID #SP Architectural guideline

MVVM-1 5 Models, Views, and ViewModels should exclusively expose their state instead of
state and data separately.

MVVM-2 4 The app should possess a single source of truth of data.

MVVM-3 3 Models should be evolvable/testable independently from the rest of the app.

MVVM-4 3 ViewModels should not refer to View-specific components.

MVVM-5 2 Views should always know about changes after ViewModels, no matter how
trivial an operation may be.

MVVM-6 2 Adopt one Model for each feature of the app.

MVVM-7 2 Keep ViewModels as simple as possible. When needed, transfer responsibility
to other layers, e.g., Models or other components such as data transformers,
components factories, etc.

MVVM-8 1 The state of the app should be defined in the Models only, whereas Views and
ViewModels should be stateless.

MVVM-9 1 The data produced by the Models should be reliable and of high quality.

MVVM-10 1 Networking or data access functionalities should be performed exclusively by

Models.

ID = guideline identifier, #SP = number of supporting practices.

233

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

reported in Table 6.4 and further detailed below.

MVVM-1: “Models, Views, and ViewModels should exclusively expose their state instead
of events or data separately”.

For example, to ensure that Views display up-to-date content, it is recommended that
ViewModels expose states rather than just events. This can be achieved by bundling
together the data that needs to be displayed. In such way, when one of the fields to
be displayed changes, a new state is emitted and the View is updated. This entails
that each user interaction involves an action in the ViewModel, enabling a clean
separation of concerns between MVVM components.

MVVM-2: “The app should possess a single source of truth of data’.

In the context of mobile applications, consistency of data can become an issue. While
caching mechanisms allow to save energy and bandwidth, multiple data sources can
create inconsistencies and even conflicting Views. In order to avoid such issues, it
is recommended to designate a dedicated component as single source of truth for
the entire app. Specifically, in the context of MVVM, the Room persistence library'®
is an official architectural component of Android which is specifically tailored for
such task.

MVVM-3: “Models should be evolvable/testable independently from the rest of the app’.
Well-designed ViewModels should completely decouple Views from Model classes.
In such way, by strictly adhering to the MVVM pattern, Models and Views can evolve
independently and be tested with ease. Additionally, by applying the inversion of con-
trol principle and implementing ViewModels decoupled from the Android framework,
it is possible to test ViewModels via unit tests. In contrast, if the binding between the
MVVM components is too complex and intertwined, testing and debugging Android
apps can become a cumbersome challenge.

MVVM-4: “ViewModels should not refer to View-specific components”.

Passing context to ViewModel instances can result in a dangerous practice. In fact by
storing the reference to an Activity in a ViewModel, once the Activity gets destroyed
(e.g., due to a screen rotation), a memory leak could occur. By quoting a Google
Android Developer Advocate: “The consumer of the data should know about the pro-
ducer, but the producer - the ViewModel - doesn’t know, and doesn'’t care, who consumes
the data."*?. In order to adhere to this guideline, the LiveData?? architectural class

18https://developer.android.com/jetpack/arch/room

Dhttps://medium.com/upday-devs/android-architecture-patterns-part-3-model-view-viewmodel-
e7eeee76b73b

20nttps://developer.android.com/topic/libraries/architecture/livedata

234

https://developer.android.com/jetpack/arch/room
https://developer.android.com/topic/libraries/architecture/livedata

6.3. Guidelines for architecting Android apps

provided by the Jetpack library can be used, so that Activities can simply observe the
changes of the ViewModel’s data.

MVVM-5: “Views should always know about changes after ViewModels, no matter how
trivial an operation may be”.

Adhering to this guideline implies that all the logic in the Views should be moved
to the ViewModels. While the purpose of ViewModels is to pre-process data to be
ready to use by Views, it might be tempting to implement minor operations in Views.
Nevertheless, adhering to this guideline guarantees a higher level of consistency and
reliability of all the components which are based on the ViewModels.

Clean Architecture Android Guidelines

Table 6.5 — Clean architecture guidelines for architecting Android apps

Clean Architecture Architectural Guidelines
ID #SP Architectural guideline

CLEAN-1 13 Business logic should be completely decoupled from the Android framework.

CLEAN-2 5 The outer architectural layer should contain the entirety of the app’s UI compo-
nents.

CLEAN-3 4 The framework and devices layer should include the entirety of the app compo-
nents which depend on Android.

CLEAN-4 4 Each architectural layer should possess its own data model.

CLEAN-5 2 Keep the Ul thread as lightweight and isolated as possible.

ID = guideline identifier, #SP = number of supporting practices.

While rather a set of architectural practices than a pattern, clean architecture results
to be a common theme in Android architecture literature. In total, 28 practices on
this theme are collected and synthesized into the 5 architectural guidelines reported
in Table 6.5 and further detailed below.

CLEAN-1: “Business logic should be completely decoupled from the Android frame-
work”.

By adhering to the clean architecture principles, the innermost layers of an app (i.e.,
where all the business logic of the app resides) should be “frontend agnostic". This
means that this layers are completely decoupled from the Android framework, and
could be ideally implemented as pure Java packages. Additionally, as this layers
represent the core of Android apps, they should be developed before all other layers.

235

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

Changes to the innermost layers should be driven exclusively by business decisions.

CLEAN-2: “The outer architectural layer should contain the entirety of the app’s Ul
components”.

In order to ensure a clear separation of concerns among the clean architecture layers
of an app, it is paramount that everything related to Android U is grouped in a
module residing in the outer architectural layer. As the other architectural layers of
the app should be “frontend agnostic" (see guideline CLEAN-1), different patterns
(e.g., MVP or MVVM) can be implemented in this layer. Activities and Fragments
should not handle any other logic than the one necessary to render the UL This allows
a clear separation of concern among the architectural layers of an app, enhancing
the understandability, modifiability and testability of its components.

CLEAN-3: “The framework and devices layer should include the entirety of the app
components which depend on Android’.

In accordance to the clean architecture principles, all components related to the
framework should be grouped in the outer architectural layer. This includes all
components which contain Android specific implementations, which should not
be present in the business logic layers. Examples include, in addition to the user
interface model, the data persistence module (e.g., LiveData, DAOs, ORMs, Shared
Preferences, Retrofit, etc.) and eventual dependency injection frameworks.

CLEAN-4: “Each architectural layer should possess its own data model’”.

By implementing a data model at every layer, a high degree of decoupling between
layers can be achieved. Specifically, by following this guideline, the outer layers of
apps can be implemented without any explicit knowledge of the implementation
details of the inner layers. This means that the origin of the data becomes transparent
to the client and hence, in a repository pattern fashion, data sources can be added,
removed, or changed without much effort.

CLEAN-5: “Keep the UI thread as lightweight and isolated as possible”.

In accordance to guidelines CLEAN-1 and CLEAN-2, presenters residing in the outer
layers of apps modeled through clean architecture principles should be kept lightweight.
In fact, Presenters should be composed with interactor components, i.e., use cases
residing in the business logic layers, which are responsible for executing tasks outside
the main UI thread of the app. Once the task are finished, the Views are updated
through a callback with the processed data. Besides callback-based communication
among components, other techniques used in order to keep the UI thread lightweight
rely on the inversion of control principle and intent-based communication.

236

6.3. Guidelines for architecting Android apps

Throughout this study we notice that low-level technical concerns (e.g., management
of screen rotation, access to sensors) are often intertwined with architectural con-
cerns (e.g., how to structure the whole app, how UI events should flow within the
app) without a clear separation between them. Our emerging guidelines can help
Android developers in starting to (i) abstract from the low-level details of the app,
and (ii) reason on its overall structure and related architectural concerns.

Finally, it must be noted that the identified guidelines should be seen as recommenda-
tions, rather than strict rules to be followed at any cost. Indeed, by quoting one of our
data points: “No architecture is perfect for every use-case and Architecture Guidelines
are just recommendations. Hence [developer] feel free to use whatever suites your use-
case.". In other words, we advise developers not to consider the guidelines provided
in Table 6.2 as a whole, but rather to reflect carefully on which ones should be applied
in their projects, depending on the current technical, business, and organizational
context.

Findings for RQ5.2 (Android Architectural Guidelines): 212 architectural
practices are extracted and synthesized into 42 architectural guidelines, re-
ported in Table 6.2. Four main overarching themes emerge from the guide-
lines: generic Android architecture guidelines, MVP-specific, MVVM-specific,
and Clean Architecture. The 5 most mature guidelines per theme are detailed,
while the remaining are documented in Table 6.2.

6.3.4.3 RQ5.3: Quality Requirements

Figure 6.7 shows the QRs considered when architecting Android apps. We observe
that maintainability, testability, and performance are the highest ranking ones.

Overall, the results gathered for RQ5.3 are in line with what is intuitively evinced
by inspecting the results of RQ5.2. In fact, a high number of guidelines deal with
modularization, separation of concerns, and deal with components size coupling, etc.
The application of such principles impacts primarily maintainability and testability,
as discussed in Section 6.3.4.2. Interestingly, those principles are also strongly related
to the maintainability issues frequently occurring over the lifetime of Android apps
[109]. Additionally, guidelines such as avoiding “god-activities" (A-3) or use specific
data management solutions (MVP-3) can drastically impact the performance of apps.
Architectural guidelines influencing primarily other QRs are overall less frequent.

237

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

40

40
35
30
25
20
15
10

31

Number of data points

Vs, e S s, Se &, Re Ao, 2
. Sog,, oy, by, R s Usoy op, g S,
Doy, e v Ve iy, oy ey ey,
K2 € g, "

Quality Requirement

Figure 6.7 — Quality Requirements considered while architecting Android apps

Moreover, we observe that most quality requirements regard development-time QRs
(e.g., maintainability, testability) rather than runtime attributes (e.g., performance,
energy). The focus on static QRs in Android emerges also from the guidelines reported
in Section 6.3.4.2. In fact, most of the synthetized guidelines consider development-
time architectural views of apps (e.g., A-1) rather than runtime ones (e.g., A-8).

Findings for RQ5.3 (Android Architecture Quality Requirements): Main-
tainability, testability, and performance are the most considered QRs when
architecting Android apps. Most QRs regard development-time attributes.

6.3.5 Threats to Validity

External Validity. The primary threat to this category is represented by the selec-
tion of the data points, which might not be representative of the state of the art and
practice. To mitigate this threat, we adopt 3 different data sources (semi-structured
interviews, WL, and GL). This leads to a more heterogeneous set of data points for
our study. Additionally, to ensure the soundness and quality of the MLR data points,
a thorough selection and quality evaluation process is conducted via a set of well-
defined evaluation criteria. To identify the interviewees, convenience sampling is
adopted. This constitutes a threat to external validity, mitigated by selecting inter-

238

6.3. Guidelines for architecting Android apps

viewees that resulted heterogeneous in terms of type of apps developed, company,
background and developer role.

Internal Validity. To mitigate potential threats to internal validity, we follow a rig-
orous research protocol defined a priori. To avoid biases related to data collection
through semi-structured interviews, we perform such step prior to the MLR execution
and by following an interview guide as part of the protocol. Internal validity threats of
the MLR are mitigated by following established guidelines for conducting WL reviews
[227, 74] integrated with guidelines for the inclusion of GL [228].

Construct Validity. The most prominent threat to construct validity regards the
potential inappropriateness of data point selection. To mitigate this treat we use
multiple data sources. As suggested by Wholin et al. [73], the quality of the MLR
selection process is ensured by measuring inter-researcher agreement on a random
subsample of potentially relevant studies. Additionally: (i) we perform the MLR
by adhering to well-documented search and selection processes predefined in a
rigorous protocol, and (ii) the semi-structured interviews are conducted exclusively
with developers with at least 5 years of experience. The adoption of Google Scholar
and Google Search Engine might constitute a bias due to their underlying algorithms.
We mitigate this threat by using well-defined selection criteria and conducting a
snowballing process.

Conclusion validity. The data extraction and synthesis processes are conducted
by strictly adhering to the a priori defined protocol, designed specifically to collect
the data necessary to answer our RQs. This reduces potential biases associated
to such processes and guarantees that the extracted data is appropriate for our
RQs. Furthermore, the study was conducted by adhering to best practices from
several sources [73, 227, 74, 228, 229]. We document each phase of our study in a
publicly available research protocol, thus aiding replicability. To ensure the quality
of the guidelines, the keywording process and guideline synthesis is conducted
collaboratively by two researchers. Conflicts are managed with the intervention of a
third researcher. Possible threats related to the interview process are mitigated by
conducting internal and external pilots during the interview design phase. This is
repeated several times to extensively refine the interview process. Another potential
threat to conclusion validity is entailed by the low number of participants. This threat
has been mitigated by adopting a data fusion approach, i.e., treating as homogeneous
data points the information collected with the MMS, independently of their original
data source. This allowed us to treat equally the data originated via the different data
sources, and hence do not put particular emphasis, weight, or special treatment, to

239

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

any specific data sources.

6.3.6 Related Work

Despite the wide diffusion of Android apps and their increasing complexity [234], at
the time of writing we found a surprising low number of research studies about the
architecture of mobile apps. By mining and reverse engineering the architecture of
more than 1,400 Android apps, Bagheri et al. studied the role of software architec-
ture in the design and development of mobile software, extracted the architectural
principles that have been applied by app developers, and identified architectural
anti-patterns of the Android programming model [221]. They found that Android
apps are complex, composed of tens of components, and organized according to mul-
tiple architectural styles. These findings motivated us to investigate how developers
architect Android apps, eventually leading to the results in this study. Even though
our study and that of Bagheri et al. share the same target audience, i.e., Android
developers and researchers, the research goals are profoundly different: Bagheri et
al. focus on known architectural principles and how they are reflected in the An-
droid programming model, whereas we aim at characterizing the state of the art and
practice on architecting Android apps. Moreover, the methodologies applied in the
two studies are completely different — Bagheri et al. mined the apps from app stores
and statically analyzed their bytecode, whereas we contact Android practitioners
complemented with a systematic analysis of the grey and white literature.

An exploratory study targeting common architectural characteristics of 12 real An-
droid applications is reported in [235]. The study is based on the partial extraction of
the architecture of the apps using the JDepend tool, followed by the manual analysis
of the source code of the targeted apps. The main results of such manual analysis
revealed that MVC is a recurrent pattern in Android (although with some violations).
In our work we apply a totally different research methodology, where we target pro-
fessional developers working on industrial projects, rather than developers working
on open-source apps. Also, the work proposed in [235] is exploratory in nature and
aims at observing the characteristics of the architecture of Android apps, whereas we
aim at providing actionable guidelines for helping developers during their everyday
activities.

A new MVC-based architectural pattern called Android Passive MVC, is proposed
in [236], with the aim of producing Android apps with better maintainability, extensi-
bility, performance, and less complexity. The proposed pattern has been applied to

240

6.3. Guidelines for architecting Android apps

an example of social networking app in collaboration with a development company.
Differently from [236], we do not aim at providing a new architectural pattern, rather
we accept the existence of many pre-existing ones in Android apps (also confirmed
in [221, 235]) and aim at supporting developers while architecting Android apps,
without forcing them to learn and apply new (potentially unsupported) architectural
patterns.

The authors of [237] performed a preliminary study on how to develop Android apps
according to the Software Product Line (SPL) approach. Their case study shows
that an adaptation of the principles for SPLs can be adopted for developing Android
apps. We differ as we do not imply a change in developers’ habits by means of a
new development paradigm like SPL, but aim at supporting them in taking better-
informed decisions about the architecture of their apps.

A study about the challenges faced by mobile app developers (not only Android) has
been proposed by Joorabchi et al. [238]. The challenges have been extracted in a
qualitative manner from a combination of 12 interviews with practitioners and an on-
line questionnaire with 188 participants. Differently from us, they focus on mobile
apps in general (incl. web and hybrid apps) and are orthogonal to architectural
concerns, i.e., they do not cover the challenges directly related to architecture, but
focus on challenges related to e.g., testing. Interestingly, in our study we found some
confirmation of their insights, e.g., the importance of testability, partially managed
by following the MVP or MVVM patterns.

From a methodological perspective, multivocal studies (i.e., systematic studies tar-
geting both grey and white literature) are being published only recently in the field of
software engineering [226], e.g., investigating code smells in testing artifacts [239],
the startups ecosystem [240], and microservices [241]. Researchers are also comple-
menting multivocal studies with other research methodologies (e.g., semi-structured
interviews in our case), thus leading to mixed-method studies. For example, Maro et
al. combined a tertiary literature review, a case study with a company, and a multivo-
cal literature review to identify challenges and solutions about software traceability in
the automotive domain [242]. In the literature there is no multivocal study on mobile
apps. So, even though also our research combines a multivocal study with other
research methodologies (e.g., interviews), the subjects and therefore the outcomes of
our study are novel by focussing on architecting practices for Android apps.

241

Chapter 6. Identifying Architectural Technical Debt in Android Applications
through Compliance Checking

6.3.7 Conclusions and Future Work

This chapter presents a mixed-method empirical study on the state of the art and prac-
tice on architecting Android apps. A key result of our study is the set of 42 evidence-
based guidelines for architecting Android apps. In addition to the guidelines, our
study reveals that: (i) so far there are very few academic articles targeting Android
architecture (this may be an emerging research gap for academic researchers), (ii)
MVP and MVVM are the most recurring architectural patterns, (iii) RxJava, Dagger,
and JetPack are the most mentioned libraries when dealing with the architecture
of Android apps, and (iv) maintainability, testability, and performance are the most
considered QRs when architecting Android apps.

Our results provide developers with an organized set of guidelines for taking action
towards improving the architecture of their apps (e.g., when adopting MVP, strive
towards making Presenters Android- and frameworks-independent — cf. MVP-2).
Researchers, in turn, can benefit from the provided overview of the state of the
art and practice, e.g., for tailoring their research towards those QRs that concern
developers the most when dealing with the architecture of their apps.

This study opens for many future research directions. Firstly, we are planning a
large-scale confirmatory study involving practitioners for checking the correctness
and completeness of the proposed guidelines. Secondly, properly designed analysis
tools might automatically check violations of guidelines via static and/or dynamic
analysis techniques, and recommend solutions for those violations. Furthermore,
we strive towards the implementation of an Android reference architecture [52],
in order to lay the foundations for compliance-based architectural technical debt
analyses [1]. Thirdly, it would be interesting to empirically assess how applying
the proposed guidelines can actually impact the quality of the mobile app, thus
enabling developers to quantitatively assess the gains in having well-architected
apps, potentially speeding up the industrial adoption of the proposed guidelines.

242

Conclusions | iz ill1]

243

74 Discussion

Contents
7.1 Research QuestionsRevisited 245
7.2 ThreadstoValiditycc00iiiieeneen. 249
721 ExternalValidity., 249
722 InternalValidity 250
7.2.3 ConstructValidity 250
724 Conclusionvalidity 250
7.3 ResearchImplications0c00iiieeeennn 251
74 Replicability it i e 253

In this closing chapter we document (i) a revisitation of the research questions un-
derlying this study, (ii) the encompassing threads to validity which could affect the
presented results, (iii) an overview of the implications of our findings, and (iv) the
closing remarks on future work and outlook implied by our investigation.

7.1 Research Questions Revisited

In this section, we discuss how our thesis answers the research questions presented
in Section 1.6.

245

Chapter 7. Discussion

RQ1: What is the state of the art of architectural technical debt iden-
tification?

ATD identification is attracting a growing scientific interest in the latest years. The
research landscape is diverse, with ATD-related studies presented at heterogeneous
venues, including the International Conference of Software Engineering (ICSE), the
Managing Technical Debt workshop (now TechDebt Conference), and the Interna-
tional Conference of Software Architecture (ICSA).

ATD identification is strongly rooted in TD identification techniques working at the
source code level. This finding is most prominent if the abstraction level, input, and
ATDI definitions of the approaches presented in the literature are considered. A large
and heterogenous set of analysis types characterize the state-of-the-art of ATD iden-
tification techniques, ranging from the identification of architectural antipatterns,
to dependency analysis, change impact analysis, and even manual classification
of software artifacts. ATD resolution is considered only by a small portion of the
literature, indicating promising directions for future research directions. Additionally,
the temporal dimension is considered only by a small portion of state-of-the-art
identification techniques. Regarding tool availability, while a large number of tools
for ATD identification are being proposed in the literature, only a small portion of
them is publicly available to date.

The vast majority of approaches presented in the literature are academic-only, high-
lighting the ongoing requirement of academia-industry collaboration to accelerate
knowledge transfer and tuning the research focus on the most-critical industrial
needs. Research rigor (in terms of reusable study designs) and industrial relevance
(in terms of targeted industrial subjects and scale, and used methods) display that
current ATD identification approaches are potentially ready for industrial adoption.
However, current limitations in the literature regarding context description and dis-
cussion of the validity threats, could pose a potential risk to the successful adoption
of the approaches in industrial contexts, as deployment characteristics, and potential
drawbacks of the approaches, remain often to be discovered.

246

7.1. Research Questions Revisited

RQ2: How can design issues detectable by tools be used to gain an
overview of the architectural technical debt residing in a software
system?

In Chapter 3, we presented a multi-step approach designed to build an ATD index
(ATDx), based on a set of source-code analysis rules. The index, conceived to leverage
design issues detectable by tools, provides insights into a set of ATD dimensions build-
ing upon existing architectural rules by leveraging statistical analysis. We conducted
an empirical evaluation of our approach by implementing an instance of ATDx based
on a set of identified SonarQube architectural rules and two distinct open-source
software portfolios, comprising a total of 237 software projects. Based on the feed-
back provided by 47 software practitioners, we demonstrated how ATDx can be used
to gain an overview of the ATD present in software-intensive systems according to
different ATD dimensions, and that the results are actionable to resolve ATD issues.
The ATDx approach can be adopted by researchers and practitioners alike in order to
gain a better understanding of the nature of the ATD present in software-intensive
systems, and provides a systematic framework to implement concrete instances of
ATDx according to specific project and organizational needs.

RQ3: What s architectural technical debt according to software prac-
titioners?

With our investigation reported in Chapter 4, we established our theory of archi-
tectural technical debt, by grounding our findings in the knowledge of experienced
software developers. From our study 8 prominent categories related to ATD phe-
nomena emerged, which constitute the foundation of our theory on ATD, namely:
ATD items, causes, consequences, symptoms, management strategies, prioritization
strategies, and people, and communication.

We studied the relations of heterogeneous nature which connect the various cate-
gories of our theory, outlining an encompassing theory based on the data we gathered.
In addition to the analysis of the relations between the emerging categories of our the-
ory, we also conducted a deep-dive into each one of them, further characterizing our
theory by studying the most prominent concepts of each of the emerging categories.
Our theory demonstrates the complexity and multifaceted nature of ATD phenomena.
Such finding underlines that, while some degree of simplification might be needed
to identify ATD items, the holistic view of the context in which ATD emerges plays a
crucial role for the comprehensive understanding of the nature of the ATD items.

247

Chapter 7. Discussion

RQ4: How are maintainability issues of Android applications char-
acterized?

In our research reported in Chapter 5, we investigated the nature and evolution of
Android issues. Specifically, we shed light on (i) how often various types of maintain-
ability issues occur over the lifetime of Android apps, (ii) the evolution trends of the
density of maintainability issues in Android apps, and (iii) an in-depth characteriza-
tion of development activities related to maintainability hotspots. Among different
types of maintainability issues, we discovered code duplication to be the overall most
recurrent type, potentially due to the coding paradigm considered. Maintainability
hotspots do not occur often in the lifetime of Android apps. Nevertheless, on average,
each app experiences at least one maintainability hotspot. Additionally, indepen-
dently from the type of development activity carried out, maintainability issues grow
according to different trends until they stabilize. Nevertheless, maintainability issues
in Android apps result never to be fully resolved.

RQ5: How can architectural technical debt items be identified in An-
droid Applications?

In Chapter 6 we present an approach based on the establishment of an encompassing
reference architecture for Android applications, followed by a subsequent compliance
checking process. Specifically, our approach is composed of five main steps, namely
(i) architectural guidelines extraction, (ii) establishment of an Android reference
architecture, (iii) reverse engineering of implemented architecture, (iv) compliance
checking, and (v) quantitative assessment of compliance violations (for a more com-
prehensive overview of the approach see Figure 6.1). Additionally, we executed the
first step of our approach by studying, via a mixed-method empirical study, the cur-
rent trends of architecting Android applications. This resulted in the synthesis of
a set of 42 architectural guidelines for architecting Android apps, subdivided into
15 generic guidelines, 12 MVP-specific, 10 MVVM-specific, and 5 regarding clan
architecture principles.

RQ: What strategies can be used to identify and manage architec-
tural technical debt?

After answering all the sub-research questions of our thesis, we can address the main
research question which is at the foundation of our investigation. From our findings

248

7.2. Threads to Validity

we can evince that source-code analysis of software-intensive systems is de facto the
most recurrent methodology currently adopted for identifying architectural technical
debt. We developed a methodology based on such result, presenting an architectural
technical debt index, reported in Chapter 3. A similar analysis strategy was adopted
to study architectural debt specific to Android applications, presented in Part II
of the thesis. Nevertheless, as can be concluded from our theory on architectural
debt reported in Chapter 4, statically detectable source-code debt is only one of the
many facets through which architectural debt can be observed. This points to the
necessity to study, conceive, and develop holistic approaches which consider the
many dimensions which characterize the complex phenomenon of architectural
technical debt. While the road towards the establishment of such approaches could
be challenging, it is exactly what drives forward our research and future endeavors.

7.2 Threads to Validity

In this section we report general threats to validity which could affect the conclusions
of our thesis. Such threads are to be intended as complementary w.r.t. the threads
specific to each study reported in the previous chapters of this thesis.

7.2.1 External Validity

This threat refers to the generalizability of our results beyond the considered experi-
mental settings, with particular emphasis in our case in the experimental subjects
adopted. The results presented in this thesis do not claim extensive comprehen-
siveness or completeness, as the results are based on the analysis of a selection of
experimental subjects according to rigorous selection criteria defined a priori. Re-
garding the studies based on source code analysis, e.g., Chapter 3 and Chapter 5, the
results are relative to a specific programming language, namely Java. The choice to
focus on such programming language is dictated by the availability of established
tools covering such language (see Chapter 3), or by the extent in which it is used in
specific software ecosystems (see Chapter 5- 6). It is hence crucial to consider that
our results based on source code analysis presented in this thesis may differ if other
programming languages and technologies are considered. In order to mitigate this
and other threats related to subject selection, we gave highest priority throughout the
entirety of our studies to rigorous, documented, and replicable, strategies for subject
selection, as further detailed in the previous chapters.

249

Chapter 7. Discussion

7.2.2 Internal Validity

Despite our best efforts, the results reported in this thesis could be affected by threats
to internal validity. In order to mitigate such threat, we consider paramount from an
ethical and scientific standpoint to consistently share with each of our studies the
entirety of the collected data, data gathering / analysis scripts, and extensive research
protocol documentation. We believe the dissemination of replication packages to be
a necessary step to accelerate scientific progress, while making minute and technical
details available for review, correction, and adaptation for future researches. As
exception, the data collection of the study reported in Section 4 relied on extensive
interviews with software practitioners. As it is our priority to guarantee and protect
the anonymity of our participants, their companies, and collaborators, we kept
confidential all their identifying details. The verifiability of such study has hence to
be evinced from the soundness of the followed approach, and the extensive use of
direct quotes from participants (albeit excerpted).

7.2.3 Construct Validity

In order to mitigate potential threats to construct validity, we adopted as a standard
procedure for the studies reported in this thesis the a priori definition of research
protocols. This hinders the possibility to incur into fallacies dictated by data-driven
modifications to the research methodologies adopted, and the potential underesti-
mation of research process details. Additionally, the entirety of the research methods
followed were designed via extensive discussions among at least three researches
(either authors of the studies or external advisors), in order to mitigate possible in-
accuracies which could have been introduced in a protocol by a single researcher.
Another prominent threat is the focus on specific facets of ATD in each chapters (e.g.,
the focus on ATD identification via source code analysis of Chapter 2, or the focus on
ATD detectable via compliance checking of Chapter 6). It is hence important to bear
in mind that the results gathered in each study apply only to the specific facet of ATD
considered, and do not claim to holistically focus on ATD (with the exception of the
theory presented in Chapter 4).

7.2.4 Conclusion validity

A prominent threat to conclusion validity of the results reported in this thesis regards
the completeness of our results. As reported in Chapter 4, architectural technical debt

250

7.3. Research Implications

is a multifaceted phenomenon, possessing various dimensions and influenced by
numerous factors. While the research reported in this thesis is intended to progress
our knowledge in architectural technical debt, the results do not claim completeness
nor comprehensiveness w.r.t. the existing dimensions of architectural technical debt.
As documented in [243], a temptation of both researchers and developers could be
to “look for the magic wand”, i.e., base the identification, analysis, and evaluation
of architectural technical debt exclusively on source code analysis. Nevertheless, as
reported in Chapter 1 and Chapter 4, architectural technical debt is a vast, encom-
passing, and only potentially marginally understood concept, which spans also over
various non-source-code related concepts. Therefore it is paramount to interpret the
results presented in this thesis in light of the specific research methodology, context,
and scope under which each investigation was conducted. The specifics of each
study frame the non-negligible viewpoint from which the vaster phenomenon of ar-
chitectural technical debt was observed and studied.

7.3 Research Implications

In this section we provide a brief outline on how software researchers and practition-
ers can leverage the findings of our thesis to further progress the field of software
engineering.

In Chapter 2 we present an outline of the current state of the art of architectural tech-
nical debt identification research. From an academic standpoint, such investigation
aims at supporting researchers by concisely providing insights into the design of
existing identification approaches, making it possible do adapt them or conceive new
ones based on the current state of the art. From a practical point of view, by providing
a characterization and comparison of existing ATD identification approaches, it is
possible for practitioners to understand the capabilities of existing approaches, and
potentially select the most fitting identification approach based on their require-
ments.

In Chapter 3 we present ATDx, an index to evaluate the ATD present in a software-
intensive system. We base the calculation of ATDx on the prominent static source-
code analysis tool SonarQube, which results to be widely adopted in industrial con-
texts'. The choice to adopt such static-analyzer is dictated, among other things, by
the ease with which ATDx can be adopted in industry, supporting practitioners in an

https://www.sonarqube.org/about/

251

https://www.sonarqube.org/about/

Chapter 7. Discussion

eagle-eye evaluation of the ATD present in their software products. Additionally, we
provide an in-depth documentation of the process we followed to establish ATDx,
ranging from the selection of the metrics, their statistical analysis and manipulation,
and aggregation. This provides researchers with the possibility to study the followed
approach, making it possible adopt, modify, and improve it based on their specific
requirement and context. Finally, we also make available a dataset of SonarQube
rule violations?, encompassing 237 projects for a total of more than 22.8K issues, on
which future researches can be based.

Chapter 4 reports our theory of Architectural Technical Debt. Such theory is intended
for both researchers and practitioners to get novel insight into the phenomena related
to architectural technical debt. Our theory not only provides an encompassing
description of the concepts related of ATD, but also reports data on which future
research and practical solutions can be based. Interestingly, among other results, we
identified a set of ATD symptoms, on which future ATD identification techniques can
be based. On the same line, we elicited a set of ATD management and prioritization
strategies, which provide novel insights on how ATD items are dealt with, giving
practitioners the means to assess their current state of ATD management. In line with
grounded theory principles, our theory is open to modification and extension, laying
the groundwork for the establishment of a holistic overview of ATD according to new
empirical data.

In Chapter 5 we document a study on the recurrence and evolution of maintainability
issues in Android applications. Such study can support researchers investigating non-
functional quality aspects of Android applications by providing empirical evidence on
the recurrence and trends of different types of maintainability issues. Furthermore,
in order to support Android developers, we leveraged our results to establish a set of
development best practices, aimed at mitigating potential problematics related to
software quality in which Android developers may incur.

Finally, in Chapter 6, we present a research approach aimed at the automatic de-
tection of ATD hotspots in Android application. While the material reported in this
chapter constitutes part of an ongoing research thread, the intermediate results
already establish implications for future research and development activities. Specifi-
cally, as a first step of our approach, we synthesized a set of 42 architectural guidelines
for Android applications, which can be leveraged by researchers and developers alike
in order to prevent, analyze, and identify potential shortcomings of Android applica-
tions at the architectural level. Additionally, we also provide evidence of the current

2Including a filtered version according to the set of selection criteria used for our investigation.

252

7.4. Replicability

state of the art of architecting Android applications in terms pattern used, supporting
libraries, and non-functional properties considered. This lays the groundwork for
a better understanding of architecting practices in the Android ecosystem, which
recently gained interest from industry, but which result to be almost completely
unexplored from an academic point of view.

7.4 Replicability

In the entirety of the studies presented in this thesis, we put our best effort to make
the research processes and results as transparent as possible, in order to support
independent scrutiny and replication of the work. In order to do so, each study is
supported by a replication package, including the totality of source code used, data
considered, and intermediate, additional, and final results. The only exception is
for the study reported in Chapter 4, as the unprocessed data gathered could not be
made public due to the human ethics guidelines governing the study (University of
British Columbia Research Ethics Board, application number: H19-01125). In order
to mitigate this potential shortcoming, we carefully documented in Section 4.2.2 the
research method we followed throughout our investigation, and in the results section
(Section 4.3) we referenced as much as possible direct quotes from our participants
(albeit excerpted).

253

Conclusions, Future Work, and
Outlook

This was a triumph
I'm making a note here
“huge success"

it’s hard to overstate
my satisfaction

GLaDOS, “Still Alive”

The results of our study open numerous future research opportunities. This is high-
lighted even from first chapter of this thesis, where we identified a set of current ATD
research trends and gaps. Specifically, it is interesting to notice that, even if archi-
tectural technical debt often requires time in order to become noticeable, only few
studies currently consider the temporal dimension for ATD identification. Addition-
ally, most approaches focus on a single, fine-grained, ATD symptom. This contrasts
one prominent finding of our ATD theory presented in Chapter 4, where we show that
a single ATD item can be traced back to a plethora of symptoms, e.g., performance,
customer, and functionality issues. Interestingly, in Chapter 3, we present an index
to detect code-related ATD via the measurement, analysis, and aggregation of archi-
tectural rule violations. The findings of such study, and the underlying methodology
used, can be leveraged in order to create an index which goes beyond the analysis
of statically-detectable source-code violations. Summarizing, the aforementioned
findings highlight the potential which lies in combining the analyses of different
types of symptoms, while considering their evolution, into a single unified viewpoint,
in order to further progress, in terms of efficacy and effectiveness, automated ATD

255

https://www.youtube.com/watch?v=Y6ljFaKRTrI
https://www.youtube.com/watch?v=Y6ljFaKRTrI
https://www.youtube.com/watch?v=Y6ljFaKRTrI
https://www.youtube.com/watch?v=Y6ljFaKRTrI
https://www.youtube.com/watch?v=Y6ljFaKRTrI
https://www.youtube.com/watch?v=Y6ljFaKRTrI
https://www.youtube.com/watch?v=Y6ljFaKRTrI

Chapter 8. Conclusions, Future Work, and Outlook

identification and management techniques.

In addition to the establishment of what we envision could be an encompassing ATD
index, the studies reported in this thesis offer the potential to be further refined and
extended. Notably, the static source code analysis technique presented in Chapter 3
focuses on a limited subset of architectural rules, and considers exclusively Java-
based experimental subjects. We aim at mitigating such threat to external validity
in the future not only by reviewing the rule set and considering software projects
based on other programming languages, but also by comparing our findings via the
application of our methodology to other prominent analysis tools, such as CAST!
and NDepend?.

From a more theoretical standpoint, as future work, we strive towards the expansion
and refinement of our ATD theory presented in Chapter 4, in order to further develop
our theory and make it as encompassing and complete as possible. While we achieved
theoretical saturation in our study, we set as one of our ultimate goals to continuously
evolve and improve our theory as new data, knowledge, and findings on ATD become
available. While we acknowledge the ambitiousness of such goal, we envision to
tackle its feasibility by working in continuous incremental steps, and eventually
establish an academic collaborative platform to keep track of new findings and the
evolution of the theory to reflect the current state of the art and body of knowledge
on ATD. In addition we envision to systematically map existing academic literature
to elements of the theory, in order to uncover potential gaps in the current research
activities, and identify interesting yet not studied research avenues related to ATD.

Finally, Part IT of this thesis, which focusses on ATD specific to the Android ecosystem,
presents a portion of our ongoing work targeting ATD specific to mobile software
systems. Specifically, in this thesis we report the overview of our approach for ATD
identification in Android application via compliance checking, followed by the imple-
mentation of the first out of five steps which such approach entails. We are spending
ongoing research effort into the realization of the subsequent steps, following our
vision to establish a light-weight, efficient, and effective approach to identify ATD
hotspots in Android applications.

In conclusion, architectural technical debt is a multifaceted, complex, problem.
A mischievous beast, manifesting itself as a subtle yet continuous cost, constantly
slowing down development practices, and presenting an investment which, at the end

Thttps:/ /www.castsoftware.com/
2https:/ /www.ndepend.com/

256

of the game, is not worth taking on. Our ongoing research, and its underlying vision,
aims to address the problem by conceiving a structured, holistic, methodology to
identify and measure architectural debt, by analyzing a wide range of ATD symptoms
which to date have only marginally studied, in order to achieve a comprehensive,
empirically supported, and straightforward ATD management strategy.

In order to reach our goal, we exploit a vast range of scientific methods to have further
insights into the ATD phenomenon, and create data-driven approaches to enrich
our ATD body of knowledge, identifying which information is most useful to detect
ATD, and how this data can be leveraged to support developers. Specifically, one of
our research pillars deals with characterizing which previously unexplored, quan-
tifiable, symptoms point to the presence of ATD in software-intensive systems. This
is achieved by rooting our research in continuous and ongoing collaborations with
industrial parties, investigating from an academic viewpoint how ATD manifests it-
self in real-world contexts.

Additionally, we leverage existing findings and approaches in order to take full advan-
tage of the existing tools and techniques to support, enrich, and refine our findings.
This enables us to consider and analyze a heterogeneous set of software artifacts in
which ATD can manifests itself, leading to a comprehensive coverage of the known
dimensions of ATD.

Our ultimate goal is to conceive an approach providing a lightweight, communicable,
and actionable overview of the ATD present in software-intensive systems. On one
hand, an ATD overview can provide and intuitive visualization of ATD, supporting
conversations, understanding, and communication of the current state of ATD in
software-intensive systems. On the other hand, by enhancing the overview thanks to
the different levels of granularity of the derived data utilized to build the overview, it is
possible to provide deep, actionable, data-driven guidance on where the architectural
debt is rooted, enabling developers to pinpoint the location of ATD in large and
complex architectures, providing them with the necessary tool to manage ATD before
it is too late. Our research standpoint is that, in the near future, ATD will not be
anymore an invisible beast which taunts developers during their “coffee machine
talks”, but rather a domesticated animal of which everybody knows the presence, and
everybody goes along with.

257

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

R. Verdecchia, I. Malavolta, and P. Lago, “Architectural technical debt identi-
fication: The research landscape,” in IEEE/ACM International Conference on
Technical Debt (TechDebt), 2018, pp. 11-20.

I. Ozkaya, “Managing technical debt,” 2017, international Software Architecture
PhD School (iSAPS), unpublished.

W. Cunningham, “The wycash portfolio management system,” OOPS Messen-
ger, vol. 4, no. 2, pp. 29-30, 1993.

N. S. Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola, E Shull, and
C. Seaman, “Identification and management of technical debt: A systematic
mapping study,” Information and Software Technology, vol. 70, pp. 100-121,
Feb. 2016.

A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “The
financial aspect of managing technical debt: A systematic literature review,”
Information and Software Technology, vol. 64, pp. 52-73, 2015.

M. Flower, “TechnicalDebtQuadrant,” 2009, (Accessed 22nd September 2017).
[Online]. Available: https://martinfowler.com/bliki/TechnicalDebtQuadrant.
html

S. McConnell, “Technical Debt,” Accessed 28th September 2017. [Online].
Available: http://www.construx.com/10x_Software_Development/Technical _
Debt/

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor to
theory and practice,” Ieee software, vol. 29, no. 6, pp. 18-21, 2012.

259

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/

Bibliography

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

260

Z.Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt
and its management,” Journal of Systems and Software, vol. 101, no. 3, pp.
193-220, 2015.

E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” Journal of
Systems and Software, vol. 86, no. 6, pp. 1498-1516, Jun. 2013.

T. Besker, A. Martini, and J. Bosch, “A Systematic Literature Review and a Unified
Model of ATD.” IEEE, Aug. 2016, pp. 189-197.

C. Izurieta, A. Vetro, N. Zazworka, Y. Cai, C. Seaman, and E Shull, “Organiz-
ing the technical debt landscape,” in Proceedings of the Third International
Workshop on Managing Technical Debt. 1EEE Press, 2012, pp. 23-26.

C. Izurieta, I. Ozkaya, C. Seaman, and W. Snipes, “Technical Debt: A Research
Roadmap Report on the Eighth Workshop on Managing Technical Debt (MTD
2016),” ACM SIGSOFT Software Engineering Notes, vol. 42, no. 1, pp. 28-31,
2017. [Online]. Available: http://dl.acm.org/citation.cfm?d=3041774

D. Falessi, Z. Codabux, G. Rong, I. Stamelos, W. Ferreira, 1. S. Wiese, E. Barreiros,
C. Quesada-Lopez, and P. Tsirakidis, “Trends in empirical research: the report
on the 2014 Doctoral Symposium on Empirical Software Engineering,” ACM
SIGSOFT Software Engineering Notes, vol. 40, no. 5, pp. 30-35, Sep. 2015.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2815021.2815034

“TechDebt 2018 International Conference on Technical Debt - TechDebt 2018,”
accessed 26th September 2017. [Online]. Available: https://2018.techdebtconf.
org/track/TechDebt-2018-papers

N. A. Ernst, “On the role of requirements in understanding and managing tech-
nical debt,” in Proceedings of the Third International Workshop on Managing
Technical Debt. TEEE Press, 2012, pp. 61-64.

I. Ozkaya, R. L. Nord, H. Koziolek, and P. Avgeriou, “Toward Simpler, not
Simplistic, Quantification of Software Architecture and Metrics: Report on
the Second International Workshop on Software Architecture and Metrics,”
ACM SIGSOFT Software Engineering Notes, vol. 40, no. 5, pp. 43-46, Sep. 2015.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2815021.2815037

R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and A. Shapoc-
hka, “A Case Study in Locating the Architectural Roots of Technical Debt.” IEEE,
May 2015, pp. 179-188.

http://dl.acm.org/citation.cfm?id=3041774
http://dl.acm.org/citation.cfm?doid=2815021.2815034
https://2018.techdebtconf.org/track/TechDebt-2018-papers
https://2018.techdebtconf.org/track/TechDebt-2018-papers
http://dl.acm.org/citation.cfm?doid=2815021.2815037

Bibliography

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

C. Fernandez-Sanchez, J. Garbajosa, C. Vidal, and A. Yague, “An Analysis of
Techniques and Methods for Technical Debt Management: A Reflection from
the Architecture Perspective.” 1EEE, May 2015, pp. 22-28. [Online]. Available:
http://ieeexplore.ieee.org/document/7174845/

Z. Li, P. Liang, and P. Avgeriou, “Architectural Technical Debt Identification
Based on Architecture Decisions and Change Scenarios.” IEEE, May 2015, pp.
65-74. [Online]. Available: http://ieeexplore.ieee.org/document/7158505/

A. Martini, E. Sikander, and N. Madlani, “A Semi-Automated Framework
for the Identification and Estimation of Architectural Technical Debt: A
comparative case-study on the modularization of a software component,”
Information and Software Technology, Sep. 2017. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S095058491630355X

R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In Search of a
Metric for Managing Architectural Technical Debt.” IEEE, Aug. 2012, pp.
91-100. [Online]. Available: http://ieeexplore.ieee.org/document/6337765/

A. Martini, J. Bosch, and M. Chaudron, “Investigating Architectural Technical
Debt accumulation and refactoring over time: A multiple-case study,”
Information and Software Technology, vol. 67, pp. 237-253, Nov. 2015. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/S0950584915001287

A. Martini and J. Bosch, “Towards Prioritizing Architecture Technical Debt:
Information Needs of Architects and Product Owners.” IEEE, Aug. 2015, pp.
422-429. [Online]. Available: http://ieeexplore.ieee.org/document/7302484/

N. Zazworka, R. O. Spinola, A. Vetro, E Shull, and C. Seaman, “A case study on
effectively identifying technical debt,” in Proceedings of the 17th International
Conference on Evaluation and Assessment in Software Engineering. ACM, 2013,
pp. 42-47.

W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray, AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis, 1sted. New
York, NY, USA: John Wiley & Sons, Inc., 1998.

R.]J. Eisenberg, “A threshold based approach to technical debt,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 2, pp. 1-6, 2012.

I. Gat and J. D. Heintz, “From assessment to reduction: how cutter consortium
helps rein in millions of dollars in technical debt,” in Proceedings of the 2nd
Workshop on Managing Technical Debt. ACM, 2011, pp. 24-26.

261

http://ieeexplore.ieee.org/document/7174845/
http://ieeexplore.ieee.org/document/7158505/
http://linkinghub.elsevier.com/retrieve/pii/S095058491630355X
http://ieeexplore.ieee.org/document/6337765/
http://linkinghub.elsevier.com/retrieve/pii/S0950584915001287
http://ieeexplore.ieee.org/document/7302484/

Bibliography

(29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

(38]

262

J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali, “Searching for build
debt: Experiences managing technical debt at google,” in Proceedings of the
Third International Workshop on Managing Technical Debt. 1EEE Press, 2012,

pp. 1-6.

S. Stolberg, “Enabling agile testing through continuous integration,” in Agile
Conference, 2009. AGILE'09. 1EEE, 2009, pp. 369-374.

T. Coq and J.-P. Rosen, “The sqale quality and analysis models for assessing the
quality of ada source code,” in International Conference on Reliable Software
Technologies. Springer, 2011, pp. 61-74.

J. Heintz, “Modernizing the delorean system: Comparing actual and predicted
results of a technical debt reduction project,” Cutter IT Journal, vol. 23, no. 10,
p. 7, 2010.

D. Falessi, M. A. Shaw, E Shull, K. Mullen, and M. S. Keymind, “Practical consid-
erations, challenges, and requirements of tool-support for managing technical
debt,” in Managing Technical Debt (MTD), 2013 4th International Workshop on.
IEEE, 2013, pp. 16-19.

S. Akbarinasaji, “Toward measuring defect debt and developing a recom-
mender system for their prioritization,” in Proceedings of the 13th International
Doctoral Symposium on Empirical Software Engineering, 2015, pp. 1-6.

N. S. Alves, L. E Ribeiro, V. Caires, T. S. Mendes, and R. O. Spinola, “Towards an
ontology of terms on technical debt,” in Managing Technical Debt (MTD), 2014
Sixth International Workshop on. 1EEE, 2014, pp. 1-7.

D. A. Tamburri, P. Kruchten, P. Lago, and H. Van Vliet, “Social debt in soft-
ware engineering: insights from industry,” Journal of Internet Services and
Applications, vol. 6, no. 1, p. 10, 2015.

K. Power, “Understanding the impact of technical debt on the capacity and
velocity of teams and organizations: Viewing team and organization capacity
as a portfolio of real options,” in Managing Technical Debt (MTD), 2013 4th
International Workshop on. 1EEE, 2013, pp. 28-31.

W. Cunningham, “The WyCash portfolio management system,” ACM SIGPLAN
OOPS Messenger, vol. 4, no. 2, pp. 29-30, 1993. [Online]. Available:
http://dl.acm.org/citation.cfm?id=157715

http://dl.acm.org/citation.cfm?id=157715

Bibliography

(39]

(40]

(41]

[42]

(43]

(44]

(45]

(46]

(47]

(48]

J. S. van der Ven and J. Bosch, “Making the right decision: supporting
architects with design decision data,” in European Conference on Software
Architecture. Springer, 2013, pp. 176-183. [Online]. Available: http:
/Nink.springer.com/chapter/10.1007/978-3-642-39031-9_15

A. Martini, J. Bosch, and M. Chaudron, “Architecture Technical Debt:
Understanding Causes and a Qualitative Model.” IEEE, Aug. 2014, pp. 85-92.
[Online]. Available: http://ieeexplore.ieee.org/document/6928795/

H. van Vliet, Software engineering: principles and practice, 3rd ed. Wiley, 1993.

Z. 1i, P. Liang, and P. Avgeriou, “Architectural debt management in value-
oriented architecting,” Economics-Driven Software Architecture, Elsevier, pp.
183-204, 2014.

Z.1j, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampatzoglou, “An empirical in-
vestigation of modularity metrics for indicating architectural technical debt,”
in Proceedings of the 10th international ACM Sigsoft conference on Quality of
software architectures. ACM, 2014, pp. 119-128.

N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure it?
manage it? ignore it? software practitioners and technical debt,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
2015, pp. 50-60.

A. Martini and J. Bosch, “The danger of architectural technical debt: Conta-
gious debt and vicious circles,” in 2015 12th Working IEEE/IFIP Conference on
Software Architecture. 1EEE, 2015, pp. 1-10.

B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and types of
technical debt,” in Proceedings of the Third International Workshop on Manag-
ing Technical Debt. 1EEE Press, 2012, pp. 49-53.

E A. Fontana, V. Ferme, and M. Zanoni, “Towards assessing software architec-
ture quality by exploiting code smell relations,” in Proceedings of the Second
International Workshop on Software Architecture and Metrics. 1EEE Press,
2015, pp. 1-7.

E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis, “Identification
of refused bequest code smells,” in Software Maintenance (ICSM), 2013 29th
IEEE International Conference on. 1EEE, 2013, pp. 392-395.

263

http://link.springer.com/chapter/10.1007/978-3-642-39031-9_15
http://link.springer.com/chapter/10.1007/978-3-642-39031-9_15
http://ieeexplore.ieee.org/document/6928795/

Bibliography

(49]

(50]

(51]

(52]

(53]

(54]

(55]

[56]

[57]

(58]

(59]

264

B. Boehm, “Architecture-based quality attribute synergies and conflicts,” in
Software Architecture and Metrics (SAM), 2015 IEEE/ACM 2nd International
Workshop on. 1EEE, 2015, pp. 29-34.

R. Verdecchia, I. Malavolta, and P. Lago, “Architectural Technical Debt Identi-
fication: The Research Landscape,” in International Conference on Technical
Debt (TechDebt), 2018.

I. Malavolta, R. Verdecchia, M. Bruntink, B. Filipovic, and P. Lago, “How Main-
tainability Issues of Android Apps Evolve,” in International Conference on
Software Maintenance and Evolution, 2018.

R. Verdecchia, “Identifying Architectural Technical Debt in Android Applica-
tions through Compliance Checking,” in International Conference on Mobile
Software Engineering and Systems, 2018.

R. Verdecchia, I. Malavolta, and P. Lago, “Guidelines for architecting android
apps: A mixed-method empirical study,” in 2019 IEEE International Conference
on Software Architecture. 1EEE, 2019, pp. 141-150.

R. Verdecchia, P. Lago, I. Malavolta, and I. Ozkaya, “ATDx: Building an architec-
tural technical debt index.” in ENASE, 2020, pp. 531-539.

——, “Empirical evaluation of an architectural technical debt index in the con-
text of the apache and onap ecosystems,” in Journal article under submission,
2021.

R. Verdecchia, P. Kruchten, and P. Lago, “Architectural technical debt: A
grounded theory,” in European Conference on Software Architecture. Springer,
2020, pp. 202-219.

R. Verdecchia, P. Kruchten, P. Lago, and I. Malavolta, “Building and evaluating a
theory of architectural technical debt in software-intensive systems,” Journal
of Systems and Software, 2021.

S. Ospina, R. Verdecchia, I. Malavolta, and P. Lago, “ATDx: A tool for providing
a data-driven overview of architectural technical debt in software-intensive
systems,” European Conference on Software Architecture (to appear), 2021.

J. Bogner, R. Verdecchia, and I. Gerostathopoulos, “Characterizing technical
debt and antipatterns in ai-based systems: A systematic mapping study,” Inter-
national Conference on Technical Debt, 2021.

Bibliography

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]

(68]

R. Verdecchia, P. Lago, 1. Malavolta, and I. Ozkaya, “ATDx: prototype implemen-
tation technical report,” in VU Technical Reports, 2020.

R. Verdecchia, A. Guldner, Y. Becker, and E. Kern, “Code-level energy
hotspot localization via naive spectrum based testing,” in Advances
and New Trends in Environmental Informatics - Managing Disruption,
Big Data and Open Science, 2018, pp. 111-130. [Online]. Available:
https://doi.org/10.1007/978-3-319-99654-7_8

R. Verdecchia, R. A. Saez, G. Procaccianti, and P. Lago, “Empirical evaluation of
the energy impact of refactoring code smells,” in 5th International Conference
on Information and Communication Technology for Sustainability, ICT4S 2018,
Toronto, Canada, May 14-18, 2018, 2018, pp. 365-383. [Online]. Available:
http://www.easychair.org/publications/paper/MxpT

A. Bener, B. Turhan, and S. Biffl, Eds., 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2017, Toronto,
ON, Canada, November 9-10, 2017. TEEE Computer Society, 2017. [Online].
Available: http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=
8169617

P. Lago, R. Verdecchia, N. Condori-Fernandez, E. Rahmadian, J. Sturm, T. van
Nijnanten, R. Bosma, C. Debuysscher, and P. Ricardo, “Designing for sustain-
ability: Lessons learned from four industrial projects,” in Advances and New
Trends in Environmental Informatics. Springer, 2021, pp. 3-18.

R. Verdecchia, P. Lago, and C. de Vries, “The leap technology roadmap: Lower
energy acceleration program (leap) solutions, adoption factors, impediments,
open problems, and scenarios,” VU Technical Reports, 2021.

R. Verdecchia, E. Cruciani, B. Miranda, and A. Bertolino, “Know you neighbor:
Fast static prediction of test flakiness,” IEEE Access, 2021.

E Coro, R. Verdecchia, E. Cruciani, B. Miranda, and A. Bertolino, “JTeC: A Large
Collection of Java Test Classes for Test Code Analysis and Processing,” in Under
Submission, year = 2020.

E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino, “Scalable approaches
for test suite reduction,” in Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, 2019,
pp- 419-429. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00055

265

https://doi.org/10.1007/978-3-319-99654-7_8
http://www.easychair.org/publications/paper/MxpT
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8169617
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8169617
https://doi.org/10.1109/ICSE.2019.00055

Bibliography

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

266

B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “FAST approaches to
scalable similarity-based test case prioritization,” in Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, 2018, pp. 222-232. [Online]. Available:
https://doi.org/10.1145/3180155.3180210

P Lago, J. E Cai, R. C. de Boer, P Kruchten, and R. Verdecchia,
“Decidarch: Playing cards as software architects,” in 52nd Hawaii International
Conference on System Sciences, HICSS 2019, Grand Wailea, Maui, Hawaii,
USA, January 8-11, 2019, 2019, pp. 1-10. [Online]. Available: http:
//hdl.handle.net/10125/60220

R. C. de Boer, P. Lago, R. Verdecchia, and P. Kruchten, “Decidarch V2:
an improved game to teach architecture design decision making,” in
IEEE International Conference on Software Architecture Companion, ICSA
Companion 2019, Hamburg, Germany, March 25-26, 2019, 2019, pp. 153-157.
[Online]. Available: https://doi.org/10.1109/ICSA-C.2019.00034

T. Besker, A. Martini, and J. Bosch, “Managing architectural technical debt: A
unified model and systematic literature review,” Journal of Systems and Soft-
ware, vol. 135, pp. 1-16, 2018.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. Springer Science & Business Media,
2012.

B. Kitchenham and P. Brereton, “A systematic review of systematic review pro-
cess research in software engineering,” Information and software technology,
vol. 55, no. 12, pp. 2049-2075, 2013.

V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question Metric Ap-
proach,” in Encyclopedia of Software Engineering. Wiley, 1994, vol. 2, pp.
528-532.

C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering,” in Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, ser. EASE
'14. New York, NY, USA: ACM, 2014, pp. 38:1-38:10.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping stud-
ies in software engineering,” in Proceedings of the 12th International Conference

https://doi.org/10.1145/3180155.3180210
http://hdl.handle.net/10125/60220
http://hdl.handle.net/10125/60220
https://doi.org/10.1109/ICSA-C.2019.00034

Bibliography

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

on Evaluation and Assessment in Software Engineering, ser. EASE’08. British
Computer Society, 2008, pp. 68-77.

T. Greenhalgh and R. Peacock, “Effectiveness and efficiency of search methods
in systematic reviews of complex evidence: audit of primary sources,” BM]J, vol.
331, no. 7524, pp. 1064-1065, 2005.

“Scopus | The largest database of peer-reviewed literature | Elsevier,” 2018,
(Accessed 22nd January 2018). [Online]. Available: https://www.elsevier.com/
solutions/scopus

K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting system-
atic mapping studies in software engineering: An update,” Information and
Software Technology, vol. 64, pp. 1-18, 2015.

M. Ivarsson and T. Gorschek, “A method for evaluating rigor and industrial
relevance of technology evaluations,” Empirical Software Engineering, vol. 16,
no. 3, pp. 365-395, 2011.

B. A. Kitchenham and S. Charters, “Guidelines for performing systematic lit-
erature reviews in software engineering,” Keele University and University of
Durham, Tech. Rep., 2007.

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt
in Software Engineering (Dagstuhl Seminar 16162),” in Dagstuhl Reports, vol. 6,
no. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

C. Y. Baldwin and K. B. Clark, Design rules: The power of modularity. MIT
press, 2000, vol. 1.

J. Knodel, M. Lindvall, D. Muthig, and M. Naab, “Static evaluation of software
architectures,” in Software Maintenance and Reengineering, 2006. CSMR 2006.
Proceedings of the 10th European Conference on. 1EEE, 2006, pp. 10-pp.

Z.1i, P Liang, and P. Avgeriou, “Chapter 9 - architectural debt management
in value-oriented architecting,” in Economics-Driven Software Architecture,
I. Mistrik, , R. Bahsoon, , R. Kazman, , and Y. Zhang, Eds. Boston: Morgan
Kaufmann, 2014, pp. 183 — 204.

N. Alves, T. S. Mendes, M. G. de Mendonga, R. O. Spinola, E Shull, and C. Sea-
man, “Identification and management of technical debt: A systematic mapping
study,” Information and Software Technology, vol. 70, pp. 100-121, 2016.

267

https://www.elsevier.com/solutions/scopus
https://www.elsevier.com/solutions/scopus

Bibliography

(88]

(89]

[90]

(91]

[92]

[93]

[94]

[95]

(96]

(97]

[98]

(99]

268

A. Potdar and E. Shihab, “An exploratory study on self-admitted technical
debt,” in Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. 1EEE, 2014, pp. 91-100.

B. Selic, “Agile documentation, anyone?” IEEE software, vol. 26, no. 6, 2009.

L. Xiao, Y. Cai, and R. Kazman, “Titan: A toolset that connects software archi-
tecture with quality analysis,” in ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 763-766.

G. Samarthyam, M. Muralidharan, and R. K. Anna, “Understanding test debt,”
Trends in Software Testing, pp. 1-17, 2017.

P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor to
theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18-21, 2012.

L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and quantifying
architectural debt,” in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, pp. 488-498.

E Arcelli Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni, and
E. Di Nitto, “Arcan: A tool for architectural smells detection,” in IEEE Interna-
tional Conference on Software Architecture Workshops (ICSAW). 1EEE, 2017,
pp. 282-285.

A. Martini, E. Sikander, and N. Madlani, “A semi-automated framework for the
identification and estimation of architectural technical debt: A comparative
case-study on the modularization of a software component,” Information and
Software Technology, vol. 93, pp. 264-279, 2018.

T. Kuipers and J. Visser, “A tool-based methodology for software portfolio mon-
itoring.” in Software Audit and Metrics, 2004, pp. 118-128.

M. Keeling, Design It! Pragmatic Bookshelf, Oct. 2017. [Online]. Available:
https:/ /www.oreilly.com/library/view/design-it/9781680502923/

H. Wang and M. Song, “Ckmeans.1d.dp: Optimal k-means clustering in one
dimension by dynamic programming,” The R journal, vol. 3, no. 2, p. 29, 2011.

W. Lidwell, K. Holden, and J. Butler, Universal Principles of Design. Rockport
Pub, 2010.

https://www.oreilly.com/library/view/design-it/9781680502923/

Bibliography

[100]

[101]

(102]

[103]

(104]

(105]

[106]

(107]

(108]

[109]

(110]

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “An In-depth Study of the Promises and Perils of Mining GitHub,”
Empirical Software Engineering, vol. 21, no. 5, pp. 2035-2071, 2016.

G. Caldiera, V. R. Basili, and H. D. Rombach, “Goal question metric paradigm,”
Encyclopedia of software engineering, vol. 1, pp. 528-532, 1994.

A. E. Hassan, “The road ahead for mining software repositories,” in 2008 Fron-
tiers of Software Maintenance. 1EEE, 2008, pp. 48-57.

N. Fenton and J. Bieman, Software metrics: a rigorous and practical approach.
CRC press, 2014, pp. 33-40.

E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann, “Improving
developer participation rates in surveys,” in 2013 6th International workshop
on cooperative and human aspects of software engineering (CHASE). 1EEE,
2013, pp. 89-92.

A.Janes, V. Lenarduzzi, and A. C. Stan, “A continuous software quality mon-
itoring approach for small and medium enterprises,” in 8th ACM/SPEC on
International Conference on Performance Engineering Companion, 2017, pp.
97-100.

N. A. Ernst, S. Bellomo, I. Ozkaya, and R. L. Nord, “What to fix? distinguishing
between design and non-design rules in automated tools,” in IEEE Interna-
tional Conference on Software Architecture (ICSA), 2017, pp. 165-168.

T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineer-
ing, no. 4, pp. 308-320, 1976.

K. Manikas and K. M. Hansen, “Software ecosystems—a systematic literature
review,” Journal of Systems and Software, vol. 86, no. 5, pp. 1294-1306, 2013.

I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago, “How Main-
tainability Issues of Android Apps Evolve,” in 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). 1EEE, 2018, pp.
334-344.

I. B. Weiner and W. E. Craighead, The Corsini Encyclopedia of Psychology, Vol-
ume 4. John Wiley & Sons, 2010, vol. 2, pp. 637-638.

269

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

270

I. Malavolta, G. Lewis, B. Schmerl, P. Lago, and D. Garlan, “How do you architect
your robots? state of the practice and guidelines for ros-based systems,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). 1EEE, 2020, pp. 31-40.

G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolution of
technical debt in the apache ecosystem,” in European Conference on Software
Architecture. Springer, 2017, pp. 51-66.

V. Lenarduzzi, N. Saarimaki, and D. Taibi, “On the diffuseness of code technical
debt in java projects of the apache ecosystem,” in 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt). 1EEE, 2019, pp. 98-107.

J. Tan, M. Lungu, and P. Avgeriou, “Towards studying the evolution of technical
debt in the python projects from the apache software ecosystem.” in BENEVOL,
2018, pp. 43-45.

Z.1i, Q. Yu, P Liang, R. Mo, and C. Yang, “Interest of defect technical debt: An
exploratory study on apache projects,” in 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 1EEE, 2020, pp. 629-639.

E Arcelli Fontana, R. Roveda, and M. Zanoni, “Tool support for evaluating
architectural debt of an existing system: An experience report,” in Annual ACM
Symposium on Applied Computing, 2016, pp. 1347-1349.

A. Martini, E A. Fontana, A. Biaggi, and R. Roveda, “Identifying and prioritizing
architectural debt through architectural smells: a case study in a large software
company,” in European Conference on Software Architecture. Springer, 2018,
pp. 320-335.

R. Roveda, E Arcelli Fontana, I. Pigazzini, and M. Zanoni, “Towards an architec-
tural debt index,” in 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). 1EEE, 2018, pp. 408-416.

R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, and A. Shapoc-
hka, “A case study in locating the architectural roots of technical debt,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 2.
IEEE, 2015, pp. 179-188.

Y. Cai and R. Kazman, “Detecting and quantifying architectural debt: theory
and practice,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion. IEEE, 2017, pp. 503-504.

Bibliography

[121]

(122]

(123]

[124]

(125]

[126]

[127]

(128]

[129]

[130]

[131]

——, “Dv8: automated architecture analysis tool suites,” in 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt). 1EEE, 2019, pp. 53-54.

R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search of a
metric for managing architectural technical debt,” in Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software
Architecture, 2012, pp. 91-100.

D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic, “An empirical study of
architectural decay in open-source software,” in IEEE International Conference
on Software Architecture (ICSA), 2018, pp. 176-185.

J. W. Tukey, “Exploratory data analysis addision-wesley,” Reading, MA, vol. 688,
1977.

E A. Fontana, R. Roveda, and M. Zanoni, “Technical debt indexes provided by
tools: a preliminary discussion,” in 2016 IEEE 8th International Workshop on
Managing Technical Debt (MTD). 1EEE, 2016, pp. 28-31.

M. T. Baldassarre, V. Lenarduzzi, S. Romano, and N. Saariméki, “On the dif-
fuseness of technical debt items and accuracy of remediation time when using
sonarqube,” Information and Software Technology, vol. 128, p. 106377, 2020.

T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from benchmark
data,” in 2010 IEEE International Conference on Software Maintenance. 1EEE,
2010, pp. 1-10.

M. Ulan, W. Lowe, M. Ericsson, and A. Wingkvist, “Towards meaningful software
metrics aggregation,” in Proceedings of the 18th Belgium-Netherlands Software
Evolution Workshop, 2019.

W. Cunningham, “The wycash portfolio management system,” in OOPSLA’'92
proceedings, 1992, Conference Proceedings.

N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCor-
mack, R. Nord, I. Ozkaya, R. Sangwan, C. B. Seaman, K. Sullivan, and N. Zaz-
worka, “Managing technical debt in software-intensive systems,” in Future of
Software Engineering Research (FOSER 2010) Workshop, part of FSE 2010. ACM,
2010, Conference Proceedings, pp. 47-52.

P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, Managing Technical Debt in
Software Engineering (Dagstuhl Seminar 16162). Dagstuhl, Germany: Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, vol. 6.

271

Bibliography

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

272

P. Kruchten, R. Nord, and I. Ozkaya, “Technical debt: from metaphor to theory
and practice,” IEEE Software, vol. 29, no. 6, pp. 18-21, 2012.

R. Verdecchia, P. Kruchten, and P. Lago, “Architectural Technical Debt: A
Grounded Theory,” in European Conference on Software Architecture. Springer,
2020, pp. 202-219.

R. S. Schreiber, P. N. Stern et al., Using grounded theory in nursing. Springer
Publishing Company, 2001.

M. Kenny and R. Fourie, “Contrasting classic, straussian, and constructivist
grounded theory: methodological and philosophical conflicts,” The Qualitative
Report, vol. 20, no. 8, pp. 1270-1289, 2015.

B. G. Glaser and A. L. Strauss, Discovery of grounded theory: Strategies for
qualitative research. Aldine, 1967.

B. G. Glaser, The Grounded Theory Perspective III: Theoretical Coding. Sociology
Press, 2005.

B. Glaser, “Theoretical sensitivity,” Advances in the methodology of grounded
theory, 1978.

——, Theoretical Sensitivity. Sociology Press, 1978.

B. G. Glaser, Basics of grounded theory analysis: Emergence vs forcing. Sociology
press, 1992.

K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software engineering
research: a critical review and guidelines,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). 1EEE, 2016, pp. 120-131.

S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study the
experience of software development,” Empirical Software Engineering, vol. 16,
no. 4, pp. 487-513, 2011.

H.J. Rubin and L. S. Rubin, Qualitative interviewing: The art of hearing data.
Sage Publications, 2011.

K. Rose, “Unstructured and semi-structured interviewing.” Nurse Researcher,
vol. 1, no. 3, pp. 23-32, 1994.

Bibliography

[145]

(146]

[147]

(148]

(149]

(150]

[151]

[152]

[153]

[154]

(155]

[156]

J. M. Morse, “"Emerging From the Data": The Cognitive Processes of Analysis in
Qualitative Inquiry,” Critical issues in qualitative research methods, pp. 23-46,
1994.

D. G. Oliver, J. M. Serovich, and T. L. Mason, “Constraints and opportunities
with interview transcription: Towards reflection in qualitative research,” Social
forces, vol. 84, no. 2, pp. 1273-1289, 2005.

R. Hoda and J. Noble, “Becoming agile: a grounded theory of agile transitions
in practice,” in Proceedings of the 39th International Conference on Software
Engineering. 1EEE Press, 2017, pp. 141-151.

H. Engward, “Understanding grounded theory,” Nursing standard, vol. 28, no. 7,
2013.

J. Kontio, J. Bragge, and L. Lehtola, “The focus group method as an empir-
ical tool in software engineering,” in Guide to advanced empirical software
engineering. Springer, 2008, pp. 93-116.

K. Lomborg and M. Kirkevold, “Truth and validity in grounded theory-a recon-
sidered realist interpretation of the criteria: fit, work, relevance and modifiabil-
ity,” Nursing Philosophy, vol. 4, no. 3, pp. 189-200, 2003.

A. Bryman, Social research methods. Oxford University Press, 2001.

ISO/IEC/IEEE, “Systems and software engineering — architecture description,”
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-
2000), pp. 1-46, 1 2011.

A. Strauss and J. Corbin, Basics of qualitative research techniques. Sage publi-
cations Thousand Oaks, 1998.

P. Kruchten, “What Colour Is Your Backlog?” 2008, available Online: https:
/ Itinyurl.com/y6f7vhpx (Accessed 29th September 2019).

A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. Gonzélez-Barahona,
“An empirical analysis of technical lag in npm package dependencies,” in Inter-
national Conference on Software Reuse. Springer, 2018, pp. 95-110.

A. A. Almonaies, J. R. Cordy, and T. R. Dean, “Legacy system evolution towards
service-oriented architecture,” in International Workshop on SOA Migration
and Evolution, 2010, pp. 53-62.

273

https://tinyurl.com/y6f7vhpx
https://tinyurl.com/y6f7vhpx

Bibliography

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

274

J. Kruger and D. Dunning, “Unskilled and unaware of it: how difficulties in
recognizing one’s own incompetence lead to inflated self-assessments.” Journal
of personality and social psychology, vol. 77, no. 6, p. 1121, 1999.

M. E. Conway, “How do committees invent,” Datamation, vol. 14, no. 4, pp.
28-31, 1968.

A. Wert, M. Oehler, C. Heger, and R. Farahbod, “Automatic detection of perfor-
mance anti-patterns in inter-component communications,” in Proceedings of
the 10th international ACM Sigsoft conference on Quality of software architec-
tures. ACM, 2014, pp. 3-12.

C. Mateos, A. Zunino, A. Flores, and S. Misra, “Cobol systems migration to SOA:
assessing antipatterns and complexity,” Information Technology and Control,
vol. 48, no. 1, pp. 71-89, 2019.

C.-C. Chiang and C. Bayrak, “Legacy software modernization,” in 2006 IEEE
international conference on systems, man and cybernetics, vol. 2. IEEE, 2006,
pp- 1304-1309.

D. Myers and S. M. Smith, Exploring social psychology. McGraw-Hill Ryerson,
2015.

D. Kahneman and A. Tversky, “Intuitive prediction: Biases and corrective pro-
cedures,” Cambridge University Press, Tech. Rep., 1977.

A. Martini and J. Bosch, “On the interest of architectural technical debt: uncov-
ering the contagious debt phenomenon,” Journal of Software: Evolution and
Process, 2017.

A. Martini, J. Bosch, and M. Chaudron, “Investigating Architectural Technical
Debt accumulation and refactoring over time: A multiple-case study,” Infor-
mation and Software Technology, vol. 67, pp. 237-253, 2015.

Z.1i, P. Liang, and P. Avgeriou, “Architecture viewpoints for documenting ar-
chitectural technical debt,” in Software Quality Assurance. Elsevier, 2016, pp.
85-132.

C. Urquhart, H. Lehmann, and M. D. Myers, “Putting the 'theory’ back into
grounded theory: guidelines for grounded theory studies in information sys-
tems,” Information systems journal, vol. 20, no. 4, pp. 357-381, 2010.

Bibliography

[168] Z.Li, P Avgeriou, and P. Liang, “A systematic mapping study on technical debt
and its management,” Journal of Systems and Software, vol. 101, pp. 193-220,
2015.

[169] E P.Brooks]Jr, “The mythical man-month (anniversary edition). Addison Wesley,
Boston,” 1995.

[170] M. Fowler, Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[171] C. Szyperski, D. Gruntz, and S. Murer, Component software: beyond object-
oriented programming. Pearson Education, 2002.

[172] A. Martini and J. Bosch, “Towards prioritizing architecture technical debt:
information needs of architects and product owners,” in 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications. 1EEE, 2015,
pp. 422-429.

[173] H. Ghanbari, T. Besker, A. Martini, and J. Bosch, “Looking for peace of mind?:
manage your (technical) debt: an exploratory field study,” in Proceedings of the
11th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. 1EEE Press, 2017, pp. 384-393.

[174] B. Martin, “Global Digital Future in Focus - 2018 International Edition,” 2018,
comscore White Paper.

[175] “Android developer portal,” 2018. [Online]. Available: http://developer.android.
com/about/index.html

[176] P.Bourque and R. E. Fairley, Guide to the Software Engineering Body of Knowl-
edge, Version 3.0. 1EEE Computer Society, 2014.

[177] “Facebook app release history,” 2017. [Online]. Available: http://www.apk4fun.
com/history/2430

[178] “Android core app quality guidelines,” 2017. [Online]. Available: http:
//developer.android.com/develop/quality-guidelines/core-app-quality.html

[179] J. Visser, “SIG/TUVIiT evaluation criteria trusted product maintainability:
Guidance for producers,” Software Improvement Group, 9.0, February
2017. [Online]. Available: https://www.sig.eu/wp-content/uploads/2016/10/
SIG-TUViT-Evaluation- Criteria- Trusted- Product-Maintainability- Guidance-for- producers.
pdf

275

http://developer.android.com/about/index.html
http://developer.android.com/about/index.html
http://www.apk4fun.com/history/2430
http://www.apk4fun.com/history/2430
http://developer.android.com/develop/quality-guidelines/core-app-quality.html
http://developer.android.com/develop/quality-guidelines/core-app-quality.html
https://www.sig.eu/wp-content/uploads/2016/10/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.sig.eu/wp-content/uploads/2016/10/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf
https://www.sig.eu/wp-content/uploads/2016/10/SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf

Bibliography

[180]

[181]

[182]

[183]

[184]

[185]
[186]

[187]

[188]

[189]

[190]

[191]

[192]

276

“Sig official website,” 2017. [Online]. Available: http://sig.eu

M. D. Penta, L. Cerulo, and L. Aversano, “The life and death of statically detected
vulnerabilities: An empirical study,” Information and Software Technology,
vol. 51, no. 10, pp. 1469 — 1484, 2009.

I. 25010:2011, “Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality
models,” 2011. [Online]. Available: https://www.iso.org/standard/35733.html

“Android lint official website,” 2017. [Online]. Available: http://developer.
android.com/studio/write/lint.html

“Findbugs official website,” 2017. [Online]. Available: http://findbugs.
sourceforge.net

“Sonarqube,” 2018. [Online]. Available: https://www.sonarqube.org/
“Pmd official website,” 2017. [Online]. Available: http://pmd.github.io

“Checkstyle official website,” 2017. [Online]. Available: checkstyle.sourceforge.
net

“Jarchitect,” 2018. [Online]. Available: https://www.jarchitect.com
“Scitools,” 2018. [Online]. Available: https://scitools.com

R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality
benchmarking for improving software maintainability,” Software Quality Jour-
nal, vol. 20, no. 2, pp. 287-307, 2012.

D. Bijlsma, M. A. Ferreira, B. Luijten, and J. Visser, “Faster issue resolution with
higher technical quality of software,” Software Quality Journal, vol. 20, no. 2,
pp- 265-285, Jun. 2012.

T. D6hmen, M. Bruntink, D. Ceolin, and J. Visser, “Towards a Benchmark for the
Maintainability Evolution of Industrial Software Systems,” in IWSM-MENSURA
2016 Joint Conference of the International Workshop on Software Measurement
and the International Conference on Software Process and Product Measurement.
IEEE, 2016, pp. 11-22.

http://sig.eu
https://www.iso.org/standard/35733.html
http://developer.android.com/studio/write/lint.html
http://developer.android.com/studio/write/lint.html
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
https://www.sonarqube.org/
http://pmd.github.io
checkstyle.sourceforge.net
checkstyle.sourceforge.net
https://www.jarchitect.com
https://scitools.com

Bibliography

(193]

[194]

(195]

[196]

(197]

(198]

(199]

[200]

[201]

(202]

[203]

T. Das, M. D. Penta, and I. Malavolta, “A Quantitative and Qualitative Inves-
tigation of Performance-Related Commits in Android Apps,” in ICSME '16
Proceedings of the 32nd International Conference on Software Maintenance and
Evolution. IEEE, 2016, pp. 443-448.

“Fdroid,” 2017. [Online]. Available: http://f-droid.org

“Wikipedia page on open-source android apps,” 2017. [Online]. Avail-
able: http://en.wikipedia.org/wiki/List_of free_and_open-source_Android_
applications

“How long does it take to build a mobile app?” 2017. [Online]. Available:
http://www.kinvey.com/how-long-to-build-an-app-infographic/

G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien, “Tracking the
Software Quality of Android Applications along their Evolution,” in Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 2015, pp. 429-436.

T. D6hmen, M. Bruntink, D. Ceolin, and J. Visser, “Towards a benchmark for
the maintainability evolution of industrial software systems,” in Software Mea-
surement and the International Conference on Software Process and Product
Measurement (IWSM-MENSURA), 2016 Joint Conference of the International
Workshop on. 1EEE, 2016, pp. 11-21.

D. Bijlsma, M. A. Ferreira, B. Luijten, and J. Visser, “Faster issue resolution with
higher technical quality of software,” Software quality journal, vol. 20, no. 2, pp.
265-285, 2012.

I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring main-
tainability,” in Quality of Information and Communications Technology, 2007.
QUATIC 2007. 6th International Conference on the. 1EEE, 2007, pp. 30-39.

R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract syntax
suffix trees,” in Reverse Engineering, 2006. WCRE'06. 13th Working Conference
on. IEEE, 2006, pp. 253-262.

J. Rosenberg, “Statistical methods and measurement,” in Guide to Advanced
Empirical Software Engineering. Springer, 2008, pp. 155-184.

P.J. Brockwell and R. A. Davis, Time series: theory and methods. Springer
Science & Business Media, 2013.

277

http://f-droid.org
http://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
http://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications
http://www.kinvey.com/how-long-to-build-an-app-infographic/

Bibliography

[204]

[205]

[206]

[207]

[208]

[209]
[210]

[211]

[212]

[213]

[214]

278

A. 1. McLeod, H. Yu, and E. Mahdi, “Time series analysis with 1,” in Handbook
of statistics. Elsevier, 2012, vol. 30, pp. 661-712.

D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive
time series with a unit root,” Journal of the American statistical association,
vol. 74, no. 366a, pp. 427-431, 1979.

B. L. Bowerman and R. T. O’Connell, Forecasting and time series: An applied
approach. 3rd Edition. Duxbury press, 1993.

R. B. Cleveland, W. S. Cleveland, and I. Terpenning, “Stl: A seasonal-trend
decomposition procedure based on loess,” Journal of Official Statistics, vol. 6,
no. 1, p. 3, 1990.

A. Atchison, C. Berardi, N. Best, E. Stevens, and E. Linstead, “A time series
analysis of travistorrent builds: to everything there is a season,” in Proceedings
of the 14th International Conference on Mining Software Repositories. 1EEE
Press, 2017, pp. 463-466.

D. Spencer, Card sorting: Designing usable categories. Rosenfeld Media, 2009.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

W. Lidwell, K. Holden, and J. Butler, Universal Principles of Design, Revised and
Updated: 125 Ways to Enhance Usability, Influence Perception, Increase Appeal,
Make Better Design Decisions, and Teach through Design, 2nd ed. Rockport
Publishers, January 2010.

L. Pascarella, E-X. Geiger, E Palomba, D. D. Nucci, I. Malavolta, and
A. Bacchelli, “Self-Reported Activities of Android Developers,” in 5th
IEEE/ACM International Conference on Mobile Software Engineering and
Systems. New York, NY: ACM, May 2018, p. to appear. [Online]. Available:
http://www.ivanomalavolta.com/files/papers/mobilesoft_2018_self.pdf

C.J. Kapser and M. W. Godfrey, ““cloning considered harmful” considered
harmful: patterns of cloning in software,” Empirical Software Engineering,
vol. 13, no. 6, p. 645, 2008.

H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic, “Software
architectural principles in contemporary mobile software: from conception to
pratice,” The Journal of Systems and Software, vol. 119, no. 1, pp. 31-44, 2016.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2016.05.039

http://www.ivanomalavolta.com/files/papers/mobilesoft_2018_self.pdf
http://dx.doi.org/10.1016/j.jss.2016.05.039

Bibliography

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

(224]

B. J. Luijten, “The influence of software maintainability on issue handling,”
Master’s thesis, Faculty EEMCS, Delft University of Technology, 2009.

D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code quality
and its relation to issue handling performance,” [EEE Transactions on
Software Engineering, vol. 40, no. 11, pp. 1100-1125, 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6862882/

T. L. Alves, “Determination of number of clusters in K-means clustering and
application in colour segmentation,” in Proceedings of Simulation and EGSE
facilities for Space Programmes (SESP2010), 2010.

M. Tufano, E Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. D. Lucia, and
D. Poshyvanyk, “When and why your code starts to smell bad,” in ICSE 15
Proceedings of the 37th International Conference on Software Engineering, 1. P.
Piscataway, Ed. IEEE, 2015, pp. 403—-414.

S. Koch, “Software evolution in open source projects - a large-scale
investigation,” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 19, no. 6, pp. 361-382, 2007. [Online]. Available:
http://dx.doi.org/10.1002/smr.348

M. Linares-Vdasquez, G. Bavota, C. Bernal-Cardenas, M. Di Penta, R. Oliveto,
and D. Poshyvanyk, “Api change and fault proneness: a threat to the success of
android apps,” in Proceedings of the 2013 9th joint meeting on foundations of
software engineering. ACM, 2013, pp. 477-487.

H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic, “Software ar-
chitectural principles in contemporary mobile software: from conception to
practice,” Journal of Systems and Software, vol. 119, pp. 31-44, 2016.

“Global mobile oS market share in sales to end
users from 1st quarter 2009 to 1st quarter 2018
2018. [Online]. Available: https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/

“Global developer population and demographic study 2017,” 2017. [Online].
Available: https://evansdata.com/press/viewRelease.php?pressID=244

“Number of available applications in the Google Play
Store from December 2009 to June 2018,” 2018.
[Online]. Available: https://www.statista.com/statistics/266210/
number-of-available-applications-in- the-google- play-store/

279

http://ieeexplore.ieee.org/document/6862882/
http://dx.doi.org/10.1002/smr.348
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://evansdata.com/press/viewRelease.php?pressID=244
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

Bibliography

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

280

ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models,” Tech. Rep., 2010.

V. Garousi, M. Felderer, and M. V. Méntyl4, “The need for multivocal literature
reviews in software engineering: complementing systematic literature reviews
with grey literature,” in Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering. ACM, 2016, p. 26.

D. Budgen and P. Brereton, “Performing systematic literature reviews in soft-
ware engineering,” in Proceedings of the 28th international conference on Soft-
ware engineering. ACM, 2006, pp. 1051-1052.

V. Garousi, M. Felderer, and M. V. Méntyld, “Guidelines for including grey
literature and conducting multivocal literature reviews in software engineering,”
Information and Software Technology, 2018.

C. Wohlin, “Guidelines for snowballing in systematic literature studies and a
replication in software engineering,” in Proceedings of the 18th international
conference on evaluation and assessment in software engineering. ACM, 2014,
p- 38.

B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner, M. Niazi, and
S. Linkman, “Systematic literature reviews in software engineering-a tertiary
study,” Information and software technology, vol. 52, no. 8, pp. 792-805, 2010.

R. C. Martin, Clean architecture: a craftsman’s guide to software structure and
design. Prentice Hall Press, 2017.

J. Gilbert and C. Stoll, “Architecting iOS Apps with VIPER.” [Online]. Available:
https://www.objc.io/issues/13-architecture/viper/

E. Wolff, Microservices: flexible software architecture. Addison-Wesley Profes-
sional, 2016.

A. 1. Wasserman, “Software engineering issues for mobile application develop-
ment,” in Proceedings of the FSE/SDP workshop on Future of software engineer-
ing research. ACM, 2010, pp. 397-400.

E. Campos, U. Kulesza, R. Coelho, R. Bonifacio, and L. Mariano, “Unveiling the
Architecture and Design of Android Applications,” in Proceedings of the 17th
International Conference on Enterprise Information Systems-Volume 2, 2015,
pp. 201-211.

https://www.objc.io/issues/13-architecture/viper/

Bibliography

[236]

(237]

[238]

(239]

(240]

[241]

[242]

(243]

K. Sokolova, M. Lemercier, L. Garcia, and L. C. Saint Luc, “Towards High Quality
Mobile Applications: Android Passive MVC Architecture,” International Journal
On Advances in Software, vol. 7, no. 2, pp. 123-138, 2014.

T. Diirschmid, M. Trapp, and J. Déllner, “Towards architectural styles for An-
droid app software product lines,” in Proceedings of the 4th International Con-
ference on Mobile Software Engineering and Systems. 1EEE Press, 2017, pp.
58-62.

M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in mobile app
development,” in Empirical Software Engineering and Measurement, 2013
ACM/IEEE International Symposium on. 1EEE, 2013, pp. 15-24.

V. Garousi and B. Kiigiik, “Smells in software test code: A survey of knowledge
in industry and academia,” Journal of Systems and Software, vol. 138, pp. 52-81,
2018.

N. Tripathi, P. Seppdnen, G. Boominathan, M. Oivo, and K. Liukkunen, “In-
sights into startup ecosystems through exploration of multi-vocal literature,”
Information and Software Technology, vol. 105, pp. 56-77, 2019.

J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and gains
of microservices: A systematic grey literature review,” Journal of Systems and
Software, vol. 146, pp. 215-232, 2018.

S. Maro, J.-P. Steghofer, and M. Staron, “Software traceability in the automotive
domain: Challenges and solutions,” Journal of Systems and Software, vol. 141,
pp. 85-110, 2018.

P. Kruchten, R. Nord, and I. Ozkaya, Managing Technical Debt: Reducing Fric-
tion in Software Development. Addison-Wesley Professional, 2019.

281

https://www.researchgate.net/publication/354202581

	Introduction
	Backround
	Types of Technical Debt
	Overview of Technical Debt Research Trends
	Technical Debt Research Gaps
	Further Technical Debt Research Opportunities

	State of the Art Overview
	Architectural Technical Debt
	Research Goal and Research Questions
	Research Methodology
	Outline and Contribution
	Thesis at a Glance
	Authorship overview
	Other contributions

	I Architectural Technical Debt in Software-Intensive Systems
	Architectural Technical Debt Identification: The Research Landscape
	Introduction
	Related work
	Study Design
	Research Goal
	Research Questions
	Search and selection
	Initial search
	Impurity removal
	Application of selection criteria
	Snowballing
	Validation through Scoups

	Data Extraction
	Publication Trends (RQ1.1)
	Research Focus (RQ1.2)
	Potential for industrial adoption (RQ1.3)

	Data Synthesis
	Study Replicability

	Results - Publication trends (RQ1.1)
	Publication year
	Publication types
	Publication Venues

	Results - Research focus (RQ1.2)
	Level of abstraction
	ATDI Definition
	Analysis Type
	Analysis Input
	Temporal Dimension
	ATD Resolution
	Tool Support

	Results - Potential for Industrial adoption (RQ1.3)
	Tool Availability
	Industry Involvement
	Rigor and Industrial Relevance
	Rigor
	Industrial relevance
	Combined analysis of rigor and industrial relevance

	Threats to validity
	Conclusions

	ATDx: An Architectural Technical Debt Index
	Introduction
	The ATDx Approach
	Definitions
	ATDx Formalization
	ATDx Building Steps
	Step 1: Identification of the ART set
	Step 2: Formulation of 3-tuples "42683AD ARiT, ATDDjT, GriT"52693AE
	Step 3: Building the ART(SUA) dataset
	Step 4: ATDx Analysis
	Step 5: Applying ATDx to a SUA

	Empirical Evaluation Planning
	Goal and Research Questions
	Empirical Evaluation Design

	Empirical Evaluation Execution
	Phase 0: Selection of the SonarQube Tool
	Phase 1: ARSQ Identification and Classification
	Phase 2: Software Portfolio Identification
	Phase 3: ARSQ Dataset Building
	Phase 4: ATDx Analysis
	Phase 5: Identification of Relevant Contributors
	Phase 6: ATDx Report Generation
	Phase 7: Report Distribution and Survey Invitation
	Phase 8: Online Survey

	Results
	Participants Demographics
	(RQ1) On ATDx Representativeness
	(RQ2) On ATDx Actionability

	Discussion
	Threats to Validity
	Conclusion validity
	Internal validity
	Construct validity
	External validity

	Related Work
	Conclusions and Future Work

	Architectural Technical Debt: A Grounded Theory
	Introduction
	Research Method
	Grounded Theory
	Grounded Theory Design and Execution
	Grounded Theory Data Collection
	Grounded Theory Data Analysis

	Theory Evaluation via Focus Groups: Design and Execution

	A Theory of Architectural Technical Debt
	ATD Items
	Framework ATD items
	Process ATD items
	Implementation ATD items

	Causes
	External Causes
	Internal Causes

	Consequences
	Business-related Consequences
	Functionality-related Consequences.
	Product-development-related Consequences

	Symptoms
	Issue-related Symptom
	Resources-related Symptoms
	Performance-related Symptoms
	Development-related Symptom

	Management Strategies
	Active management strategies
	Reactive Management Strategies
	Passive Management Strategy

	Tool
	Artifact
	Prioritization Strategies
	Person
	Communication

	Related Work
	Theory Evaluation Results
	C1: Theory Fit to Underlying Data
	C2: Theory Workability
	C3: Theory Relevance
	C4: Theory Modifiability

	Verifiability and Threats to Validity
	Conclusion

	II Architectural Technical Debt in Android Applications
	How Maintainability Issues of Android Apps Evolve
	Introduction
	Background
	Study Design
	Goal and Research Questions
	Context and Dataset
	Context selection
	Dataset building
	Demographics

	Data Extraction
	Data Analysis
	RQ4.1
	RQ4.2
	RQ4.3

	Results
	RQ4.1. Which are the most recurrent types of maintainability issues in Android apps?
	RQ4.2. How does the density of Android maintainability issues evolve over time?
	RQ4.3. What are the development activities in which maintainability hotspots occur?

	Discussion
	Observations
	Best Practices for Android Developers

	Threats to Validity
	Related Work
	Conclusion and Future Work

	Identifying Architectural Technical Debt in Android Applications through Compliance Checking
	Introduction
	Approach Overview
	Step 1: Android architecture guideline extraction
	Step 2: Android reference architecture establishment
	Step 3: Reverse engineering of implemented architecture
	Step 4: Compliance checking
	Step 5: Quantitative assessment of compliance violations

	Guidelines for architecting Android apps
	Study Design
	Research questions
	Research Method
	Multivocal Literature Review (MLR)
	Practitioners Interviews
	Data Processing and Extraction
	Data Synthesis

	Results
	RQ5.1: Characteristics of Architecting Android Apps
	RQ5.2: Android Architecture Guidelines
	RQ5.3: Quality Requirements

	Threats to Validity
	Related Work
	Conclusions and Future Work

	III Conclusions
	Discussion
	Research Questions Revisited
	Threads to Validity
	External Validity
	Internal Validity
	Construct Validity
	Conclusion validity

	Research Implications
	Replicability

	Conclusions, Future Work, and Outlook
	Bibliography

