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Abstract. Background: Despite the rising interest of both academia and
industry in microservice-based architectures and technical debt, the landscape
remains uncharted when it comes to exploring the technical debt evolution in
software systems built on this architecture. Aims: This study aims to unravel
how technical debt evolves in software-intensive systems that utilize microservice
architecture, focusing on (i) the patterns of its evolution, and (ii) the correlation
between technical debt and the number of microservices. Method: We employ a
mixed-method case study on an application with 13 microservices, 977 commits,
and 38k lines of code. Our approach combines repository mining, automated
code analysis, and manual inspection. The findings are discussed with the lead de-
veloper in a semi-structured interview, followed by a reflexive thematic analysis.
Results: Despite periods of no TD growth, TD generally increases over time. TD
variations can occur irrespective of microservice count or commit activity. TD
and microservice numbers are often correlated. Adding or removing a microser-
vice impacts TD similarly, regardless of existing microservice count. Conclusions:
Developers must be cautious about the potential technical debt they might
introduce, irrespective of the development activity conducted or the number of
microservices involved. Maintaining steady technical debt during prolonged pe-
riods of time is possible, but growth, particularly during innovative phases, may
be unavoidable. While monitoring technical debt is the key to start managing it,
technical debt code analysis tools must be used wisely, as their output always
necessitates also a qualitative system understanding to gain the complete picture.
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1 Introduction

As companies seek to take advantage of their many benefits, microservice-based ar-
chitectures are becoming more and more adopted. As often referenced, the microservice
architecture style offers several advantages, such as scalability, flexibility, and the ability
to develop and deploy individual components independently [11]. Albeit the many
benefits microservice-based systems offer, the architectural style also comes with its own
set of challenges, including increased complexity, the need for effective management of
eventual consistency, and additional effort required for integration and system testing.

⋆ The first two authors contributed equally to this work.

mailto:roberto.verdecchia@unifi.it
mailto:kevin.maggi@edu.unifi.it
mailto:leonardo.scommegna@unifi.it
mailto:enrico.vicario@unifi.it


2 R. Verdecchia et al.

In this context, we can intuitively conjecture that, in order to cope with the increased
complexity and potential loss of the bigger architectural picture, developers may tend
to adopt suboptimal implementation expedients. While providing temporary benefits,
such expedients may tend to make future development harder or even impossible. This
concept of software quality issues related to temporary expedients is commonly referred
to as technical debt (TD) [5].

TD is one of the paramount factors in software development practice. If left unman-
aged, TD can lead, among other consequences, to lower development speed, raise of
a high number of bugs, or even completely crystallized architectures [39]. TD has been
widely covered in academic literature [3,27,41] and is increasing in research popularity.
Similarly, albeit the adoption of microservice architectural style could be considered
as a relatively new phenomenon, its widespread adoption recently drew a considerable
academic interest [12,17,34].

Surprisingly, while both TD and microservices could be considered as popular topics
in current academic literature, there has been relatively little focus on the relationship
between TD and microservice architectures. To date, few studies have considered how
TD evolves in microservice systems and, to the best to our knowledge, none have
quantitatively studied in depth the characteristics of such evolution.

With this research, through a mixed-method case study on an open-source project
comprising 12 microservices (see Section 3.4), we make a first step towards understand-
ing how TD changes as microservice-based systems evolve. Our goal is to pave the
way for future empirical studies that investigate the evolution of this relationship. By
understanding how TD evolves in microservice architectures, and gaining insights into
the characteristics of such evolution, we might be able to shed light on how TD can be
effectively managed in microservice architectures, with the end goal of better supporting
the long-term success of software-intensive systems based on such architectural style.

The main contributions of this research are (i) a quantitative case study reporting
TD measurements through the evolution of a microservice-based software system, (ii) a
thorough statistical analysis complemented by a manual code inspection and discussion
of the results, (iii) a qualitative assessment of the gathered results via an interview with
the leading developer and subsequent reflexive thematic analysis, and (iv) a replication
package containing the entirety of the raw, intermediate, and final data, analysis traces,
and code used for this study.
This work extends the preliminary case study presented at the first International

Workshop on Quality in Software Architecture (QUALIFIER) [40] by complementing
the investigation with an interview with the leading developer of the case study, analyzed
via reflexive thematic analysis, which is used to gain further insights into the results
and assess our conjectures on their interpretation.

2 Related Work

By considering the academic literature that focuses on TD in microservice-based systems
we can identify, to the best of our knowledge, only a handful of studies.

The research of Lenarduzzi et al. [25], where the effects of migrating from a monolithic
to a microservice architecture can have on TD are investigated, might potentially be
the most similar to this work. As our study, the research presents a case study based on
repository mining and static code analysis. In contrast to such study however, we (i) do
not focus on the effects of migrating from monolithic to microservice architecture, (ii)
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aim to study various characteristics affecting TD (e.g., number of microservices), and
(iii) consider as case study a software-intensive system which comprises 13 microservices
instead of the 5 studied by Lenarduzzi et al. [25].

By inspecting the other related literature, TD in microservices appears to be inves-
tigated primarily from a qualitative point of view. In a study by Toledo et al. [35], a
multiple case study based on 25 interviews investigating architectural TD (ATD) in
microservices is reported. The results of the investigation identified ATD issues, their
negative impact, and the common solutions used to repay each debt type. Differently to
such study, we focus on code TD [19,27], utilize a quantitative rather than qualitative
research method, and focus on a case study. In a similar work by Toledo et al. [16],
through a qualitative analysis of documents and interviews, ATD in the communication
layer of microservice-based architecture is investigated. The main contribution of the
paper is a list of debt types specific to the communication layer of a microservice-based
architecture, as well as their associated negative impact, and solutions to repay the debt
types. Regarding the differences w.r.t. our work, the same considerations previously
elicited for the other study of Toledo et al. [35] apply.

Bogner et al. [10] adopted 17 semi-structured interviews to study how the sustainable
evolution of 14 microservice-based systems was ensured. Albeit from the results ATD
emerged as a relevant issue, differently from our study, the work of Bogner et al. does
not explicitly focus on TD. As additional difference w.r.t. our work, while tool-based
DevOps processes were often mentioned as a mean to assure evolvability, the study is
based on a qualitative rather than quantitative empirical research method. Bogner et al.,
in a different study [9], surveyed 60 software professionals via an online questionnaire
to learn how technical debt can be limited through maintainability assurance. Results
indicated that using explicit and systematic techniques benefits software maintainability.
As for the previous studies, also this work by Bogner et al. [9] adopts a qualitative
rather than quantitative research approach. In addition, albeit both the study of
Bogner et al. [9] and this work consider TD in microservices, the primary focus of
Bogner et al. is on studying maintainability assurance techniques, while the one of this
work is on TD evolution in microservice-based software-intensive systems.

Related to the concept of TD in microservice-based systems, Pagazzini et al. [31]
present the extension of the tool Arcan [20] to detect microservice smells. As main
difference with this work, the Arcan extension focuses on architectural smells rather
than focusing explicitly on TD, and does not carry out a case study on TD evolution.

A more systematic literature review on TD in microservices w.r.t. this related work
section is conducted by Villa et al. [43]. Based on the analysis of 12 primary studies,
Villa et al. corroborate the intuition grounding this study, namely the absence of
qualitative studies focusing on the evolution of TD in microservice-based systems. From
the results of Villa et al., ATD and code debt result to be the most frequently reported
debt types for microservices. Such finding, which reflects the general trend observed
for TD in developer discussions [2,24], provides further support to the focus of this
work on the evolution of code TD in microservice-based systems.

3 Study Design and Execution

In this section, we document the research design and execution of the study, in terms
of research goal (Section 3.1), research questions (Section 3.2), and research process
(Section 3.3).
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3.1 Research Goal

The goal of this research is to conduct a preliminary investigation into the evolution
of TD in software-intensive systems utilizing a microservice architecture. By using the
Goal-Question-Metric framework of Basili et al. [8], our goal is:

Analyze software evolution
For the purpose of studying trends and characteristics
With respect to technical debt
From the viewpoint of software engineering researchers
In the context of microservice-based software-intensive systems.

In this study, we opt to focus on code TD [27], rather than other TD types (e.g., ATD)
guided to multiple factors, namely (i) code TD is one of the most frequent TD types
appearing in microservice-based systems [43], (ii) in contrast to the other TD types, code
TD is supported by a vast range of consolidated off the shelf tools, which are vastly used
both in academic research and industrial practice [6], (iii) the focus on code TD allows for
the natural extension of this preliminary case study to future heterogeneous case studies.

3.2 Research Questions

Based on the goal of our study, we can derive the main research question (RQ) and
sub-research questions which guide our research.
The main RQ on which this study is based can be formulated as follows:
RQ: How does code technical debt evolve in a microservice-based software-intensive

system?
With this main RQ, which encompasses the overall goal of the study, we broadly

express our intent to study the evolution of code TD in microservice-based systems. To
be more systematic, we decompose our main RQ into two sub-RQs, each one considering
a different facet of TD evolution in microservice-based software intensive systems.
RQ1: What is the evolution trend of TD in a microservice-based software-intensive

system?
With RQ1, we aim to understand the overall evolution trend of TD in microservice-

based systems, e.g., if TD is constant through the evolution of a microservice-based
software-centric system, if TD showcases a growing trend in time, or if the system is
characterized by a seasonal TD trend (e.g., if developers are more prone to incur in
TD before/after seasonal holidays).

RQ2: Is there a relation between TD evolution and number of microservices?
With RQ2, we aim to understand if a relation exists between the evolution of TD

and the number of microservices composing a software-intensive system. As example,
we could conjecture that, due to suboptimal practices, as the number of microservices
grows, TD grows at a higher rate (e.g., TD is in superlinear or even exponential relation
with the number of microservices).

3.3 Research Process

An overview of the process followed in this study is depicted in Figure 1, and is further
documented below.
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Fig. 1. Research process overview.

The research process consists of five phases, from cloning the case study software
repository containing a microservice-based software project, to the static analysis of
its source code, and the concluding statistical and manual analysis of the collected data.
Each research phase is described in detail in the following.

3.4 Phase 1: Microservice Software Repository Cloning

The first step of our research process consists in cloning a repository containing a
microservice-based software project. For this preliminary case study, we select the
software repository Cloud Native GeoServer.1 The project is a microservice imple-
mentation of GeoServer, an open source server for sharing geospatial data. Cloud
Native Geoserver splits the original GeoServer geospatial services and API offerings
into individually deployable components of a microservices based architecture.

The case study is selected starting from the manually validated list of microservice-
based open-source projects hosted on GitHub elicited by Baresi et al. [7]. The project
is selected from the list by considering as selection criteria (SC1) the real use of the
application, (SC2) the number of times the repository is forked and starred, (SC3)
the number of repository commits, and (SC4) the number of microservices the project
comprises. We use SC1 to exclude as potential case study a toy project and demo.
SC2 instead provides us assurance on the quality and popularity of the repository.
Finally, SC3 and SC4 guarantee us that the project is representative of a long-lived,
complex, software application based on a microservie-based architecture. Cloud Native
GeoServer to date is forked a total of 52 times and starred 176 times. The repository
currently counts a total of 985 commits, comprises 13 distinct microservices, and is
composed of 38k lines of code (NCLOC), and is contributed to by 10 developers.2

1 http://geoserver.org/geoserver-cloud. Accessed 4th July 2023.
2 https://github.com/geoserver/geoserver-cloud. Accessed 4th July 2023.

http://geoserver.org/geoserver-cloud
https://github.com/geoserver/geoserver-cloud
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3.5 Phase 2: Checkout Commit in Main Branch

The second phase of our research consists in checking out in temporal order the commits
of the selected repository. For this process, we opt to consider the commits present
in the main branch of the selected repository. While we are aware of the potential
pitfalls implied by considering exclusively the main branch during repository mining
processes [23], we deem analyzing also other branches as out of scope for this preliminary
investigation. Related threats to validity are discussed in Section 5.

3.6 Phase 3: Build Project

After checking out a commit, the project is built by using the build automation tool used
by the case study software-intensive system, namely Maven3. This step is a prerequisite
for the analysis of the project via SonarQube (Phase 4, see Section 3.7), as the tool
requires the compiled code of the software project in order to analyze it.

During this step, 7 out of 985 builds result to fail (0.7% of all builds). Upon inspection,
we identify the failure to be caused by issues related to the Project Object Model (POM)
of the Maven build. Rather than using a subjective heuristic to fix the issue, we opt to
discard the commits associated to these failing builds. A single commit results instead to
be characterized by an erroneous date in the versioning system. In order to avoid to inde-
pendently estimate the correct commit date via some ad hoc heuristic, we opt to discard
such commit from our analysis. Given the relatively low number of commits skipped due
to build failures or dating issues (8/985 in total), we do not deem this factor to noticeably
influence our results. Further considerations are reported in the threats to validity section
(Section 5). For scrutiny and traceability purposes, the metadata of the 8 commits
omitted from our analysis are documented in the replication package of this study.
To iterate and avoid possible confusion, due to the failing builds and an ill-dated

commit, 977 out of the 985 total commits are considered for analysis of this study.

3.7 Phase 4: Analyze Project with SonarQube

After obtaining the compiled code of the project, the code is analyzed by utilizing
the SonarQube tool. All commits are analyzed by using SonarQube version 9.9 LTS
with SonarScanner for Maven version 3.9.1. During this process, in addition to the
SQUALE metric measuring TD [26], other metrics and metadata of the project is
collected, e.g., the project size in terms of NCLOC, number of files, cognitive complexity,
and committer name. To measure TD, the standard out of the box SonarQube rules
configuration is used, in order to avoid subjective tempering of the tool settings.

The number of microservices appearing in each commit version is instead collected
by following the method first introduced by Baresi et al. [7]. Such method relies on
the analysis of Docker Compose files, in order to identify via parsing the microservices
composing a software-intensive system.

Phases 2-4 are repeated for each of the 977 commits of the software project considered
for this case study.

3 https://maven.apache.org. Accessed 4th July 2023

https://maven.apache.org
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3.8 Phase 5: Data Analysis

As last quantitative step of the research process, the data collected through Steps 1-4
is analyzed to answer our RQs.

To answer RQ1, we decompose the TD evolution trend into its seasonal, trend, and
irregular components [18] by utilizing on the STL algorithm [15]. We adopt the STL algo-
rithm as it does not assume a time series distribution, it was successfully used in previous
software engineering studies [4,28], and an open-source implementation is available as
an R library.4 The resulting trend is then inspected qualitatively by graphical means. To
gain further insights into the “TD hotspots”, i.e., commits showcasing the most outlier
values in TD measurements, the content of the outlier commits are manually scrutinized.
To identify outlier values, we leverage the STL decomposition, by first removing any
seasonality and trend in the TD time series, and subsequently selecting the 10 most
anomalous outliers identified in the STL irregular component series for manual scrutiny.
To answer RQ2, we first study the potential correlation between the number of

microservices and TD time series. Afterwards, we analyze the potential correlation
between the derivatives of such series, to understand the relation between the growth
speed of TD w.r.t. microservice number. For both cases, we test the correlation by
using the Multivariate Granger causality analysis [21]. To calculate the optimal lag
order for the Granger analysis, we adopt the Akaike Information Criterion [1]. As the
Granger test assumes the time series to be stationary, we test such assumption via the
Augmented Dickey-Fuller test [14]. In case the time series result to be non-stationary,
we make them stationary by differencing the data, i.e., by subtracting the value of
each observation from the value of the previous observation in the time series.

3.9 Phase 6: Interview with leading developer

As closing phase of our investigation, we complement the quantitative research results
collected through Phases 1 to 5 via a qualitative research process, namely an interview
with the leading developer of Cloud Native Geoserver. This final research phase
is used to validate the quantitative results collected for RQ1 and RQ2, gain further
insights into the results, and assess our conjectures on their interpretation.
To identify the leading developer of the software project, the commit authorship

of the GitHub repository is analyzed, and the most recurrent committer is contacted
for confirmation of being the leading developer. The interview is conducted in a
semi-structured fashion [22], with the support of a slide deck which is used to guide
the interview.5 Two weeks prior the interview, the quantitative analysis findings are
shared with the leading developer, to ensure the interviewee has sufficient background
knowledge and time to prepare for the interview.

The interview is composed of four main portions, namely (i) introduction and back-
ground, (ii) questions on the TD evolution in Cloud Native Geoserver, (iii) ques-
tions on the relation between TD and microservices in Cloud Native Geoserver, and
(iv) closing remarks. During the introductory interview portion, we verify the familiarity
of the leading developer with the repository and the TD metaphor, summarize the

4 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html. Accessed
4th July 2023.

5 For completeness, the slide deck used, including the structured questions asked during
the interview, is made available in the replication package of this study (see Section 5.4).

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html
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research procedure, and outline the goals of the interview. In the second interview
portion, we ask a set of questions designed to gain insights into the TD evolution trends
identified in Phase 5 (see Section 3.8). Specifically, for each observed TD evolution
trend, we inquire about the development activities conducted in that period, the
awareness of the TD trend in that period, and the effects of the TD trend on future
development activities. Additionally, we also present our preliminary conclusions on the
trend nature, in order to corroborate or disprove our suppositions. In the third interview
portion, which regards the relation between TD and microservices in Cloud Native
Geoserver, we present our quantitative results on the relation and our conjectures on
the interpretation of the findings. As for the previous phase, we ask a set of questions
designed to gain more insights into the quantitative data collected, and verify if we
reached the correct conclusions. Finally, in the closing interview portion, we give the
interviewee the opportunity to provide any additional remark on the investigated topic
that we might have not covered with our previous interview questions.

Due to geographical distance, the interview is conducted via a Google Meet video-call.
To ease the interview process, webcams are utilized to observe non-verbal communication
of the interviewee, e.g., hand gestures, facial expressions, and posture, and provide
silent feedback to the interviewee without interrupting them [13]. The interview lasts
approximately 45 minutes.

3.10 Phase 7: Reflexive thematic analysis

The interview is audio-recorded and manually transcribed by utilizing the denaturalism
approach, i.e., grammar errors are rectified, disturbances in the interview such as
stutters are eliminated, and nonstandard accents (those not belonging to the majority)
are normalized while maintaining a comprehensive and accurate transcription [29].
The transcript is then analyzed via reflexive thematic analysis [36] based on an open
and axial coding process [33]. The adopted qualitative analysis approach allows us to
cluster the incidents provided by the interviewee into different themes, and subsequently
map the themes to our RQs to report the interview results in an structured and
systematic fashion. In addition, adopting a reflexive approach allows us to reflect
and reinterpret our conjectures on our quantitative results, revising their potentially
subjective interpretation, and gain a more concrete and sound understanding of the
studied case.

In the following section, the quantitative results and their reinterpretation based on
the qualitative insights offered by the leading developer are reported.

4 Results

In this section we report and discuss the data gathered to answer our RQs. Specifically,
in the next section (Section 4.1) we consider the results of RQ1, while in Section 4.2
we take into account the results of RQ2.

4.1 Results RQ1: Evolution of TD in a microservice-based
software-intensive system

As described in Section 3.8, in order to study the TD evolution of our case study, namely
the Cloud Native GeoServer application, we consider three different components,
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namely the TD evolution trend, seasonality, and irregularities. An overview of such
decomposition is depicted in Figure 2.
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Fig. 2. Decomposition of the Cloud Native GeoServer application technical debt evolution
via the STL algorithm.

As we can observe from the leftmost diagram of Figure 2, the TD evolution showcases
an overall growing trend. Interestingly, two outstanding jumps, i.e., sudden increases in
TD values, can be be noticed in the plot. By comparing the trend figure with the one
reporting the irregularities in TD evolution (rightmost diagram of Figure 2), we note
that such outliers are captured by the STL algorithm decomposition. The commits
corresponding to such jumps are further analyzed in the second data analysis carried
out to answer RQ1, namely the manual scrutiny of the “TD hotspots” (see Section 3.8).
Overall, as could be expected, TD tends to naturally increase during time as the
application becomes bigger and more complex. From the qualitative data collected
we determine that, according to the leading developer, the main reason behind the
overall increasing trend is due to the lack of a systematic TD monitoring process in
the development pipeline. By directly quoting the leading developer:
“The main and very actual reason for the increase of TD is the lack of monitoring it. We
could have established a quality assurance policy from the beginning. For one reason or an-
other it’s something we always kept on postponing. I think that is the most relevant part.”

The TD evolution trend also presents noticeable plateaus, i.e., periods where the TD
values remain approximately stable. The first plateau, starting from October 2020, lasts
approximately one year and three months of development. By inspecting the commit
dates, we note that none of the plateaus reported in the trend of Figure 2 is due to periods
of development inactivity. Therefore, we conjecture that the development periods associ-
ated to the plateaus correspond to development periods where deliberate efforts might be
made to prevent a TD increase. As further discussed in the following paragraphs, spikes
in TD correspond to periods of innovation and intense activity. Contrary to initial conjec-
tures, insights from the interview reveal that the plateaus are not a result of intentional
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efforts to maintain TD constant. As articulated by the lead developer, these plateaus
actually represent hard-earned periods of tranquil development, which followed the more
tumultuous phases marked by significant jumps in TD. By quoting the leading developer:
“Seeing that almost flat line for that long period makes me happy. It means that, after
all that crazyness, our development choices were not that bad.”

By considering the seasonality of the time series (center diagram of Figure 2), we
can intuitively observe that no seasonal behavior is present in the TD evolution of the
Cloud Native GeoServer application. This implies that TD is not more likely to be
introduced during a certain period of the year. The leading developer confirms this
conjecture by describing a general lack of seasonality in the development activities:
“We don’t have an established development roadmap but we do have contracts with
costumers. So it’s [the release time] more based on a as needed basis and is more agile
than having a six month release timeline. We actually release very often. From one
week to another we can have a new release because of patching or adding new features.”

As second data analysis process carried out to answer RQ1, we manually inspect the
potential “TD hotspots” (see Section 3.8). The most noticeable “TD hotspot” corre-
sponds to a sudden increase in TD values recorded on June 2022 (see Figure 2, rightmost
plot). From manual scrutiny, this sudden TD variation results to be due to the upgrade
of the JUnit testing framework6. The commit also includes the cross-microservice
refactoring of test files according to the upgrade.

Other seven “hotspots”, which are not graphically appreciable from the TD evolution
irregularities depicted in the rightmost plot of Figure 2, happen on the same day as
the JUnit upgrade commit. Upon manual inspection, we note that the commits cor-
responding to these additional seven hotspots involve many microservices of the Cloud
Native GeoServer application. The commits result to either focus on (i) further
refactoring of testing artifacts, (ii) bug fixing, (iii) implementing logging mechanisms,
and (iv) introducing automation processes. The leading developer confirms JUnit as
being the root cause of the identified “TD hotspots”, recalling the high development
effort required by the upgrade:
“I did noticed as well as you did that the new JUnit 5 version provoked a jump on TD,
because there are a lot of tests and we need to make all test methods and classes package
private, which led to a quick [TD] spike.”

Via unstructured follow up question on the TD associated to this development period,
we learn that the deliberate TD taken on by upgrading JUnit paid off, by considerably
easing future development activities. As described by the leading developer:
“It was refreshing. There are [in JUnit 5] new constructs. . . new ways to test that don’t
require to launch the whole application. That was so time consuming. There is always a
bit of a learning curve, but I would not go back to JUnit 4.”

Regarding the sudden increase of TD values in October 2020 results instead, from
manual inspection of the quantitative data results to be caused by the addition of 33
new files in a microservice. The commit involves the extension of the Cloud Native
GeoServer features via the binding to a new JSON parser.

The last of the 10 “TD hospots” considered for manual analysis instead corresponds
to a sudden increase of TD values happening in September 2020. In this case, the TD in-
crease results to be due to a refactoring activity carried out across 70 files, which involved
a considerable number of NCLOC (1.5k NCLOC additions, and 589 NCLOC deletions).

6 https://junit.org/junit5/. Accessed 5th July 2023.

https://junit.org/junit5/
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By asking about the “TD hotspost” of September and October 2020 to the leading
developer, we understand that both months of noticeable TD increase are due to the
early stage of the software project. During this phase, the developers get accustomed
to developing the new application, learning as they go on how the project should
be shaped. Taking on TD appears to be a natural consequence of this early stage
development period. The lead developer recalls on this episode as follows:
“The early stages of the project were subject to a lot of activity. Figuring out mainly
how to split up all GeoServer fuctionality into microservices, Spring Boot modules,
and configurations. There was a lot of activity, and it was an intense learning period.
It makes sense that until we reached some stability. . .we are talking about the first 3
months. . . it was crazy having to figure all that out.”

As conclusion to RQ1, we conclude that both working on a single microservice, or
multiple ones at the same time, can drastically influence TD. Considerable TD vari-
ations can happen independently of the developer activity conducted, e.g., a framework
upgrade can have an unforeseen cascading impact on TD, or a refactoring activity
could lead to a considerable TD increase. As could be intuitively expected, early stages
of development are prone to introduce TD. In addition, taking on TD in a certain
period can lead to following periods of TD steadiness, till a new cycle of development
innovation is needed. As a word of caution, from the considered case study we learn
that TD tool measures can be mischievous. More specifically, a steep code TD increase
could also be concurrently associated with a TD decrease that is not measured by the
utilized tool, as highlighted by the upgrade of JUnit in the considered case study.

RQ1 answer (TD Evolution in a Microservice-based Architecture)

TD displays an overall increasing trend in time, albeit long periods of continued
development without TD increase are noticeable. Considerable TD variations can
happen by working on one or multiple microservices, and may occur regardless
of the development activity conducted. Taking on in a given development phase
can result in subsequent periods of TD stability, until a new wave of development
innovation is needed. TD metrics can be deceptive, as a sharp increase in code
TD might coincide with an unmeasured decrease in another TD dimension.

4.2 Results RQ2: Relation between TD evolution and number of
microservices

In order to study the potential correlation between TD and number of microservices,
we start by graphically inspecting the time series of the two metrics. As can be seen
in Figure 3, both TD and microservices seem to display an overall similar growth
trend. However, a correlation does not appear always to be present in all commits. As
example, by considering Figure 3, we can observe that the removal of one microservice
in April 2021 did not correspond to any noticeable TD decrease. In some cases, e.g.,
April 2023, the addition of a microservice is even associated with a decrease in TD
(i.e., microservice number and TD are inversely proportional). This would imply that,
while number of microservices could display a strong correlation of directly proportional
nature, this might not always be the case.
In order to gain statistical insight into the relation, we follow the analysis process

presented in Section 3.8. From the results of the Granger causality test we confidently
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Fig. 3. Overview of the evolution of technical debt and number of microservices of the Cloud
Native GeoServer application.

reject the null hypothesis and conclude that the evolution of number of microservices
and TD are strongly correlated (p-value<4.593−6). This implies that, albeit seldom
irregularities, a growth (or decrease) of microservice number corresponds to a similar
change in TD. As additional remark, this indicates that the number of microservices
could be used to predict TD values.

As further analysis conducted to answer RQ2, we study the derivatives of the two
time series. This allows us to understand if the two series grow at similar rates, or if
a growth in the microservice series correspond to the growth at a higher rate in the TD
series. Intuitively, we could expect that, as the number of microservices increases, the
software-intensive system becomes more complex, and hence TD grows at a higher rate
as the system becomes bigger. From the Granger test results however, we understand
that this is not the case. In fact, we observe that also the derivatives of the time
series are strongly correlated (p-value<7.896−6), i.e., we can discard with statistical
confidence the null hypothesis. This implies that the impact of adding (or removing) a
microservice on TD is similar regardless of the number of microservices already present
in a software-intensive system.

As subjective interpretation of this latter result, we can conjecture that this pattern
indicates an appropriate adherence to the microservice architectural principles, through
which microservices are developed independently by following a loosely coupled and
highly cohesive architecture. From the interview with the leading developer however,
we learn that this conjecture is partially inaccurate. While in fact the impact on TD of
including or excluding microservice is independent of the microservices already present,
the motivation behind this phenomenon is not primarily due to the microservice inde-
pendence. On the contrary, as described by the leading developer, all microservices share
a common architectural foundation, and each functionality implemented in the microser-
vice heavily relies on dependencies loaded ad hoc from the common architectural layer all
microservices share. Therefore, the absent impact of microservice number on TD trends
is due to the lean nature of the microservices, which enforce loose coupling by loading the
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functionalities from a common architectural layer. As described by the leading developer:
“It does not matter how many microservices there are in the ecosystem because archi-
tecturally there is a cross-cutting layered design. The microservice functionality itself
builds up from dependencies that are usually cross-cutting. There is this cherry-picking
approach on what is loaded on each microservice, but all microservices have pretty much
the same dependencies on the classpath.”

From the additional insights gained via the interview, we note the crucial importance
of complementing quantitative source code analyses with qualitative aspects. While,
during the qualitative assessment of the TD present in a software-intensive system we
can conjecture on the deeper motivations behind TD values, it is only by presenting and
discussing the analysis results with the developers of the system that we can get a more
detailed and complete picture. Therefore, as a word of caution for software managers,
product owners, and alike, it is paramount to always interpret the values provided
by static analyzers with caution, and when possible qualitatively complementing the
results, before taking decisions on future development activities.

RQ2 answer (Relation between TD and number of microservices)

TD and number of microservices are strongly correlated, albeit in seldom cases
such relation does not persist. The impact of adding (or removing) a microservice
on TD is similar, regardless of the number of microservices already present in a
software-intensive system. TD tools based on source code analysis can support
TD management processes. However, their results should be complemented with
qualitative knowledge before making decisions on future development activities.

5 Threats to Validity

The presented results have to be interpreted in light of potential threats to validity.
By following the categorization of Runeson et al. [32], we consider four aspects. While
documented towards the end of the study, in order to avoid a common pitfall of threats
to validity in software engineering research [38], threats were considered from the early
stages of this investigation, as further documented below.

5.1 Construct Validity

To answer our RQs, we measured code TD by adopting the SQUALE index, a metric
widely used in the literature to study TD [6,25,42]. The number of microservices was mea-
sured by utilizing the heuristic first introduced by Baresi [7] (see also Section 3.7). The
use of the heuristic might have marginally affected our results, as it relies on the analysis
of the Docker Compose file. Therefore, a service could be identified at its insertion in the
Docker Compose file, which does not necessarily imply the start of its actual development.
At most, this threat could have introduced a lag in the TD timeseries w.r.t. the number of
microservice one (corresponding to the time elapsed from the insertion of a microservice in
the Docker Compose file, and the start of its actual development). As the potential effects
of this marginal threat were not noticeable in our data analysis, we do not deem the threat
considerably influenced our results. The threat would at most imply a stronger correlation
between microservice number and TD than the one observed. Regarding the focus on the
main development branch of Cloud Native Geoserver (see Section 3.5), we note that
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the application possesses other two branches, which are characterized by 2 and 48 com-
mits ahead, and 256 and 28 commits behind the master branch respectively. Given the
low number of commits in such branches w.r.t. the master branch (2/985 and 48/985), we
do not deem that this research design choice could have drastically influenced our results.
To mitigate potential threats to construct validity due to the design of the structured
interview questions, we complemented the process with follow-up questions whenever
necessary, e.g., when more information was required to completely understand answers.
Additionally, the interviewee was frequently asked if they wanted to include any additional
information on the studied topic that was not directly covered by the questions posed.

5.2 Internal Validity

To avoid potential confounding factors, we (i) discarded all failing builds, and a commit
associated with an incorrect date, (ii) manually scrutinized a set of commits presenting
anomalous TD values, (iii) conducted a rigorous statistical analysis on the collected data.
Regarding the qualitative analysis, to avoid subjective biases during the data collection
and analysis, three researchers took part to the interview, and the relevant findings
were jointly discussed before including them in the paper.

5.3 External validity

As any case study, we do not claim the complete generalizability of the obtained results.
While comparable results might be observed in software-intensive systems of similar
development context and characteristics as Cloud Native GeoServer, this could also
not be the case. To partially mitigate potential threats to external validity, we selected
the case study a software project developed in one of the most popular programming
languages (Java), while also ensuring the representativeness of the software project via
a set of selection criteria defined a priori (see also Section 3.4).

5.4 Reliability and Replication Package

If and to what extent the results of the study can be independently reproduced by other
researchers. With exception of the manual scrutiny conducted to analyze the commits
presenting the most anomalous TD values, the quantitative results are completely
based on the execution of mining and data analysis scripts. We make all data, scripts,
and settings available in a companion replication package7. Given that such results
are of purely quantitative nature, we deem the reliability of such results as very high.
To increase the reliability of the qualitative research process used (see Section 3.9),
we make the guiding interview slide deck available for scrutiny in the replication
package, and make extensive use of direct quotes in the manuscript to avoid subjective
misinterpretation of the data collected through the interview.

7 Replication package of this study: https://github.com/STLab-UniFI/
QUALIFIER-2023-TD-microservices-rep-pkg. Accessed 6th July 2023.

https://github.com/STLab-UniFI/QUALIFIER-2023-TD-microservices-rep-pkg
https://github.com/STLab-UniFI/QUALIFIER-2023-TD-microservices-rep-pkg
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6 Conclusion and Future Work

In this study, we present a preliminary case study investigating the evolution of technical
debt in microservice architectures. The investigation utilizes as case study the application
Cloud Native GeoServer, which comprises a total of 13 distinct microservices, 977
commits, and 38k NCLOC. The study is primarily based on repository mining and
source code analysis. The results show that TD evolution displays a growing trend,
mostly due to development innovation periods, followed by moments of TD stability,
when no disruptive change is needed. TD variation are independent of the number
of microservices and development activities considered in a commit. TD and number
of microservices are correlated, and adding or removing a microservice has the same
impact on TD regardless the number of microservices already present.

Adhering to microservice architecture principles might keep technical debt compart-
mentalized within microservices, and therefore make TD more manageable w.r.t. other
types of architectures (e.g., monolithic ones). It is crucial for developers to remain aware
of the potential TD they may incur in, irrespective of the quantity of microservices they
modify or the nature of the development activity they undertake. An intuitively trivial
change, such as the upgrade of a testing framework, could have a massive cascading
effect on the TD of a microservice-based software-intensive system. While it is feasible
to maintain a consistent level of TD during the evolution of a microservice-based
application, an increase in technical debt may be inevitable as the software-intensive
system grows in size and complexity.

As a word of warning for both researchers and practitioners, through the presented
case study, we observe how TD metrics can be deceptive, as they may not always
provide a clear and complete picture of the TD present in a software-intensive system.
While conducting TD source code analyses it is therefore paramount to consider that (i)
a variation in code TD may co-occur with an opposite variation in another TD aspect,
(ii) code analysis results should be always complemented by qualitative knowledge (e.g.,
interviews or focus groups).
The leading developer however also emphasizes the importance of including TD

monitoring capabilities in the development pipeline to manage TD and avoid significant
consequences, e.g., flaky behaviors or crystallized architectures [39]. As articulated in
the interview, the leading developer states:
“It [the quantitative analysis] was quite enlightening to me. I wanted to include a static
code analysis for a long time. And maybe it would have never happen or it would have
taken me way too long to address if I dind’t have this feedback from you”.
The leading developer further reports that they are waiting for the project steering
committee to integrate the repository with SonarCloud, and is currently working lowering
the identified TD. From a email exchange held after the interview, we learn that the the
Cloud Native GeoServer repository underwent a considerable refactoring, leading
the TD measured via SonarQube to be close to zero.

The presented case study has to be considered as a stepping stone for future research on
TD in microservice-based systems. Several facets which could provide more information
on the phenomenon are not considered in the study. As future work, we plan to (i)
study the individual contribution of each microservice to the TD measured at system
level, (ii) conduct a more in-depth analysis of “TD hotspots”, (iii) utilize dedicated tools
to measure other types of TD, e.g., by combining different data sources [37] or focusing
on ATD via the ATDx tool [30], and (iv) extend the research to a multiple-case study.
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