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ABSTRACT
Architectural Technical Debt (ATD) regards sub-optimal design
decisions that bring short-term benefits to the cost of long-term
gradual deterioration of the quality of the architecture of a software
system. The identification of ATD strongly influences the technical
and economic sustainability of software systems and is attracting
growing interest in the scientific community. During the years
several approaches for ATD identification have been conceived,
each of them addressing ATD from different perspectives and with
heterogeneous characteristics.

In this paper we apply the systematic mapping study methodol-
ogy for identifying, classifying, and evaluating the state of the art
on ATD identification from the following three perspectives: publi-
cation trends, characteristics, and potential for industrial adoption.
Specifically, starting from a set of 509 potentially relevant studies,
we systematically selected 47 primary studies and analyzed them
according to a rigorously-defined classification framework.

The analysis of the obtained results supports both researchers
and practitioners by providing (i) an assessment of current research
trends and gaps in ATD identification, (ii) a solid foundation for
understanding existing (and future) research on ATD identification,
and (iii) a rigorous evaluation of its potential for industrial adoption.
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1 INTRODUCTION
Technical debt (TD) is a term first coined in 1992 by Cunningham to
indicate immature portions of code that, while potentially working
fine, might be unmanageable when they grow in quantity [11].
From its original description, i.e. “not quite right code which we
postpone making it right”, the TD metaphor has been extended to
encompass different types of debt and shortcomings of software
development processes [5].

Architectural Technical Debt (ATD) is a specific type of TD with
an impact at the software architecture level. Given that software
architecture plays a crucial role in the implementation of software
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systems [19], software architecture design can potentially lead to
the introduction of TD that has a high impact on many portions
of the system. Therefore, it is crucial to keep track of the ATD of
software systems during their entire lifecycle. Failing to identify
ATD may cause the slow deterioration of the software architecture,
potentially leading to obsolete systems or even run-time failures.

In general terms, ATD is referred to sub-optimal decisions taken
at the architectural level, which usually result in the conceivement
of immature architectural artifacts [9]. Such ill-suited architectural
decisions can be of different types, e.g., they can be visible or in-
visible [18], or can be introduced deliberately or inadvertently [12].
Instances of ATD, referred to as “ATD items” (ATDI) occur when a
design or construction choice is taken at architectural level as an
expedient in the short term, but set up a technical context that can
make future changes more costly or impossible [6]. ATD identifica-
tion refers to the activity, carried out during or after the architecting
process, aimed at detecting ATDIs in software-intensive systems
[21]. During the years, various researches have investigated how
ATDIs can be identified. The resulting techniques are heterogeneous
in nature, considering different types of ATD and distinct strategies
to undercover them. While some studies have been conducted to
provide an overview of the state of the art on ATD in general [9, 10],
none of these focused specifically on ATD identification.

The goal of this study is to fill this gap by providing an evidence-
based overview of the existing ATD identification research land-
scape. This study has been carried out by adopting awell-established
methodology called systematic mapping [15, 29], andwe applied it
on peer reviewed papers focusing on ATD identification in software-
intensive systems. Through our systematic mapping process, we
selected 47 primary studies among 509 potentially relevant studies,
fitting at best a set of rigorously-defined inclusion and exclusion
criteria. Then, we created a dedicated classification framework com-
posed of 13 different parameters for comparing techniques for ATD
identification, and we applied it to all primary studies. We ana-
lyzed and discussed the obtained data under three complementary
perspectives: publication trends, characteristics, and potential for
industrial adoption.

The main contributions of this study are the following:
• an objectivemap of the state of the art in ATD identification;
• a rigorously-built classification framework for past, present,
and future techniques for ATD identification;

• an evaluation of publication trends, characteristics, and po-
tential for industrial adoption of existing research on ATD
identification;

• a discussion of the emerging research trends, patterns, and
gaps, and their implications for future research on ATD iden-
tification.
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The audience of this study is composed of both (i) researchers
willing to contribute to the area of ATD identification (ii) practition-
ers willing to understand existing research on ATD identification
and adopt the most appropriate solutions for their technical, busi-
ness, and organizational needs.

The remainder of this paper is organized as follows. Section 2
discusses related work and compares it to this study. Section 3
presents the design of this study from a methodological perspec-
tive, whereas Sections 4, 5, and 6 discuss obtained results. Finally,
Section 7 describes threats to validity and Section 8 closes the paper.

2 RELATEDWORK
A number of secondary studies focusing on TD exist to date. In
Table 1 we give a schematic overview of those studies and in the
following we discuss each of them.

Table 1: Secondary studies on TD

Secondary study title Year Focus #Studies Time frame
Tom et al. [26] 2013 TD 35 N/A
Li et al. [20] 2015 TD 94 1992-2013
Alves et al. [2] 2015 TD 100 2006-2014
Ampatzoglou et al. [4] 2015 TD (financial) 69 2009-2013
Besker et al. [9] 2016 ATD 26 2012-2015
Besker et al. [10] 2017 ATD 42 2011-2016
This study 2018 ATD identification 47 2009-2017

Most of the secondary studies on TD consider it only from a
general perspective (i.e., they are not specific to architectural TD).
For example, Li et al. [20] consider a set of 94 primary studies, with
the goal to provide a comprehensive understanding of the notion
of TD and the related research activities. This was achieved by
thematically classifying the primary studies into 10 coarse-grained
TD types, among which ATD results to be the second most studied
subject (together with test TD and design TD), appearing in 25
different researches.

In a similar research carried out by Alves et al. [2], the TD litera-
ture was inspected to characterize the types of TD, their indicators,
management strategies, maturity level, and possible visualization
techniques. The authors analyzed 100 studies published between
2010 to 2014, which resulted in the conception of a preliminary
taxonomy of TD types and an overview of the current research
trends of TD. While, as reported also in the research by Li et al. [20],
ATD resulted to be the second most frequent TD type, no in-depth
analysis was reported for such topic.

In an earlier research, Tom et al. [26] present a literature review
considering 35 primary studies. The focus in this case is to identify
the nature of TD and its impact on software development activities.
From the results, the authors derived a theoretical framework illus-
trating the dimensions of TD, attributes, precedents and outcomes.
As compared to the previously-mentioned literature studies, the
focus of this research is to gain understanding of the current re-
search activities related to TD; accordingly, it does not concentrate
on any specific aspect of TD.

In their systematic literature review, Ampatzoglou et al. [4] con-
sidered a more detailed overview of a specific TD topic, namely the
economic implications of TD. In their work, the authors analyzed
69 primary studies to understand how financial aspects are defined
in the TD context and how these are related to various aspects of
software engineering. Their results show that financial approaches

for TD management lack consistency in their applications, as the
same approach is utilized differently in different studies. In [4], ATD
is considered exclusively from a financial point of view.

The secondary study of Besker et al. [9] is the closest to ours
by focusing exclusively on ATD-related literature. The authors in-
spect 26 primary studies to conceive a descriptive model aimed
to provide a comprehensive interpretation of the ATD phenom-
enon. Their model identifies the main characteristics of ATD in
four clusters: ATD Identification, ATD Checklist, ATD Impediments,
and ATD Management. Each cluster is further decomposed into
Focus areas (e.g. Relevance, Challenges, Methods/Tools), which are
characterized by different aspects (e.g. Methods/tools is composed
of Measuring, Tracking and Evaluating). This study was extended
in a later publication [10] presenting a more comprehensive investi-
gation of the literature and an in-depth analysis of the results. Our
study differs from theirs by zooming into a specific challenge they
identify, namely ATD identification.

In conclusion, by inspecting the TD secondary studies, we can
observe that none of the studies aims directly at the characteriza-
tion of existing approaches for ATD identification. We therefore
conducted this research, focusing exclusively on the research land-
scape of ATD identification, in order to fill this gap and complement
the existing literature.

3 STUDY DESIGN
In this section we report the study design that was strictly followed
while planning and conducting research reported in this paper. The
study design was concieved by following a set of well-established
guidelines for software engineering literature studies [29].

3.1 Research Goal
The research was designed with the goal of characterizing com-
prehensively the current state of the art of ATD identification re-
search. More specifically, by following the Goal-Question-Metric
approach [8], our goal can be formalized as follows:
Purpose Identify, classify, and evaluate
Issue publication trends, characteristics, and potential for

industrial adoption
Object of existing techniques for ATD identification
Viewpoint from the researcher’s and practitioner’s point of

view.
3.2 Research Questions
From our research goal, we can derive the following three research
questions underlying our study:

RQ1:What are the publication trends about techniques for ATD
identification? By answering this research question we aim to assess
the ongoing trends of scientific interest on ATD identification tech-
niques in terms of publication frequency, most prominent venues
where academics are publishing their results on the topic and most
recurrent venue types.

RQ2: What are the characteristics of existing techniques for
ATD identification? By answering this research question we aim
at providing (i) a solid framework for examining and classifying
existing (and future) research on ADT identification techniques,
and (ii) an understanding of current research trends and gaps in
the state of the art of such techniques.
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RQ3: What is the potential for industrial adoption of exist-
ing techniques for ATD identification? By answering this research
question we aim at assessing to what extent the current ATD iden-
tification research results are ready to be transferred and adopted
in an industrial context.

3.3 Search and selection
The search and selection process was designed as a multi-stage
process, as depicted in Figure 1. This enabled us to rigorously con-
trol on the number and characteristics of the studies considered
during the various stages. A description of each process followed
is provided in the reminder of this section.

Figure 1: Overview of the search and selection process

3.3.1 Initial search. To identify the initial set of studies we per-
formed an automatic search query on one of the largest and most
complete scientific database and indexing system, namely Google
Scholar. We selected such digital library for the following reasons:
(i) it resulted to provide the highest number of potentially relevant
studies compared to other four relevant libraries (Scopus, ACM
Digital Library, IEEE Explore, and Web of Science), (ii) as reported
in the set of guidelines by Wholin et al. [28], the adoption of such
indexer results to constitute a sound choice to identify the initial set
of literature for snowballing processes, (iii) the query results could
be automatically extracted from the indexer. The research query
utilized was conceived to encompass as much relevant studies as
possible and is as follows:

Listing 1: Search query
1 TITLE : ( a r c h i t e c t u r e OR a r c h i t e c t u r a l OR a r c h i t e c t OR
2 a r c h i t e c t i n g OR TD OR " t e c h n i c a l deb t " OR ATD)
3 AND ( a r c h i t e c t u r e OR a r c h i t e c t u r a l OR a r c h i t e c t
4 OR a r c h i t e c t i n g ) AND ( " t e c h n i c a l deb t " )

The query selects studies containing either a keyword referring
to “architecture” or “technical debt” and related acronyms in their
title (Listing 1, lines 1-2). Additionally, the full-text of the studies
must contain both on of the keywords referring to “architecture”
and the phrase “technical debt” (Listing 1, lines 3-4). The exclusive
presence of related acronyms, i.e. “TD” and “ATD” in the full-text
is not considered as a valid hit. The considered timeframe end was
delimited by when the query was first executed (November 2017),
in order to avoid potential discrepancies of results due to different
query execution times. The start date was not set, in order to a void
the introduction of a potential bias, even if it could have been set
to when the term “technical debt” was first referenced [11].

3.3.2 Impurity removal. From the initial execution of the search
query, a number of elements resulted not to be research papers (e.g.
patents, standards etc.). Such occurrences were manually removed
from the initial set of potentially relevant studies.

3.3.3 Application of selection criteria. Subsequent to the impu-
rity removal process, we filtered all the remaining research papers
according to a set of rigorously defined selection criteria. A research
paper was included in the set of primary studies exclusively if it
satisfied all of our inclusion criteria and none of the exclusion ones.
Several exclusion rounds were adoptive by utilizing an adaptive
reading depth [22], in order to thoroughly examining the litera-
ture in a time-efficient and objective manner. The inclusion and
exclusion criteria utilized were:

I1- Studies focusing on TD identification in software-intensive
systems. This inclusion criterion is utilized to select exclu-
sively studies considering TD.

I2- Studies focusing on the architecture of software-intensive
systems. This inclusion criterion is utilized to filter out stud-
ies considering other levels of abstraction, such as specific
code implementation details.

I3- Studies presenting or using a technique aimed to the iden-
tification of ATD in software-intensive systems. With this
inclusion criteria, we ensure that only papers discussing the
identification of ATD are included.

E1- Secondary or tertiary studies (e.g., systematic literature re-
views, surveys, etc.). This exclusion criterion is adopted in
order to exclude studies which do not report the desired level
of detail of ATD identification techniques.

E2- Studies in the form of editorials and tutorial, short papers,
and poster, as they are deemed to not provide the required
level of detail and information.

E3- Studies that have not been published in English language, as
their analysis would result to be too time consuming.

E4- Studies that have not been peer reviewed, in order to ensure
the high quality of the studies considered.

E5- Duplicate papers or extensions of already included papers,
in order to avoid possible threats to conclusion validity.

E6- Papers that are not available, as we cannot inspect them.

3.3.4 Snowballing. In order to mitigate potential biases w.r.t.
the construct validity of this study, the automatic search was com-
plemented by a snowballing process [13]. Specifically, a closed
recursive backward and forward snowballing activity was con-
ducted [28]. During this process, researches either citing and cited
by the ones selected in the previous stages were examined, in order
to enlarge the set of potentially relevant studies.

3.3.5 Validation through Scoups. In order to further mitigate
the potential threats to validity resulting from the selection of
a specific digital library, we conducted an supplementary search
query execution on Scopus. We chose this additional database as
it is defined as the largest abstract and citation database of peer-
reviewed literature [1]. From the query execution, most of the paper
indexed resulted to be either primary studies or papers excluded in
the previous selection stages. Only 3 new papers were identified.
After the application of the selection criteria, all were discarded.

3.4 Data Extraction
The purpose of this process was to (i) create a classification frame-
work for the primary studies and (ii) extract the data from each
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primary study. The classification framework consists of three parts,
each addressing one of the research questions (see Section 3.2).

3.4.1 Publication Trends (RQ1). In order to assess the trends
of ATD identification research, three attributes were considered,
namelypublication year,publication type andpublication venue.

3.4.2 Research Focus (RQ2). To characterize the focus of the
primary studies a systematic keywording process [23] was adopted
to define some of the parameters of our comparison framework.
This process is constituted of two distinct steps: (i) collection of
keyword and concepts, i.e. the identification of keywords and con-
cepts by inspecting the full-text of all primary studies, and the
subsequent combination of these to clearly identify the context,
nature, and contribution of the research (ii) keyword clustering, i.e.
the clustering the identified keywords and concepts into categories,
in order to build up a classification framework. The output of this
stage will be the classification framework containing all the identi-
fied parameters (each of them having a specific type and possible
values), representing a specific aspect of ATD identification. The
parameters considered in order to answer RQ2 were: architectural
level (keyworded), ATDI definition (keyworded), analysis type
(keyworded), analysis input source (keyworded), temporal di-
mension, ATD resolution, and tool support. For a definition of
each attribute we refer to Section 5.

3.4.3 Potential for industrial adoption (RQ3). To assess the po-
tential for industrial adoption, four distinct facets were considered,
namely: tool availability, industry involvement, rigor and in-
dustrial relevance. The data of the last two attributes were col-
lected by adopting an ad-hoc data extraction process [14].

3.5 Data Synthesis
Through a data synthesis process we aggregated and summarized
the data extracted from the primary studies [16, §6.5] in order to
understand, analyze, and classify the landscape of ATD research.
In particular, we adopted content analysis (to categorize and code
the primary studies in broad thematic categories) in combination
with narrative synthesis (used to describe details and interpret the
findings resulting from the content analysis).

3.6 Study Replicability
In order to provide the ability to fully replicate the research, a
replication package of the study is publicly available1. The pack-
age includes (i) the protocol describing comprehensively the study
design details (omitted in the paper due to space limitations), (ii) a
detailed description of all the parameters composing the classifica-
tion framework, (iii) the raw data extracted in each phase (iv) the
scripts utilized for the data processing, and (v) the list of primary
studies.

4 RESULTS - PUBLICATION TRENDS (RQ1)
In the reminder of this section we report the results of the analysis
of publication year, type, and venue of each primary study.

1http://www.s2group.cs.vu.nl/techdebt-2018-replication-package

4.1 Publication year
Figure 2 shows the number of primary studies appearing each
year, clustered by venue type. Primary studies span from 2009 to
2017, i.e., the year in which the search query was executed. While
the term TD was first coined in 1992, we can observe that several
years passed before the TD metaphor was explicitly considered
in software architectureInterestingly, the paper published in 2009
(P41) does not explicitly refer to “ATD” but considers “architectural
bad smells” instead.

Figure 2: Primary studies publication year and venue type

In general, a growing trend can be identified through the years,
demonstrating the recent interest of researchers and practitioners
in the subject. As an outlier, a drop of number of primary studies can
be noticed for the year 2017. Such occurrence should be attributed
to the fact that the search query used to select the primary studies
was executed before the end of 2017, leading to partial results for
this year.The reported publication trend is confirmed also in the
recently published study by Besker et al. [10], focusing on the main
ATD characteristics and relations among them.

4.2 Publication types
From the distribution depicted in Figure 2we observe that themajor-
ity of primary studies is published in conferences (28/47), followed
by a non-negligible number of workshops (12/47). Only a modest
number of studies (7/47) is published in journals. We can conjec-
ture that such trend is due to the relatively recent interest in ATD
identification by the software engineering research community. We
can expect a growth in the number of more scientifically-rewarding
publication types (like journals) in the future. This conjecture is
partially confirmed by the 3 journal publications only in 2017.

4.3 Publication Venues
Table 2 reports on the number of studies appearing in the most re-
current venues. There we can observe that ICSE is the most frequent
venue (9/47) followed by MTD (6/47) and ICSA/WICSA2 (6/47). The
presence of MTD as second most recurrent venue highlights the
importance that such workshop has in the TD research area. In
general, due to the nature of the most recurrent venues, we can
conjecture that the primary studies are characterized by being of
high quality and have potentially high interest and resonance in
the scientific community.

2From 2017, WICSA has been renamed as ICSA.
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Table 2: Publication venues

Venue acronym #Studies Studies
International Conference on Software Engi-
neering (ICSE)

9 P1, P6, P10, P15, P20, P25, P32,
P42, P45

Managing Technical Debt workshop (MTD) 6 P2, P21, P24, P30, P35, P40
International Conference Software Architec-
ture (ICSA) / Working IEEE-IFIP Conference
on Software Architecture (WICSA)

6 P7, P9, P11, P19, P22, P36

European Conference on Software Mainte-
nance and Reengineering (CSMR)

3 P41, P46, P47

Information and Software Technology (IST) 2 P4, P23
International Conference on the Quality of
Software Architectures (QoSA)

2 P5, P31

International Conference on Agile Software
Development (XP)

2 P8, P28

Other 18 P43, P39, P27, P18, P38, P14,
P17, P12, P29, P33, P34, P37, P3,
P44, P16, P13, P26

Table 2 shows that a relatively high number of primary studies
(18/47) have been published in different venues, spanning differ-
ent research areas like software maintenance and evolution (P14),
software architecture erosion and architectural consistency (P3),
and dependency and structure modeling (P27). This might indicate
that the TD research community is still undergoing a consolida-
tion phase.

Mainfindings (RQ1). ATD identification is attracting a grow-
ing scientific interest in the last years. The research landscape
is quite fragmented, with ICSE, MTD, and ICSA as most tar-
geted venues. So far, researchers mostly targeted conferences
and workshops, but it is expected that journal publications
will raise in the coming years.

5 RESULTS - RESEARCH FOCUS (RQ2)
Here we report the characteristics of ATD identification techniques
as they emerged from our keywording process (see Section 3.4).

5.1 Level of abstraction
We uncovered four distinct and incremental levels of abstraction
during our keywording process, namely: Source Code Classes, Source
Code Files, Source Code Packages, and Components and Connectors.

As shown in Table 3, source code packages, defined as related
files implementing the same functionality, are the most recurrent
building blocks of the considered architectures (13/47). Components
and Connectors are adopted by a similar number of studies (12/47),
while Source Code Classes and Source Code Files are used in a lower
number of studies.

Table 3: Architecture level

Architecture keywording #Studies Studies
Source Code Packages 13 P3, P4, P5, P7, P9, P14, P27, P28, P30, P38, P39,

P40, P47
Components and Connectors 12 P10, P11, P18, P21, P22, P23, P24, P34, P36,

P41, P46, P47
Source Code Classes 9 P9, P24, P26, P28, P30, P31, P44, P45, P47
Source Code Files 8 P1, P15, P19, P20, P25, P32, P33, P42
Not specified 11 P2, P6, P8, P12, P13, P16, P17, P29, P35, P37,

P43

A considerable number of primary studies (11/47) does not re-
port explicitly the considered abstraction level. Those primary stud-
ies commonly rely on human knowledge (P6, P8, P12, P13, P29),
self-admitted ATDI (P2, P16), and tools in which the architecture
definition is implicit (P17, P35, P37, P43).

The obtained results suggest that as of today there is no com-
mon agreement in the literature about which level of abstraction
should be considered when dealing with ATD identification. We
can conjecture that this phenomenon may be a consequence of
the fact that (i) a unique and well-accepted definition of software
architecture is also missing in the state of the art and (ii) the level of
abstraction in the proposed techniques is strongly influenced by the
types of ATD sources, such as system source code, its architecture
documentation, etc. (see Section 5.4 for the details on ATD sources).

5.2 ATDI Definition
The keywording process resulted in four recurrent categories of
ATDI (see Table 4): Dependency Violations among architectural
components (27/47), Non-modularity (26/47), Compliance Violations
(18/47) and Change Proneness (9/47). Dependency Violations describe
architectural violations resulting from unfit dependencies among
architectural components. Such type of ATDI is usually caused
by unsound architectural design choices, incorrect implementa-
tion, or architectural deterioration. Non-modularity refers to the
sub-optimal modularization of architectural components. Lack of
modularity often causes small changes to propagate to other por-
tions of a system, lowering the maintainability and evolvability
of software systems. Compliance violations refer to the deviation
w.r.t. a certain architectural pattern (e.g. model-view-controller)
affecting the quality of the system. Change Proneness, instead, refers
to architectural components that are modified with high frequency.

Table 4: ATDI definition

ATDI keywording #Studies Studies
Dependency Violations 27 P1, P2, P7, P8, P9, P10, P11, P12, P14, P16, P17,

P19, P20, P21, P22, P23, P27, P28, P30, P32,
P34, P35, P38, P40, P41, P45, P46

Non-Modularity 26 P1, P2, P4, P5, P8, P9, P10, P11, P12, P14, P15,
P16, P17, P18, P19, P20, P28, P29, P30, P32,
P34, P35, P41, P42, P45, P46

Compliance Violations 18 P3, P4, P6, P7, P11, P12, P13, P21, P23, P24,
P26, P31, P36, P37, P39, P43, P45, P47

Change Proneness 9 P1, P9, P14, P19, P20, P29, P32, P33, P45
Custom 18 P5, P8, P11, P16, P18, P19, P20, P22, P25, P28,

P29, P30, P35, P37, P39, P41, P42, P44

In 25 primary studies more than one type of ATDI is used. In
most of the cases this is due to the definition of more than one
ATDI in the paper. For example, in P19 five different ATDIs related
to change proneness, dependency violations, and non-modularity of
source code files are defined. Additionally, a considerable number
of papers (18/47) is based on a custom definition of ATDI that could
not be mapped onto any specific category. Such occurrences focus
on an ad-hoc definitions of ATD, e.g. lack of reusability (e.g., P9) or
non-uniformity of package name patterns (e.g., P39).

From the high heterogeneity of the gathered data we can con-
clude that there is no common agreement on what defines an ATDI.
We can hence conclude that, while different types of ATDI are re-
quired in order to comprehensively model ATD, the literature is
still lacking in a comprehensive taxonomy for a sound classification
of ATDIs.

5.3 Analysis Type
In Table 5 the most recurrent analysis types are reported. From the
extracted data we can observe that a large number of analysis types
are performed in the literature.
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Table 5: Analysis type

Analysis keywording #Studies Studies
Architectural Antipatterns
and smells

25 P3, P4, P5, P7, P9, P10, P14, P15, P17, P19, P20,
P24, P25, P26, P27, P28, P30, P32, P35, P37,
P38, P41, P42, P46, P47

Modularity Analysis 19 P4, P5, P9, P10, P15, P17, P19, P20, P24, P28,
P32, P33, P34, P35, P37, P41, P42, P45, P46

Evolution Analysis 16 P1, P4, P5, P6, P10, P15, P19, P20, P25, P26,
P31, P32, P34, P38, P42, P45

Dependency Analysis 15 P14, P15, P22, P24, P27, P28, P30, P32, P33,
P34, P35, P37, P40, P42, P43, P46

Cost Analysis 14 P4, P6, P8, P10, P17, P20, P21, P22, P27, P29,
P30, P33, P34, P38

Human knowledge based 10 P6, P8, P11, P12, P13, P18, P21, P23, P29, P36
Compliance Checking 6 P3, P7, P31, P39, P43, P47
Change Impact Analysis 6 P9, P10, P11, P18, P21, P22
OO Relation Analysis 6 P1, P25, P26, P31, P44, P47
Visualization 5 P10, P21, P27, P40, P43
Manual Classification 4 P16, P39, P40, P41
Self Admitted 2 P2, P16

The majority of the ATD identification techniques are based on
the identification of architectural antipatterns and smells among
architectural components. Examples of identified architectural an-
tipatterns include cyclic dependencies between architectural com-
ponents and unstable Interfaces. In particular, such techniques usu-
ally entail (i) the identification of architectural components (usually
achieved by clustering source code artifacts) and, (ii) the assess-
ment of properties of/among the components, usually carried out
through modularity analyses (19/47), dependency analyses (15/47),
or a combination of the two3.

Modularity analysis consists in assessing if system functional-
ities are separated into independent, self-contained modules [7].
Modularity resulted the second most recurrent type of analysis
(19/47). Such approaches commonly entail the identification of ar-
chitectural components and functional requirements of a software
system, the evaluation of the modularization of components, and
the eventual cost analysis of the rework cost required to carry out
a refactoring process.

Dependency analysis is based on the evaluation of dependencies
between architectural components in order to identify irregularities
(e.g., circular dependencies). The use of Design Structure Matrices
(DSM) for dependency analysis results to be quite widespread for
ATDI identification (P1, P10, P15, P19, P20, P22, P27, P32, P42, P45).

In order to discover and understand ATD related phenomena,
many studies rely on analyses of the evolution of software sys-
tems through time (16/47). Such approaches take as input historical
data such as architectural documentation and version history. We
observe that our primary studies adopt a heterogeneous set of ap-
proaches to identify ATD. For example, in P1 a technique based on
locating co-changing files in order to identify “architectural roots”
of systems is presented, while in P5 relates modularity metrics to
the average number of modified components per commit. From the
variety of approaches utilizing evolution analysis we can evince
the high potential that historical data has for ATD identification.

A relatively high number of studies considers the financial aspect
of managing ATD through cost analyses (14/47). Such studies range
from risk analyses (e.g., P34) to methods aiding decisions on if and
when ATD should be refactored (e.g., P6). The presence of numer-
ous studies focusing on cost implications of ATD is a meaningful

3We are aware that modularity and dependency analyses can be considered as par-
ticular types of architectural antipattern. Given their high frequency in the primary
studies, we considered them as a separate categories.

indicator. In fact this demonstrates how the ATD problem is rooted
in practice and furthermore shows that the importance of effec-
tively understanding ATD issues and planning future maintenance
activities is not neglected in current research activities.

Human knowledge based analyses are frequently adopted in the
primary studies (10/47). Such types of analyses are conceived to
identify ATDIs in systems by extracting human knowledge through
structured- or unstructured processes such as surveys, interviews,
and questionnaires. We can conjecture that the reason of the high
adoption of human knowledge based analyses is twofold: (i) some
types of ATDIs need insights that are not documented (e.g., ra-
tionale behind a design decision, P11), and (ii) human knowledge
provides validation to complement (semi-)automated ATD identi-
fication analyses (e.g., gathering feedback by presenting to stake-
holders a visualization of the automatically identified ATDIs, P21).

Analyses based on compliance checking assess the discrepancy
between intended and implemented architecture, and the deteri-
oration of the architecture in time [17]. In most of the cases such
approaches are tool supported (P3, P7, P43, P47). One of the studies
(P3) relies on an uncommon technique to discover architectural
compliance in software systems, namely a genetic algorithm.

Change impact analysis is about the evaluation of different design
alternatives and/or the calculation of the effort required to resolve
or avoid ATD in the future [21]. In many cases this typology of
studies involves also cost analyses (P10, P21, P22). Approaches
considering different alternative results are not common in our
dataset (P9, P10, P11, P18, P21, P22). We can conjecture that this is
due to the fact that only few papers consider ATD resolution, as
reported in Section 5.6.

Few studies report analyses based on the object-oriented (OO)
paradigm. In most of the cases such approaches adopt consolidated
software metrics and transfer the gathered results to the archi-
tectural level. For example, in P26 architecturally relevant classes
are identified through code smells and the change history of the
classes, while in P44 architecture quality is assessed by analyzing
code smells among related OO classes. In general, the presence of
such studies indicates that a portion of ATD analyses is rooted in
code analysis, highlighting the thin line that separates software
architecture and the source code of the system in this research area.

Only few studies focus on ATD visualization techniques. This
observation is confirmed by Alves et al. [3] in their secondary
study on TD. This result shows that this research area is only
marginally considered by current research activities and requires
to be further explored, especially considering its potential efficacy
in the communication of ATD issues.

A minority of analyses involve a manual classification processes.
For example P40 presents a visualization approach to highlight
ATD-prone dependencies, based on which architects can manually
select the most significant to be considered for refactoring. We can
conjecture that the low presence of such type of analysis is due to
the high effort required to carry out manual processes and their
relative low scalability, which makes difficult their application to
large software systems.

Only two studies focusing on self-admitted ATD were found in
the primary studies. Such studies rely on code and commit com-
ments where developers “self-admittedly” identify ATDIs. Such
technique is commonly used to identify code related TD [24]. The
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low number of studies focusing on self-admitted ATD might in-
dicate that it is still emerging and under-explored, or simply that
architectural aspects of software systems are not frequently dis-
cussed in repositories (e.g. in commit messages, issue trackers).

5.4 Analysis Input
Our analysis identified five categories of ATD analysis inputs,
namely: Source Code, Evolutionary Data, Architectural Documenta-
tion, Survey and Issue Tracker. As shown in Table 6, Source Code is
the most recurrent analysis input (32/47). From this result we can
observe that the majority of ATD identification techniques relies
to a certain extent on the inspection of code-related properties. A
smaller number of studies requires Evolutionary Data (16/47), such
as commit history or measurements taken over time. Interestingly,
two papers that utilize evolutionary data do not require source code
as additional source, but rely on data extracted from human knowl-
edge (P6), or use pre-existing architectural documentation (P10).

Table 6: Analysis input source

Input source #Studies Studies
Source Code 32 P1, P2, P3, P4, P5, P7, P9, P14, P15, P16, P17,

P19, P20, P24, P25, P26, P28, P30, P32, P33,
P34, P35, P37, P38, P39, P40, P41, P42, P43,
P44, P45, P46, P47

Evolutionary Data 16 P1, P4, P5, P6, P10, P15, P16, P19, P20, P25,
P26, P32, P34, P38, P42, P45

Architectural Documentation 11 P7, P10, P11, P13, P18, P22, P23, P24, P27, P31,
P36

Human knowledge 10 P6, P8, P11, P12, P13, P18, P21, P23, P29, P36
Issue Tracker 7 P1, P15, P19, P20, P25, P32, P42

A lower number of studies takes Architectural Documentation as
input (11/47). We conjecture that this is due to the difficultly to get
access to industrial documentation, which is most often out of date,
when available [25]. In line with the results reported in Section 5.3,
10 studies report approaches that require human knowledge as
input source. Finally, a minority of studies takes Issue Trackers as
additional input to source code (7/47). This latter typology of studies
associate ATD to bug-related issues in source code. For example,
in P20 the number of architectural flaws in a file is correlated to
number of bugs in it, its change frequency, and the total amount of
effort spent on it.

5.5 Temporal Dimension
Table 7 provides an overview of the papers taking into account the
temporal dimension. In order to identify ATD, almost half of the
papers considers the evolution of software systems through time
(22/47). Here we can observe a discrepancy between the studies
considering software evolution and the ones adopting Evolutionary
Data as input (see Table 6). This difference is due to the studies
relying on human knowledge extraction. In fact, those studies rely
on human knowledge instead of evolutionary software artifacts in
order to reason about the evolution of software systems.

Surprisingly, from the gathered data we can observe that the
majority of the studies does not consider the temporal dimension.
Nevertheless we have to remark that this aspect is analysis-specific,
and hence not required per se in order to identify ATD in a system.
For example, P2 considers self-admitted TD in source comments of

Table 7: Temporal dimension

Temporal dimension #Studies Studies
Not considered 25 P2, P3, P7, P8, P9, P11, P14, P16, P17, P21, P22,

P24, P28, P30, P31, P33, P35, P37, P39, P40,
P41, P43, P44, P46, P47

Considered 22 P1, P4, P5, P6, P10, P12, P13, P15, P18, P19,
P20, P23, P25, P26, P27, P29, P32, P34, P36,
P38, P42, P45

a single software release, and hence can pinpoint ATDI in source
code without inspecting the entire version history of a system.

5.6 ATD Resolution
ATD resolution refers to refactoring strategies aimed to partially
or completely remove identified ATDIs. Table 8 gives an overview
of which studies consider ATD resolution. From the results we
can observe that only a limited number of studies reports ATD
resolution strategies (15/47). This could be a symptom of the relative
young age of the ATD research field, where most of the research
effort is still devoted to processes aimed at understanding the ATD
phenomenon, rather than at resolving the identified ATD.

Table 8: ATD resolution

ATD resolution #Studies Studies
Not considered 32 P42, P22, P41, P48, P24, P47, P2, P21, P31, P44,

P45, P3, P14, P16, P30, P36, P38, P8, P40, P46,
P27, P17, P5, P18, P43, P19, P35, P15, P20, P26,
P33, P29

Considered 15 P11, P7, P28, P34, P9, P25, P10, P13, P1, P23,
P37, P39, P6, P12, P4

5.7 Tool Support
Finally, from the studies we extracted which tool were utilized in
order to carry out the ATDI identification processes. This attribute is
meaningful both for (i) researchers who want to conceive new tool-
based ATD identification techniques and (ii) practitioners needing
tools to get further insights in their projects. A comprehensive list
of the most recurrent tools is reported in Table 9.

Table 9: Tool supported

Tool supported #Studies Studies
Titan 6 P1, P15, P19, P20, P33, P43
Structure101 4 P7, P28, P36, P47
SonarGraph 4 P7, P36, P38, P48
Understand 3 P25, P32, P48
inFusion 3 P28, P36, P38
SonarQube 3 P28, P36, P38
Arcan 2 P9, P14
CAST 2 P17, P36
ARAMIS 1 P44
CLIO 1 P46
Call Graph Extractor 1 P34
HUSACCT 1 P3
Hotspot Detector 1 P19
Lattix 1 P10
ModularityCalculator 1 P5
CommitAnalyer 1 P5
Ref-Finder 1 P26
Organic 1 P26
JSpIRIT 1 P26
SA4J 1 P28
iPlasma 1 P39

Titan results to be the most used tool in our primary studies.
Conceived by Xiao et al. [30], Titan introduces a new architecture
model referred to as “design rule space”, intended to capture both
the architecture and the evolutionary structure of systems in order
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to identify architectural issues. The second most used tools are
Structure1014 and SonarGraph5. These two commercial tools are
static analyzers implementing functionalities to support software
architects through dependency and modularity analysis at various
levels of abstraction.

In total, a considerable number of primary studies (24/47) presents
ATD identification approaches that require tool support. Neverthe-
less, this result has to be evaluated with caution. In fact, as further
detailed in Section 6.1, only a subset of ATD identification tech-
niques feature a publicly-available tool.

Main findings (RQ2). ATD identification is strongly rooted
into TD techniques working at the source code level (this is
evident when considering the abstraction level, input, and
ATDI definitions of the proposed techniques).

Different interpretations of software architecture and AT-
DIs are proliferating in the state-of-the-art.

The literature proposes a large and heterogenous set of
analysis types, ranging from the identification of architectural
antipatterns, to dependency analysis, change impact analysis,
and even manual classification of software artifacts.

ATD resolution is considered in less than one-third of the
primary studies, indicating a promising research direction for
the future. Similarly, the temporal dimension of ATD iden-
tification has been considered only in less than half of the
primary studies.

A large number of tools for ATD identification are being
proposed and used, but only a small portion of them is publicly
available.

6 RESULTS - POTENTIAL FOR INDUSTRIAL
ADOPTION (RQ3)

In this section we report on the results regarding the potential of
the studies for industrial adoption.

6.1 Tool Availability
The availability of a tool that implements a proposed ATD identifi-
cation approach is required in order to enable the efficient adoption
of such approach in industry.

Table 10: Tool availability

Tool availability #Studies Studies
Not available 35 P1, P2, P4, P6, P8, P10, P11, P12, P13, P15, P16,

P17, P18, P19, P20, P21, P22, P23, P24, P25,
P27, P29, P30, P31, P32, P33, P34, P36, P39,
P40, P41, P42, P43, P44, P47

Available 12 P3, P5, P7, P9, P14, P26, P28, P35, P37, P38,
P45, P46

As shown in Table 10, only a small number of studies is implemented
in an available tool. In particular, most of such studies makes use of
a novel tool created ad-hoc for the ATD identification described in
the paper or integrates tools that were already developed by the au-
thors. For example, in P5 two publicly available tools developed by

4http://structure101.com
5http://www.hello2morrow.com/products/sonargraph

the authors are utilized: one to calculate modularity metrics (Mod-
ularityCalculator) and the other to calculate the average number of
modified components per commit (CommitAnalyzer).

From these results we evince that, while some approaches are
available in the form of a tool, this is not true for most of the studies
(35/47). This might indicate that (i) numerous researches provide
theoretical results and proof of concepts, and/or (ii) more effort is
needed to ease the application of ATD identification approaches.

6.2 Industry Involvement
In order to assess the involvement of industry in the research related
to ATD identification, we categorize the primary studies into three
partially overlapping categories, namely: academic, industrial and
mixed. A study is classified as academic if all authors are affiliated
to universities or research institutes, industrial if all the authors
are affiliated to industrial companies and, mixed if co-authors are
from both academia and industry. The distribution of the primary
studies according to this classification is reported in Figure 3.

Figure 3: Distribution of industry involvement

As shown in Figure 3 the majority of the researches were con-
ducted from an academic-only perspective (38/47), some studies
emerged from a mixed perspective (7/47) and industry-only studies
are rare (2/47). From these results we can observe that the research
topic is still addressed mostly from an academic perspective; more
partnerships between industry and academia are necessary in order
to enable beneficial knowledge exchanges and acquire a more com-
prehensive understanding of the problems and applicable solutions.

6.3 Rigor and Industrial Relevance
To gain further insights into the potential for industrial adoption
of the ATDI identification approaches, we evaluated the rigor and
industrial relevance of the studies. This process was carried out by
applying the well-defined classification model introduced by Ivars-
son et al. [14]. Accordingly, Rigor refers to the accuracy or exactness
of the research method used, and is subdivided into three categories:
Context, Study design and Validity. These categories assume values
“0”, “0.5”, and “1” reflecting the quality of their description. Industrial
relevance, instead, considers experimental Subjects, Context, Scale,
and Method, which assume values “0” or “1”.

6.3.1 Rigor. Figure 4 shows the distribution of the primary stud-
ies among the three rigor categories. We observe that the context
considered in the studies is in most of the cases reported but de-
scribed schematically (24/47). This indicates that potential impedi-
ments could be encountered when contexts different from the ones
reported in the studies are considered. The study design is gener-
ally characterized by a medium or strong description (19/47 and
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Figure 4: Rigor of primary studies

23/47, respectively), enabling the reader to clearly understand the
variables considered, the treatments adopted, etc. Concerning valid-
ity, a relatively low number of studies discusses threats to validity
(10/47). In most of the studies validity is only mentioned (19/47)
or fully neglected (18/47). This suggests that more effort should be
spent in documenting the validity of the researched approaches,
necessary to increase their potential for industrial adoption.

6.3.2 Industrial relevance. As shown in Figure 5, most of the
studies consider representative industrial subjects (33/47) and utilize
evaluation methods that could be efficiently applied in an industrial
setting (37/47). From the data we can observe that, the fact that
ATD is a problem rooted in practice is not neglected by researchers.
In fact, the studies present approaches that can be easily applied in
practice as well as industrial case studies utilized for their evalua-
tion. Naturally, the size of the systems considered is in the majority
of the cases of industrial scale, too (35/47).

Figure 5: Industrial relevance of primary studies
On a less positive note, the context is not always representative of
the intended usage of the researched approach, as evaluations are
often preformed in an academic setting instead of an industrial one
(19/47). This is reflected also in the high number of academic-only
authors reported in Section 6.2.

6.3.3 Combined analysis of rigor and industrial relevance. By
jointly considering the rigor and industrial relevance distributions
of primary studies, we can sketch which future steps should be
taken in order to increase the potential for industrial adoption of
the research results in ATD identification. As illustrated in Figure 6,
the practical roots of ATD research seem to deeply influence the in-
dustrial relevance of the primary studies, the vast majority of which
has high cumulative scores for such attribute. A higher variability
and lower scores can instead be noticed if rigor is considered. We
can hence conclude that in future research more effort should be
put into rigorously describing the context and the threats to validity,
in order to increase rigor quality.

Figure 6: Rigor and relevance of primary studies

Main findings (RQ3). The lack of available tool support for
the majority of the proposed ATD identification approaches
hinders knowledge transfer and industrial adoption.

To date, most research is academic-only; to further the field
more collaboration between academia and industry would
accelerate knowledge transfer and tuning the research focus
on the most-critical industrial problems.

Research rigor (in terms of reusable study designs) and
industrial relevance (in terms of targeted industrial subjects
and scale, and used methods) are potentially ready for indus-
trial adoption. However, the limitations of the majority of the
primary studies (in terms of context description and discus-
sion of the validity threats) represent a potential risk to their
successful industrial application.

7 THREATS TO VALIDITY
In this section we discuss the threats to validity of our research. In
general, in order to ensure the high quality of the data extracted, a
well-defined research protocol was established before carrying out
the data collection. In addition, all research activities were designed
and carried out by adhering to a set of well-accepted guidelines
for systematic mapping studies [15, 23, 29]. By formalizing such
guidelines we established the protocol that was strictly followed
throughout the study, as documented in Section 3 and further de-
tailed in the provided replication package. In addition, in order to
lower potential sources of bias, crucial considerations that emerged
during the research were discussed jointly by all the authors. De-
spite adhering to a systematic literature review approach, potential
threats to validity are still unavoidable, as discussed in the reminder
of this section along with how we mitigated them.
External validity. The most significant threat to external validity
consists of the potentially low representativeness of the primary
studies. In order to mitigate this threat, we adopted for the iden-
tification of potentially relevant studies the most encompassing
digital library6 (Google Scholar) and search query. Another threat
to external validity is the adoption of a specific set of query key-
words. To mitigate this threat the results of the automated search
query were further extended by executing a backward and forward
snowballing process. In order to have control over the quality of the
6Selected after a preliminary execution of the search query on: Google Scholar, Scopus,
IEEE Explore, ACM Digital Library, and Web of Science.
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primary studies, we exclusively considered peer-reviewed papers,
and hence excluded “grey literature”, e.g. white papers, editorials,
etc. We deem that this does not constitute an additional threat, as
peer-review processes are a standard requirement of high quality
publications. Finally, we utilized a set of well-defined inclusion and
exclusion criteria, which rigorously guided our manual selection of
the literature.
Internal validity. To mitigate potential threats to internal validity,
we established a priori a rigorous research protocol that guided all
the research activities. In addition, the classification framework uti-
lized was defined iteratively by strictly adhering to the keywording
process [23]. For the synthesis of the collected data, simple and
well-established descriptive statistics were adopted. In addition,
sanity tests on the extracted data were used by cross-analyzing
different parameters of the established classification framework.
Construct validity. In order to ensure that the primary studies
were suited to answer our research questions, we manually carried
out the selection of primary studies according to a predefined set
of well-documented inclusion and exclusion criteria. The results of
such process were further expanded by conducting an additional
iterative backward and forward snowballing process. In addition,
as advised by Wholin et al. [29], a random sample of 10 studies
were selected and analyzed independently by all 3 researchers in
order to guarantee the alignment of the analyses.
Conclusion validity. Potential sources of bias resulting from the
data extraction and analysis processes were mitigated by strictly ad-
hering to an a priori defined protocol, explicitly conceived to gather
the data required to answer our research questions. To further mit-
igate threats to conclusion validity, best practices from several well
known guidelines for systematic literature reviews [15, 23, 29] were
followed. These guidelines were strictly adhered to throughout the
entirety of our research activities, and are thoroughly documented
to ensure that our research approach is transparent and replicable.

8 CONCLUSIONS
This paper presents a systematic mapping study on ATD identifi-
cation, the first and foremost building block of ATD management.
Starting from 509 potentially relevant studies, we rigorously ana-
lyzed 47 primary studies via a classification framework dedicated
to ATD identification. Our analysis provides a characterization for
ATD identification techniques in terms of publication trends, their
characteristics, and their potential for industrial adoption.

Our analysis also unveils a series of promising trajectories for
future research on ATD, such as (i) the exploitation of the temporal
dimension when identifying ATD, (ii) the related resolution of iden-
tified ATD, and (iii) a further industrial involvement when formulat-
ing, designing, and evaluating the ATD identification techniques.

In our future work, we are exploring various approaches to
identify ATD in software-intensive systems. Among them, we are
considering architecture compliance checking, e.g. in the context
of Android applications [27].
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