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Abstract
With the ever-growing adoption of AI-based systems, the carbon
footprint of AI is no longer negligible. AI researchers and practi-
tioners are therefore urged to hold themselves accountable for the
carbon emissions of the AI models they design and use. This led in
recent years to the appearance of researches tackling AI environ-
mental sustainability, a field referred to as Green AI. Despite the
rapid growth of interest in the topic, a comprehensive overview of
Green AI research is to date still missing. To address this gap, in this
paper, we present a systematic review of the Green AI literature.
From the analysis of 98 primary studies, different patterns emerge.
The topic experienced a considerable growth from 2020 onward.
Most studies consider monitoring AI model footprint, tuning hy-
perparameters to improve model sustainability, or benchmarking
models. A mix of position papers, observational studies, and solu-
tion papers are present. Most papers focus on the training phase,
are algorithm-agnostic or study neural networks, and use image
data. Laboratory experiments are the most common research strat-
egy. Reported Green AI energy savings go up to 115%, with savings
over 50% being rather common. Industrial parties are involved in
Green AI studies, albeit most target academic readers. Green AI tool
provisioning is scarce. As a conclusion, the Green AI research field
results to have reached a considerable level of maturity. Therefore,
from this review emerges that the time is suitable to adopt other
Green AI research strategies, and port the numerous promising
academic results to industrial practice.

1 Introduction
In recent years, the Artificial Intelligence (AI) community has been
challenged to bring the carbon footprint of AI models to the top
of their research agenda. The iconic paper by Strubell et al. [97]
analyzes the carbon impact of training their own state-of-the-art
models. Results lead to the conclusion that we need to reduce the
carbon footprint of developing and running AI models.

This self-reflection was an eye-opener to the AI research commu-
nity. Many papers followed, calling for a new research direction that
would consider this problem. Schwartz et al. coined the term Green
AI as “AI research that yields novel results while taking into account
the computational cost” [92]. Bender et al. published a position paper
highlighting the consequences of continuously increasing the size
of AI models [31]. A natural question that is posed is whether we
are doing enough as a research community to mitigate the carbon
impact of developing and running AI-based software.

AI systems are significantly complex and, to achieve Green AI,
we need a joint effort that targets all the different stages of an AI

Graphical Abstract: From a systematic review of the Green AI
literature, Green AI results to focus on solutions, and is often
not bound to a specific context or algorithm. The Green AI
research field results to bemature, i.e., themoment is suitable
to port results from academic research to industrial practice.

system’s lifecycle (e.g, data collection, training, monitoring), dif-
ferent artifacts (e.g., data, model, pipeline, architecture, hardware),
etc [3].

Given the heterogeneity of the field, it is also difficult to have a
broad view of all the Green AI literature that has been published in
the past years. To understand the existing research, we conduct a
systematic literature review on Green AI. We provide an overview
and characterization of the existing research in this field. Moreover,
we study how the field has been evolving over the years, pinpoint
the main topics, approaches, artifacts, and so on.

This literature review shows that there has been a significant
growth in Green AI publications – 76% of the papers have been pub-
lished since 2020. The most popular topics revolve around monitor-
ing, hyperparameter tuning, deployment, and model benchmarking.
We also highlight other emerging topics that might lead to inter-
esting solutions – namely, Data Centric Green AI, Precision/Energy
Trade-off analysis. The current body of research has already show-
cased promising results with energy savings from 13% up to 115%.
Still, most of the existing work focuses on the training stage of the
AI model. Moreover, we observe that there is little involvement
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of the industry (23%) and that most studies revolve around labora-
tory experiments. We argue that the field is growing to a level of
maturity in which involvement of the industry is quintessential to
enable the overarching goal of Green AI: harness the full potential
of AI without a negative impact in our planet.

To encourage open science and the reproducibility of this study,
we provide all data and scripts in a replication package available
online with an open-source license1.

The remainder of this paper is structured as follows. In Section 2,
we describe the methodology used to collect and analyze Green
AI literature. In Section 3, we present all the results yielded by our
methodology. Section 4 discusses findings and reflects on the impact
of our results in the research community. In Section 5, we reflect
on the potential threats to the validity of this study. Following,
Section 6 describes related work and pinpoints the differences with
our study. The main conclusions and future work are presented in
Section 7.

2 Methodology
In this section, we document the research design, which was rigor-
ously adhered to during the planning and execution of the study.We
primarily followed the guidelines for conducting SLRs in software
engineering research presented by Kitchenham [6].

2.1 Research Objective and Question
The goal of this review is to understand the characteristics of ex-
isting Green AI research. By utilizing the Goal-Question-Metric
method [1], this objective can be describedmore formally as follows:

Analyze Green AI literature
For the purpose of knowledge collection and categorization
With respect to AI
From the viewpoint of researchers and practitioners
In the context of environmental sustainability.

The goal of this research can be directly translated into a research
question (RQ), which states as follows:
RQ: What are the characteristics of Green AI state-of-the-art re-

search?

By answering our research question, we aim at gaining a system-
atic overview of the Green AI body of knowledge, starting from
an outline of the general publication trends, to a detailed analy-
sis of the past and current Green AI research activities and their
characteristics.

2.2 Research Process
An overview of the research process followed is depicted in Figure 1.
The process starts with the execution of a conservative automated
search query via the digital libraries and indexing platforms Google
Scholar, Scopus, andWeb of Science, complemented by a subsequent
iterative bidirectional snowballing process, which is conducted un-
til the achievement of theoretical saturation. Including multiple
literature indexing platforms to execute the automated search al-
lows us to conduct an encompassing search of the literature based
on multiple sources, hence allowing us to mitigate potential threats

1Replication package: https://github.com/luiscruz/slr-green-ai

to external validity, as further documented in Section 5. Following,
the details of each step of our research process are documented
in detail.
2.2.1 Automated Initial Search. To identify a preliminary set of
potentially relevant research works, we design an encompassing
automated query to be executed on three different literature in-
dexers, namely Google Scholar, Scopus, and Web of Science. The
automated query targeting publication titles states as follows:

Listing 1: Automated search query
1 INTITLE("green" OR "sustainab*") AND

2 INTITLE("AI" OR "ML" OR "artificial␣intelligence"

3 OR "machine␣learning" OR "deep␣learning")

The query is designed to retrieve literature with titles containing
keywords related to sustainability, identified by the keywords green
or sustainability and its variations, e.g., “sustainable” (Listing 1,
Lines 1). The second part of the query instead is used to retrieve
literature concerning AI, or related synonyms and acronyms (List-
ing 1, Lines 2-3). The query is executed on the three aforementioned
literature libraries and indexes on the 18th of July 2022, and led
to the identification of 190 potentially relevant studies. In order
to be as comprehensive as possible, and avoid potential threats to
external validity, the year of publication is left unbounded in the
automated search.
2.2.2 Application of Selection Criteria. Subsequent to the identi-
fication of the initial potentially relevant studies, we execute the
manual selection of the studies via a set of selection criteria defined
a priori. A paper is confirmed as primary study if it adheres to all
inclusion criteria, and none of the exclusion ones. The following
inclusion (I) and exclusion (E) criteria are used:

I1- The study regards AI
I2- The study regards environmental sustainability
I3- The study regards the environmental sustainability of AI
I4- The study regards the software level
E1- The study is not written in English
E2- The study is not available
E3- The study is a duplicate or extensions of an already included

study
E4- The study is a secondary or tertiary study
E5- The study is in the form of editorials, tutorials, books, ex-

tended abstracts, etc.
E6- The study is a non-scientific publication or grey literature
With the first three inclusion criteria (I1-I3), we ensure that the

primary studies focus on Green AI (I1, I2), and that the studies
regard the environmental sustainability of AI, rather than the im-
provement of environmental sustainability through AI. With the
fourth inclusion criterion instead (I4), we ensure that the primary
studies focus on software-centric Green AI. This latter criterion is
used to exclude studies focusing on hardware-specific Green AI
techniques, e.g., the use of ad hoc implemented hardware compo-
nents, which we consider out of reach for most researchers/practi-
tioners interested in Green AI, and is only marginal to the definition
of Green AI itself [92].

The exclusion criteria are designed to ensure that data can be
extracted from the papers (E1, E2), do not represent duplication or

https://github.com/luiscruz/slr-green-ai
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Figure 1: Systematic literature review process overview.

redundancy with respect to other primary studies (E3, E4), and are
provided in the form of scientific studies (E5, E6).

To ease the primary study selection process, adaptive reading
depth [13] is used to efficiently assess potentially relevant studies.
In order to mitigate subjective biases and interpretations, the three
authors independently utilized the selection criteria to scrutinize 63-
64 candidate studies. Weekly meeting are held during the selection
process to jointly discuss examples, doubts, and align the selection
process between the three researchers.

The application of the selection criteria concludes with the iden-
tification of 16 primary studies, which constitute the starting set
for the subsequent snowballing process.
2.2.3 Snowballing. In order to enrich the set of selected primary
studies, and ensure that the primary study comprehensively repre-
sents the Green AI body of literature, the automated search results
are complemented with a recursive bidirectional snowballing pro-
cess [21]. This step entails the scrutiny of all studies either citing
or cited by the already included primary studies. As for the appli-
cation of selection criteria, three researchers are involved in the
snowballing. During each snowballing round, the researchers in-
dependently snowball different primary studies, and propose new
primary studies to be included, i.e., the new identified studies which
adhere to the selection criteria. During each snowballing round, ex-
amples, doubts, and divergences are jointly revisited and resolved,
and the next snowballing iteration is started. A total of two rounds
of backward and forward snowballing are executed before no new
studies are identified, i.e., when theoretical saturation is reached.
The snowballing process terminates with the inclusion of 82 new
primaries studies, leading to a total of 98 primary studies which are
considered in the literature review reported in this research.
2.2.4 Data Extraction. In order to achieve the intended goal of
this study and answer our RQ (see Section 2.1), we proceed to
systematically extract data from the primary studies. The data
extraction process consisted of two subsequent phases.

The first phase consists of a data exploration process, which
terminates with the establishment of the data extraction framework
of this study. Specifically, during this first phase, the three authors
of this review independently scan the identified primary studies,
and annotate the characteristics of the studies which are relevant
to answer our RQ. The identified characteristics are then jointly

discussed and refined, leading to the consolidation of the fields
constituting the data extraction framework of this review.

In the second data extraction phase, the primary studies are
thoroughly analyzed, and the data is extracted from the studies
according to the data extraction framework.

The fields of the data extraction framework utilized for this
literature review on Green AI are the following.

• Green AI Definition: the level of abstraction used in the
paper to quantify the impact of AI in the surrounding envi-
ronment: energy efficiency [18], carbon footprint [20], or
ecological footprint [9].

• Study type: The overarching type of study, which could
be either presenting a position on Green AI, a Green AI
solution, or an observational study on Green AI;

• Topic: The Green AI topic considered in the study, e.g.,
hyperparameter-tuning to achieve energy efficiency of an
AI algorithm;

• Domain: The domain considered in the study, e.g., edge or
mobile computing;

• Type of data: The type of data utilized by AI in the study,
e.g., text or images;

• Artifact considered: The AI artifact considered in the study,
e.g., the data used by AI models, the AI models themselves,
or the AI deployment pipeline.

• Considered phase: If the study focused on the AI training
phase, the AI inference phase, or both.

• Research strategy: The research strategy, as defined in [16],
used to support the claims reported in the study;

• Dataset size: The size of the dataset, in number of data
points, considered in the study (if any);

• Energy Savings: The reported percentage energy savings
achieved by solutions reported in the study (if any is docu-
mented);

• Industry involvement: Industry involvement in the author-
ship of the study, which could be either academic-only
authorship, industrial-only authorship, or mixed author-
ship;

• Intended reader: If the study is primarily intended for aca-
demic readers, industrial readers, or the general public.

• Tool availability: The availability of the tool(s) to address
Green AI presented in the study (if any).
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2.2.5 Data Synthesis. During the data extraction process, the data
was harmonized by relying on the constant comparison [2] of ex-
tracted keywords, breaking up keywords into more specific ones
when their semantic depth required it, or merging very similar key-
words to avoid redundancy. This analysis process relied on open
coding [4] to systematically identify recurrent concepts, followed
by axial coding [4] to manage the increasing complexity of some
emerging concepts.

The only exceptions were made for the research strategy, in-
dustry involvement, and tool availability fields of the extraction
framework (see Section 2.2.4), for which provisional coding was
used [4]. Specifically, coding of the research strategy relied on the
research strategy categories reported by Stol et al. [16] was used.
The industry involvement instead relied on three pre-defined fields,
namely “academic-only authorship”, “industrial-only authorship”,
or “mixed authorship”. Finally, tool availability could only assume
one of two pre-defined values, namely “Yes” (if the tool is available)
or “No” (if the tool is not available, or none is presented in the
primary study).

During the data extraction and synthesis phase, emerging codes
are continuously discussed among the three authors of the review.
This process ensures that the emerging codes and their abstraction
level are kept consistent among researchers, and are aligned with
the research goal and question of the study.

3 Results
In this section, we present the results collected with our SLR on
Green AI.

3.1 Publication Years
The literature spans from 2015 with the first publication on the topic
to this present year (i.e., 2022). Figure 2 presents the distribution
of the literature papers regarding the publication year. We observe
a global increase following the years. Furthermore, a spike in the
number of publications is seen in 2020, going from 7 publications
in 2019 to 20 in 2020. As the automated initial search was launched
in 2022, the publication trends reported in this review might not
be representative of the actual research output of 2022 (see also
Section 2.2.1).

2015 2016 2017 2018 2019 2020 2021 2022

Year
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20

30

1
3

6 7 7
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21

Figure 2: Number of publications per year.
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Figure 3: Number of publications per type of Green AI defi-
nition.

3.2 Venue Types
Publications are particularly concentrated on conferences (⊲ 47 out
of 98 papers.) and journals (⊲ 39 out of 98 papers.). Only 12 out of
the 98 publications are associated with a workshop. Conferences
being treated as an equal publishing venue as journals follows the
trends observed in the computer science research field [5, 19].

Green AI publication trends

¨ The topic of Green AI is experiencing an increasing trend
of popularity, with a considerable growth in publications from
2020 onward. Most studies are published in conferences and
journals, while only a minor portion in workshops.

3.3 Green AI Definition
The distribution of publications across different GreenAI definitions
is presented in Figure 3. Most literature addresses Green AI at
the level of energy efficiency (81 papers). Higher-level definitions,
namely carbon and ecological footprint, are only addressed in 20
and 9 publications respectively. Note that a primary study might
be mapped to more than one definition, if more than one is used in
the paper at hand.

3.4 Study Types
Existing literature on Green AI spans across three types of studies,
namely observational, solution, and position papers (see also Sec-
tion 2.2.4). As shown in Figure 4, from the 98 papers covered in
this review, the most common are solution papers, with 51 entries,
followed by observational with 35, and position papers with 12.
Note that study types are mutually exclusive, i.e., a single paper has
only one study type.

3.5 Green AI Topics
From our analysis we identify 13 main topics being addressed by the
Green AI literature. Figure 5 depicts the distribution of publications
across the different topics. The most popular topic is Monitoring,
addressed by 28 papers, followed by Hyperparameter Tuning (18),
Model Benchmarking (17), Deployment (17), and Model Comparison
(17). Since papers are not exclusive to a single topic, these top-4
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Figure 4: Number of publications per study type.

topics alone cover 61% of the papers in this review. Below, we pin-
point each topic with a short summary and the respective number
of publications.

Monitoring ⊲ 28 out of 98 papers. Covering monitoring ap-
proaches to study the energy and/or carbon footprint of AI models.

In this topic, papers report and reflect on the energy footprint
of state-of-the-art models throughout their lifecycle. For example,
Wu et al. [110] provide a landscape of the carbon footprint of AI
models across Facebook. Findings showcase that, typically, through-
out the lifetime of AI models, 50% of their carbon cost lies in the
embodied carbon footprint of the hardware used to develop these
models. However, the paper shows that the vast majority of training
workflows under-utilizes GPUs at 30–50% of their full capacity.

Other papers within this topic focus on solutions to make carbon
monitoring feasible in any AI project [48]. As an example, the
Carbontracker offers a toolset to track and predict the energy and
carbon footprint of training DL models [26]. These studies argue
that it is quintessential to report the energy and carbon footprint
of model development and training alongside performance metrics.

Hyperparameter Tuning ⊲ 18 out of 98 papers. Improving or
assessing the impact on the energy consumption of optimizing
hyperparameters when training an AI model.

Many publications are motivated by the fact that tuning parame-
ters leads to significant energy costs – it requires retraining a model
multiple times in order to find the optimal set of hyperparameter
values. Hence, most publications within this topic focus on iden-
tifying alternative strategies that reduce the number of iterations
required to tune hyperparameters [95].

On a different perspective, Chavannes et al. [87] explore how
hyperparameter tuning can help deliver more energy-efficient mod-
els by adding power consumption to the set of parameters being
optimized.

Model Benchmarking. ⊲ 17 out of 98 papers. Studies that con-
tribute with benchmarks to compare the energy footprint of differ-
ent models or training techniques.

Benchmarks help the community understand how the state of
the art behaves w.r.t. given performance indicators. Ultimately,
they help create baselines so that new approaches can be prop-
erly validated and compared to the state of the art. As example of
publications within this category, Asperti et al. [27] evaluate the
energy cost of different variational autoencoders. Another study, by
Yu et al. [117], compares the energy efficiency of common machine
learning algorithms when applied to clinical laboratorial datasets.

Deployment ⊲ 17 out of 98 papers. Addressing the deployment
stage of the lifecycle of an AI model.

Typically, publications in this topic discuss the problem of de-
ploying AI models in a real scenario or in a scenario with pecu-
liar constraints that challenge a standard approach. For example,
deployment publications showcase the challenges of deploying
energy-efficient AI in FPGA [101], in Edge devices [51, 68], in mo-
bile devices [62, 79, 104], and so on.

Precision/Energy Trade Off ⊲ 11 out of 98 papers. There is a
turning point where to increase a very small fraction of the model
performance, it is required to endure an energy-intensive training
loop. Within this topic, papers address the Pareto trade-off between
having optimal accuracy and/or optimal energy efficiency.

Zhang et al. [118] study how removing neurons from neural
networks affects both accuracy and energy consumption. Results
indicate that a good portion of neurons are redundant and can
be removed to reduce energy consumption without a significant
impact on accuracy. At the same time, it shows that there is a turning
point where removing neurons improves energy efficiency but
significantly reduces accuracy. Hence, the two parameters always
need to be analyzed together. Other works opt for optimizing energy
while keeping accuracy loss within a negligible margin [106].

Algorithm Design ⊲ 10 out of 98 papers. Design of new training
algorithms that produce models that are significantly more energy-
efficient than the state of the art.

Some works propose small changes to the algorithms that make a
big difference in the final energy consumption. For example, Garcia-
Martin et al. [46] approximate the splitting criteria by selecting
branches that require less computational effort. Results showcase
decision trees that are up to 31% more energy efficient and with
minimal impact on accuracy. Other examples include Espnetv2 [81],
a lightweight convolutional neural network designed with power-
efficiency in mind.

Libraries ⊲ 8 out of 98 papers. Our choice of libraries have an
impact on the final carbon footprint of AI systems. Studies within
this topic provide some sort of evaluation of different AI libraries
and how they contribute to energy efficiency.

This category shows that software engineering studies play an
important role in enabling Green AI. Georgiou et al. [50] compare
the energy footprint of deep learning frameworks. Results showcase
that PyTorch is more energy-efficient than Tensorflow at the train-
ing stage. However, Tensorflow tends to be more energy-efficient at
the inference stage. The study delves into the framework’s different
API methods and highlights code in the frameworks that should be
optimized to reduce energy consumption. Finally, the authors moti-
vate the importance of reporting and discussing energy efficiency
in the documentation of deep learning frameworks.

Data Centric ⊲ 6 out of 98 papers. Typically, the AI community
has looked into coming up with better model training strategies.
However, there is a new trend in AI that is raising the importance
of developing better data collection and processing techniques as a
more effective way to deliver better AI models. This line of thought
within Green AI aims at reducing the carbon footprint of AI by
tackling the problem at the data level.
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Data-centric approaches for Green AI show that feature selection
and subsampling techniques can significantly reduce the energy
consumption of training machine learning models [102]. Subsam-
pling strategies can be more sophisticated by removing data points
that are expected to be redundant in terms of knowledge acquisi-
tion [39].

Network Architecture ⊲ 6 out of 98 papers. The impact of a
distributed network on the energy efficiency of AI. AI models are
often deployed in a distributed context – e.g., IoT, edge computing,
etc. Hence the design and architecture of the network plays an
important role in leveraging sustainable models.

For example, Kim and Wu [68] propose an adaptive execution
engine that selects the inference strategy according to the signal
strength of the network in different devices, as it is known to affect
the energy efficiency of the edge mobile system.

Estimation ⊲ 5 out of 98 papers. Collecting and making sense of
energy or climate data is far from trivial – many different factors
contribute to the final estimation [48]. This topic revolves around
understanding ways of estimating the energy consumption or car-
bon footprint of models.

Existing solutions to estimate energy consumption for software
fail to provide meaningful insight about energy consumption that
can be mapped to a machine learning model’s structure. IrEne cre-
ates a graph that breaks down NLP models into low-level machine
learning primitives and provides energy estimations at the primitive
level [37].

Emissions ⊲ 4 out of 98 papers. Papers that focus on understand-
ing the carbon impact of creating and/or consuming AI systems.
Dhar [40] flags the importance of being able to quantify carbon im-
pact and the lack of tools and data available. Fraga-Lamas et al. [44]
go beyond reporting the energy consumption of an AI-enabled
IoT scenario and present how much carbon would be emitted in
different countries and different energy sources.

Policy ⊲ 3 out of 98 papers. Studies within this topic address and
discuss strategies on how we should handle the carbon footprint of
AI as a society.

Perucica and Andjelkovic [85] reflect on the environmental poli-
cies implemented by the European Union, discussing whether they
fit the AI era or new regulations are needed. Rhode et al. [89] call
out for the unclear dilemma between the impact of existing/up-
coming AI technologies and the commitment to achieve the 1.5℃
climate change goal as expressed in the UNFCCC Paris Declaration.

Ethics ⊲ 3 out of 98 papers. Papers that focus on the ethical im-
plications of the growing carbon footprint of AI. Tamburrini [100]
discusses the responsibilities of AI scientists, AI infrastructure
providers, and other stakeholders in enabling Green AI. The pa-
per questions whether it is ethically justified to create massive AI
pipelines to improve accuracy.

Other ⊲ 5 out of 98 papers. Studies addressing a relevant topic
with only a single publication in total: User values [69], Schedul-
ing [120], Rebound Effects [109], Security [93], Energy Capping [70].

Green AI topics by study type

¨ There are 13 main topics on Green AI. The majority (61%)
of the publications focuses on Monitoring, Hyperparameter-
tuning, Model Benchmarking, and Deployment. Despite being
important, topics such as Data-Centric, Estimation, and Emis-
sions are underrepresented in the scientific literature.

3.6 Green AI Topics by Study Type
We further investigate the distribution of papers across different
topics per category. Figure 6 presents a bubble plot that draws a
bubble for each pair topic (x-axis) and study type (y-axis). The size
of the bubble is proportional to the number of papers published in
each pair. The plot enables a few observations.

Most topics adhere to the general pattern observed earlier in Sec-
tion 3.4: the majority of papers consist of solution studies, followed
by observational and then position. However, the topics of Model
Benchmarking and Libraries do not follow this pattern, being mostly
covered by observational papers. This is expected as these topics
revolve around comparing different libraries and models to provide
insight on the energy efficiency of different design decisions.

Moreover, papers from the least represented topics Ethics, Policy,
and Emissions tend to be position papers. From the ten studies in
these three topics, only one is observational and none is solution.

Also worth noticing is the fact that the majority of the position
studies in Green AI only cover the smallest topics. Considering
the top-10 topics – from Monitoring to Estimation – only 6 are
position papers. In contrast, the bottom-4 topics (including Other)
are covered by 10 position papers.

Green AI topics by study type

¨ Most publications on Ethics, Policy, and Emissions are posi-
tion studies calling for more research in these topics.

3.7 Domains
Figure 7 presents the distribution of the publications according to
the domain they cover. The majority of the publications (i.e., ⊲ 58
out of 98 papers.) do not devote their studies to a specific domain, but
tackle the energy efficiency of AI in a general context. Regarding
the most specific studies, the most covered domains are:

Edge Regarding Internet of Things and Edge Computing, which
are usually associated with distributed systems and net-
works. ⊲ 24 out of 98 papers.

Computer Vision Regarding image recognition.⊲ 6 out of 98 pa-
pers.

Cloud ⊲ 5 out of 98 papers.
Mobile ⊲ 4 out of 98 papers.

TheOther category gathers publications about a specific domain,
being covered only once, among Health, Autonomous Driving,
Smart cities, Human Activity, Wearables, and Embedded Systems.

Green AI domains

¨ The majority of Green AI studies does not focus a specific
domain. Among specific domains, edge computing results to be
the most recurrent one.
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Figure 6: Number of publications by topic and study type.

3.8 AI Pipeline Phases
The AI pipeline is divided into two major phases: the training,
when the AI model is built, and the inference, when the model
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Figure 7: Number of publications per study domain.

is used to make predictions from new data. Thus, we classify the
papers according to 3 categories: training, inference, and all. The
all category translates the fact that the paper does not consider a
particular phase, but the whole pipeline.

As depicted in Figure 8, we find that most of the publications
on the topics of Green AI focus on the training phase (⊲ 49 out of
98 papers.). In comparison, fewer papers direct their studies at the
inference phase (⊲ 17 out of 98 papers.) or on the overall process
(⊲ 32 out of 98 papers.).
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Figure 8: Number of publications per studied phase of AI.
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Green AI Pipeline Phase

¨ Approximately half of Green AI studies focus on the training
phase, while a minor portion considers the entire AI pipeline.
Only a minor portion of the Green AI literature focuses on the
inference phase.

3.9 Considered Artifacts
AI systems are based on several artifacts, and tackling the energy ef-
ficiency of such systems can thus involve multiple of those artifacts
(e.g., data, model, pipeline) or different related artifacts (e.g., archi-
tecture, framework, CPU). A distribution of the artifacts considered
in the primary studies is documented in Figure 9. The categories of
artifacts are:
Model The publications within this category focus on the model

and/or associated algorithm to tackle the energy efficiency
of AI. ⊲ 63 out of 98 papers.

Data Papers that address energy efficiency through the study of
the data used in the AI pipeline. ⊲ 8 out of 98 papers.

Pipeline Studies looking at the whole AI pipeline. ⊲ 3 out of 98
papers.

Other Publications dealing with CPU, architecture, and frame-
work. ⊲ 4 out of 98 papers.

General The papers do not specify a particular artifact and address
AI systems as a whole. ⊲ 24 out of 98 papers.

Algorithm General Data Pipeline Other

Artifact
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60
63

24

8
3 4

Figure 9: Number of publications per studied artifact.

3.10 Algorithm Types
By considering the primary studies which focus on a specific algo-
rithm (⊲ 51 out of 98 papers.), we note that the vast majority focus
on neural networks (⊲ 41 out of 98 papers.). Only a much smaller
fraction focuses on algorithms of different nature, such as decision
trees (⊲ 5 out of 98 papers.), genetic algorithms (⊲ 1 out of 98 papers.),
or logistic regression models (⊲ 5 out of 98 papers.).

Regarding the deep neural network algorithms, we also note a
further characterization of this field, with 8 studies focusing on
convolutional neural networks, one on transformers, and one
on spiking neural networks. We also observe three algorithms
that appear only once in the Green AI literature (Other category,
⊲ 3 out of 98 papers.), namely genetic algorithms, logic regression
algorithms, and stochastic gradient descent algorithms.

Image Textual Numeric Video Audio Not
Specified

Data Type
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Figure 10: Occurrence of data types used in the Green AI
literature.

Green AI algorithm types

¨ Most Green AI primary studies are algorithm-agnostic or
focus on neural networks. A small fraction uses decision trees.

3.11 Data Types Used
Regarding the types of data used in the Green AI body of literature,
an overview of their distribution is reported in Figure 10. From
the figure, we can observe that the recurrence of data types across
primary studies is:
Image data ⊲ 42 out of 98 papers.
Textual data ⊲ 22 out of 98 papers.
Numeric data ⊲ 10 out of 98 papers.
Video data ⊲ 4 out of 98 papers.
Audio data ⊲ 2 out of 98 papers.

From the distribution of data types, we notice that image data
is by far the most used one, and is utilized by almost half of the
studies in the body of literature. The second most utilized data type
is textual data, which nevertheless appears approximately half as
often as the image one. Other types of data result to be less recurrent,
with only few studies utilizing audio data (e.g., Lenherr et al. present
a metric to measure the sustainability of Green AI by considering
as case study the Intel MovidiusX processor, an embedded video
processor with a Neural Engine for video processing and object
detection [74]).

A rather high number of primary studies does not specify any
kind of data (Not specified category, ⊲ 32 out of 98 papers.). This
finding has to be primarily attributed to the position and theoretical
papers included in the review (see also Section 3.4 and Section 3.5).

Green AI data types

¨ Image data is the most used data type in Green AI studies,
followed by textual and numeric data.

3.12 Dataset sizes
Regarding the size of the datasets used in the papers, approximately
half of the primary studies (⊲ 48 out of 98 papers.)) directly reference
the number of data points used. By inspecting such numbers, we
note that the number of data points used to study and to evaluate
Green AI algorithms and approaches varies greatly, and ranges from
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Figure 11: Occurrence of research strategies used in the Green
AI literature.

1k data points [51] to 40M data points [45]. Almost half of the
studies reporting the number of data points (⊲ 25 out of 48 papers)
utilize data points in the order of thousands (1𝑘 ≤ #𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 ≤
70𝑘), while the remaining (⊲ 23 out of 48 papers) use one million
data points or more (1𝑀 ≤ #𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 ≤ 40𝑀).

Green AI dataset sizes

¨ Dataset sizes range from 1k to 40M data points, with ap-
proximately half of the studies utilizing 1M or more data points.

3.13 Research Strategies
By considering the research strategies [16] utilized in the Green AI
literature, the distribution of the various strategies, according to
the collected primary studies, is reported in Figure 11.

The majority of paper results adopt laboratory experiments
(⊲ 73 out of 98 papers.), while only a fraction uses other research
strategies, such as field experiments (⊲ 6 out of 98 papers.), i.e.,
experiments conducted in pre-existing settings and computer sim-
ulations, i.e., “in silico” simulations conducted in a nonempirical
setting (⊲ 5 out of 98 papers.). As examples, Liu et al. [77] use a
field study to assess a green software stack for computer vision
of autonomous robots, while Yosuf et al. [116] leverage computer
simulations to study how virtualized cloud fog networks can be
used to improve AI energy efficiency. The 12 papers not displaying
any research strategy correspond to the position papers (cf. the
“None” category in Figure 11).

Green AI Research Strategies

¨ Most Green AI studies use laboratory experiments, while
only a minority adopt other research strategies, such as field
experiments and computer simulations.

3.14 Energy savings
By considering the energy savings reported achievable viaGreen AI
strategies, we note that only approximately a third of the primary
studies explicitly document them (⊲ 27 out of 98 papers.). Out of
all Green AI strategies, among the ones which report concrete
saving percentages, a technique based on structure simplification
for deep neural networks results to save more energy, amounting
to 115% energy savings [118]. The other techniques which result

Figure 12: Industry involvement.

to optimize energy the most are based on quantizing the inputs of
decision trees [23] (97% energy savings), using data-centric Green
AI techniques [102] (92% energy savings), and leveraging efficient
deployment of AI algorithms via virtualized cloud fog networks
(91% energy savings) [116]. Overall, more than half of the papers
explicitly reporting energy saving percentages report a saving of at
least 50% (⊲ 17 out of 27 papers), while only a minor number savings
between 13% and 49%.

¨ Green AI energy savings

Studies report energy savings between 13% and 115% energy
savings, with more than half of the papers reporting savings of
at least 50%.

3.15 Industry involvement
Regarding the industry involvement in Green AI scientific publica-
tions (see also Section 2.2.4), an overview of the authorship of the
Green AI primary papers is depicted in Figure 12.

From the figure, we can note that most Green AI studies are au-
thored exclusively by academic researchers (⊲ 75 out of 98 papers.),
while also a considerable portion, amounting almost to a fourth of
all primary studies, are authored by a mix of academic and indus-
trial researchers (⊲ 20 out of 98 papers.). Green AI studies written
exclusively by industrial authors appear only in rare instances (⊲ 3
out of 98 papers.).

¨ Industry involvement

Most studies are written by academic authors, while a minor
portion by a mix of academic and industrial authors. Green AI
studies written exclusively by academic authors are very rare.

3.16 Intended readers
By considering the intended readers of the Green AI scientific
literature, the vast majority targets academic readers (⊲ 85 out
of 98 papers.), while a much smaller portion both academic and
industrial readers (⊲ 8 out of 98 papers.). Despite scientific papers
targetting intuitively a specialized audience, among the Green AI
literature, few studies are intended also for the general public (⊲ 5
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out of 98 papers.). For example, Dhar et al. [40], present an intuitive
yet thoroughly positioned article on the systemic effect of AI on
carbon emissions. Interestingly, among the primary studies, few are
intended also for policymakers, i.e., aim to sensibilize government
stakeholders to consider issues related to Green AI. For example,
in a paper by Rohde et al. [89], how opportunities and risks for
the environment, economy and society associated with AI can be
governed are discussed.

¨ Intended readers

The vast majority of Green AI studies are targetting academic
readers, while a much smaller portion targets both academic
and industrial readers. A handful of studies, especially position
papers, are intended for the general public.

3.17 Tool Provision
Among the primary studies collected for this literature review on
Green AI, only a small fraction (⊲ 15 out of 98 papers.) makes tools
available to tackle Green AI. The tools provided are of heteroge-
neous nature, and range from tools to monitor the resource effi-
ciency of AI algorithms [52], to tools optimizing the energy effi-
ciency for stochastic edge inference [68], and implementations of
convolutional neural networks optimized for energy efficiency [81].

¨ Green AI Tool Provision

Albeit numerous studies provide solution to tackle Green AI,
only a fraction of them makes tools based on the solutions
readily available online as an implemented tool.

4 Discussion
The consolidated and still growing Green AI publication trend.
From the analysis of the publication trends a clear picture emerges.
The topic is gaining increasing traction in the academic community,
especially if the latest years are considered (from 2020 onward).
Despite being a quite new research topic (with the first paper on
Green AI being published in 2015), the socio-environmental rele-
vance of the topic seems to be reflected in its targeted publication
venues. With conferences and journal being the most recurrent
Green AI publication venues, the Green AI research field seems
to have positioned and consolidated itself quite quickly within AI
research communities.

A definition of Green AI. From the results regarding how the
term “Green AI” is used in the literature a clear picture emerges.
Most Green AI studies consider Green AI as exclusively related to
energy efficiency. Only fewer studies examine the influence of AI
on greenhouse gas emissions (𝐶𝑂2), and an even minor fraction ex-
amines the holistic impact that AI has on the natural environment.

By considering the different levels of abstraction (namely energy
efficiency, carbon footprint, and environmental footprint) the higher,
more encompassing level, of environmental footprint seems best
fitted to define the field of Green AI. In fact, as demonstrated in
recent literature, reducing the environmental impact of AI exclu-
sively to energy consumption has to be deemed as overly simplis-
tic process [8]. Similarly, as green resources are sustainable but
not infinite [17], the field of Green AI has to account also for the
multifaceted environmental impact AI can have, other than 𝐶𝑂2

emissions alone. Based on these considerations, we define the field
of Green AI as follows:

“Green AI regards practices aimed at utilizing AI to
mitigate the impact that humans have on the natural
environment in terms of natural resources utilized,
and/or mitigating the impact that AI itself can have
on the natural environment.”

On one hand, the definition above perfectly fits the studies fo-
cusing on the holistic impact that Green AI has on the natural
environment. On the other hand, given its encompassing nature,
the definition is also suited for studies focusing on lower abstrac-
tion levels of sustainability, such as Green AI 𝐶𝑂2 emissions and
energy consumption. In the latter case however, the definition also
acts as a word of warning: while studying the lower levels of Green
AI is paramount, only by considering the totality of the heteroge-
neous natural resources utilized by AI can we really understand
the environmental impact of AI.

The transdisciplinary topics of Green AI (with gaps). The 13
different topics we discover in this review emphasize that Green AI
is a broad field that needs to be tackled as a transdisciplinary field.
Some topics are naturally tied to training strategies (e.g.,monitoring,
hyperparameter tuning, algorithm design). However, there are other
topics that take Green AI outside the training realm.

This is the case for example of Deployment, Libraries, and Esti-
mation that promise to be relevant in enabling Green AI. We argue
that other disciplines need to be involved. For example, Software
Engineering which has been dealing with these topics for tradi-
tional software systems. As highlighted by Cao et al. in their work
on estimation [37], one cannot expect existing strategies for tradi-
tional software to address the new challenges of AI-based systems.
Conversely, only a few Green AI papers [50, 56, 80] come from
software engineering venues.

Our analysis also shows that the topics Estimation and Emis-
sions are under-represented, with six and five papers, respectively.
We argue that more work is quintessential in these topics to help
scientists and practitioners report the carbon footprint of their AI
models in a seamless way.

We showcase that papers under the topic Policy are only covered
by position papers. We find this finding disconcerting: new policies
to encourage Green AI within both industry and academic contexts
need to be backed up with reliable evidence. Hence, we need more
observational and solution papers that tackle this topic in the near
future.

The same issue is present in Emissions – only one paper is
observational and the remaining are position. It might be the case
that computing the climate impact of AI is far from trivial and it
is easier said then done. Again, this is a call for the community to
take action. It is not enough to ask big companies to provide their
data on carbon impact – we also need to provide strategies and
solutions to make it standard and straightforward.

The fundamental Green AI research unbounded from ap-
plication domains. From the collected results we deduce that,
in order to improve the environmental sustainability of AI, it is
often not necessary to focus on a specific domain. This implies
that frequently fundamental aspects of Green AI are still open to
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investigation, and results can then be ported from a generic set-
ting to specific domains. However, from the obtained results, we
also note that the increasing distribution of digital infrastructures
to achieve environmental sustainability [17] might have played a
role in Green AI research, with edge computing being the most
considered specific domain.

The high emphasis on the AI training phase. The results
regarding the AI pipeline phases considered in the literature un-
equivocally point to training as the most studied phase. Albeit the
training phase is intuitively the most energy-greedy phase, this re-
sults calls for a word of caution. From recent results (e.g., a study on
data-centric Green AI [102]) the inference phase results to consume
only a negligible fraction of the energy consumed in the training
phase. Nevertheless, given the high execution rate of the inference
phase, how the energy consumed by the infrequent execution of
the training phase compares to one of the highly executed inference
phase is still an open question. As a call for action, studies should
be conducted by considering the energy consumed throughout the
whole life cycle of AI models, from their training to inference phase,
till their eventual deprecation.

Image datasets as primary Green AI data source. By con-
sidering the data types used in Green AI studies, we note that the
vast majority of the literature uses image data. To the best of our
knowledge, this choice is not guided by any specific research design
choice (e.g., AI models based on image data being the most used in
practice, or being the most energy greedy ones). For this reason,
we conjecture that the popularity of utilizing image data for Green
AI data is mostly driven by convenience, either because past work
focused on such data by chance, image datasets are more accessi-
ble/standardized with respect to other ones, or more off the shelf
image AI models/libraries are currently available. Regardless of the
cause, this result points to the need of utilizing more heterogeneous
data types, rather than focusing primarily on image data, in order
to gain a holistic understanding of Green AI.

Laboratory experiments guided till now Green AI. The most
common research strategy adopted for Green AI studies clearly
emerges from the literature as being laboratory experiments. Given
the fast popularization and consolidation of the Green AI research
field, from this review it seems as if the time is suitable to shift
the focus to other research strategies, e.g., field experiments and
case studies. This would not only allow to change the considered
context from an in vitro to an in vivo setting, but also to bridge
potential gaps between academic research and industrial practice.

The highly promising energy savings of Green AI. From the
results of this review, we deduce that the research field of Green AI
is highly promising, with more than half of the papers reporting 50%
or more energy savings. This study focuses on the state of the art
of Green AI, rather than focusing on the state of practice. It would
be therefore interesting to understand, as future work, the extent to
which this encouraging results are transposed to industrial practice,
and the potential impediments which hinder their adoption or full
potential.

A noticeable industry involvement. Regarding industry in-
volvement in Green AI studies, the results gathered from this re-
view are promising. The authorship of Green AI literature results
to be to a good extent shared between academic and industrial re-
searchers/practitioners. This finding might highlight the sensibility

of industry towards Green AI concerns, and/or the importance of
moving towards more environmentally sustainable AI practices.

As a potential impediment to the industrial adoption of Green AI
research, our results point to a low recurrence of studies targeted
towards practitioners.While numerous journals are explicitly aimed
at practitioners, e.g., IEEE Software2, only few studies on Green AI
included in our review target them. This result might point to the
fact that the Green AI interest is still primarily focused towards
academic activities, while the authorship showcases a rather high
interest of industry. As take away, similar to the considerations
made for the Green AI research strategies, it might be the right
moment to consider a higher involvement of industry in Green AI,
which results to date to be a research area still targeted primarily
towards academic readers.

Green AI lacks tool support. Finally, from this review, we note
that the current situation regarding the provisioning of Green AI
tools is not bright. Albeit the majority of the studies present Green
AI solutions, only a small fraction of them makes the solutions
available as a tool. We conjecture that this result might either point
towards (i) a fast-paced nature of Green AI research, in which
results are rapidly deprecated, and hence tools are not meaningful,
or (ii) an immaturity of the research field, which still requires a
solid empirical foundation on which tools can be built upon.

5 Threats to Validity
In this section, we discuss the threats to validity of our study. To en-
sure the quality of the results, we established awell-defined research
protocol to proceed with the data collection. In addition, through-
out our study, we followed the recommendations of the guidelines
for conducting a systematic literature review [6, 7, 10, 14, 21]. We
designed and carried the different reviewing processes according
to the rigorous protocol we established after the guidelines and
described in Section 2. Nevertheless, some threats to validity can
still exist even with our best efforts. In the following, we present
the threats which could have influenced our study, jointly with the
strategies we adopted to mitigate them.

External validity The main threat to external validity is that
the literature collected and analysed in this study is not sufficiently
representative. To avoid this situation, we surveyed three promi-
nent literature indexers through an automatic query (i.e., Google
Scholar, Scopus, and Web of Science), and left the year of publica-
tion unbounded, to reduce the probability of missing any relevant
publication. In addition, the search query was designed to target
relevant literature directly with specific keywords, while allow for
flexibility by considering similar, complementary, and variation of
the keywords (e.g., the keywords green, sustainability, and sustain-
able). We also mitigated the threat of having an incomplete set of
studies, as well as the threat associated with the specificity of the
terms used in the search query, by performing a complementary
iterative bidirectional snowballing process of the query results. This
latter search strategy allowed us to include literature related to our
query that was not directly referencing any of the automated search
keywords. We limited our review of the literature to peer-reviewed
studies, to moderate the threat about the low quality of the set of
primary studies. We deem that such practice does not constitute

2https://www.computer.org/csdl/magazine/so. Accessed 22nd December 2022.

https://www.computer.org/csdl/magazine/so
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an additional threat, as peer-review is a standard requirement of
high-quality publications.

Internal validity To address potential threats to internal va-
lidity, we established a rigorous research protocol a priori, and we
followed it to conduct all the research activities. Subjective biases
and interpretations were mitigated by closely complying with the
selection criteria to evaluate the studies. Moreover, weekly meeting
were held during the selection process to jointly discuss exam-
ples, doubts, and to align the selection process between the three
researchers.

Construct validity To ensure that the set of studies answered
our research questions, we applied a priori carefully constructed
inclusion and exclusion criteria to strictly control the manual selec-
tion of studies. We then used the bidirectional snowballing tech-
nique to expand the range of relevant primary studies to a more
comprehensive set.

Conclusion validity Possible sources of bias arising from the
data extraction and analysis phases were mitigated by strict compli-
ance with an a priori defined protocol, explicitly tailored to collect
the data needed to answer our research questions. In all, we fol-
lowed the best practises of the standard guidelines for systematic
literature reviews [6, 7, 10, 14, 21]. Lastly, we documented all the
data throughout the whole review process and made them available
for reproducibility and replicability purposes (see Section 1).

6 Related Work
Despite the growing interest around Green AI, the topic has been
marginally considered only in a handful of reviews. The related
work manly investigates the topic as an intersection of AI and envi-
ronmental sustainability, or by defining it as a specific subdomain
of software engineering. To the best of our knowledge, this review
is the first aiming towards a comprehensive review of Green AI
research and its characteristics.

In a recent publication, Natarajan et al. perform a systematic
literature review on the topics of ‘AI for Environmental Sustain-
ability’ as well as ‘Environmental Sustainability of AI’. The authors
present the affordances of the use of AI for sustainability that they
extracted from the literature [12]. ‘AI affordances’ are introduced
as the posible actions offered by AI artifacts to an organizational
actor whose goal is to achieve environmental sustainability. The
authors point out the focus of previous research on the technical
side, and they advocate for a further exploration of the concept
of sustainable AI affordances from a socio-technical perspective.
The literature is exclusively analyzed with respect to building the
AI affordances, and other characteristics of the state-of-the art of
Green AI are considered nor discussed in the study. In contrast,
our review focuses on the sustainability of AI, and maps the en-
tirety of the Green AI literature. In our review, we aim at providing
a detailed and comprehensive overview of the characteristics of
the Green AI state-of-the-art research (e.g., topic, domain, type
of study, targeted artifact, overview of energy savings, tool provi-
sion, industrial involvement). Therefore, in contrast to the work
of Natarajan et al. [12], we consider the different facets of Green
AI, rather than exclusively on AI affordances, leading to a more
holistic review of Green AI, and a higher number of considered

primary studies (98 versus 41 papers). This difference could be ex-
plained by the fact that their review only includes papers involving
consumer products and services and excludes papers dealing with
non-commercial applications, whereas we provide an overview of
the whole field of Green AI.

Previous literature reviews consider Green AI research by fo-
cusing exclusively on specific subdomains of AI and application
subdomains of Software Engineering, e.g., deep learning [22], in-
formation retrieval [15], or embedded systems [11]. In contrast,
our research aims to review the entirety of the Green AI literature,
regardless of the specific AI or software engineering subdomain it
focuses on.

In the survey of Xu et al. [22], the authors provide an overview
of the approaches aimed at improving the environmental sustain-
ability of deep learning. The authors map the different approaches
using a taxonomy of the deep learning life cycle stage and its related
artifacts. In contrast to such study, in this review we target a higher
number of Green AI characteristics (see Section 2.2.4), and target
the entirety of Green AI literature, rather than exclusively the one
on deep learning.

Scells et al. [15] provide a literature review on methods related
to the domain of Green Information Retrieval. The authors explain
that the domain of Information Retrieval (IR) produces relatively
low emissions compared to other research domains, but they also
warn that similar trends of costs and environmental impact may
appear considering the growing development of new IR-focused
deep learning models. Natural Language Processing and Machine
Learning are also discussed, but onlywith respect to the Information
Retrieval domain. Therefore, they are not addressing the whole field
of AI, as done in this review.

Finally, the optimizations that can be made for the implementa-
tion of deep learning models on the specific platform of NVIDIA
Jetson are reviewed with a focus on energy efficiency by Mittal [11].
The review covers studies at both the hardware and software level.
Nevertheless, the review addresses only the Jetson platform 3. We
differentiate ourselves from this study by providing a holistic review
of Green AI, rather than focusing exclusively on deep learning.

7 Conclusion
In this systematic literature review, we aimed at characterizing
the existing body of research in Green AI. We identified 98 peer-
reviewed publications that show a significant growth in this re-
search field since 2020.

We provide an encompassing overview and characterization of
the different topics being addressed by Green AI papers. We identi-
fied 13 different Green AI topics, showcasing that the spotlight falls
on monitoring, hyperparameter-tuning, model benchmarking, and
deployment. Less frequent topics – such as data-centric, estimation,
and emissions – show less obvious approaches that deserve further
research in the upcoming years.

The potential of Green AI cannot be disregarded: the majority of
publications show significant energy savings, up to 115%, at little
or no cost in accuracy. However, we argue that most publications
revolve around laboratory studies. More field experiments are quin-
tessential to help AI practitioners embrace green strategies that

3https://developer.nvidia.com/embedded-computing. Accessed 23th December 2022.

https://developer.nvidia.com/embedded-computing
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are effective, feasible, and mensurable. This is also reflected in the
small participation of the industry in these studies – only 23% of
publications involve industry partners.

At the same time, we conclude that the field seems to be reaching
a considerable level of maturity. Hence, it is necessary to encourage
the port of promising academic results to industrial practice. In
other words, our study calls out for the importance of having re-
producible research. Only a small fraction of solution papers offers
a tool or software package that can be used by the community. We
argue that Green AI is an urgent and necessary line of research
that needs to grow fast and solid – non-replicable research can only
slow us down.

This review also serves as a foundation for future research that
ultimately aims to reduce the climate impact of AI. In this respect,
we see potential in follow-up grey literature or interview studies
to understand how AI professionals are currently addressing the
issue.
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