
mail:	roberto.verdecchia@gssi.it
supervisor:	Patricia	Lago
co-supervisor:	Ivano	Malavolta
Questions?	Look	for	me	around!

Identifying	Architectural	Technical	Debt	in	Android	
Applications	through	Automated	Compliance	Checking	

Overview

WANT	MORE	INFO?
Download	the	abstract	and	more	at
https://roberto.verdecchia.github.io/

IN	FEW	WORDS

References

Roberto	Verdecchia

1 Guidelines	extraction

2 Reference	architecture

3 Architecture	reverse	engineering

4 Compliance	checking

5 Quantitative	assessment

what	(project	goals):	

ü Reusable	Android	Reference	Architecture

ü Automated	process	for	architectural	technical	debt	

hotspot	analysis	of	Android	applications

how	(technique):

Ø Manual	extraction	and	formalization	of	Android	

architectural	guidelines

Ø Automated	implemented	architecture	reverse	

engineering

Ø Automated	model-based	compliance	checking

Ø Quantitative	assessment	of	compliance-violations	to	

identify	hotspot		components

Example	of	guideline	violation

Mobile application business model is tightly coupled to

users satisfaction. Promptly and efficiently releasing

new versions to introduce new features, fix bugs, and

adapt to users’ needs is crucial. Architectural technical

debt (ATD) hinders by definition evolvability. Among

other techniques, compliance checking is used to

undercover ATD [1]. Recently, effort was spent in

standardizing Android architectural components to

lower complexity of Android apps and provide a Android

architectural guidelines [2]. We present a novel

approach, based on (i) guideline extraction, (ii)

architecture reverse engineering and (iii) compliance

checking, for identifying ATD hotspots in Android apps.

The first step consists in an architectural

guideline extraction from heterogeneous

sources. Guidelines should embed

architectural rules designed to avoid

incurring in potential ATD. The extracted

guidelines are validated through developers

interviews.

This step consists in developing an ADL Android

reference model conveying the architectural

guidelines. Additionally, a set of design constraints is

established (e.g. expressed through an Object

Constraint Language). The combination of reference

model and constraints is referred to as Android

reference architecture.

This step consists in the reverse engineering of the

architecture of an implemented Android application

through the analysis of its source code or APK. This

process is carried out by extracting the most relevant

Android architectural components and their

implementation [3]. The reference architecture and the

implemented one must adhere to the same metamodel or

be linked by a suitable model-to-model transformation

During this process, items of non-adherence of the

implemented architecture w.r.t. the Android reference

architecture are identified. The items are stored for a

subsequent analysis carried out in Step 5. Due to its

complexity this step has to be carried out (semi)

automatically through a model comparison tool.

Once the set of non-adherence items is

computed, it is possible to analyze the

gathered data to identify which architectural

elements of the implemented architecture

violate the highest number of Android

architectural guidelines. Distinct violation

types can even be associated to specific

weights to support a more involved

prioritization process. The final architectural

elements identified through this process are

referred to as Android ATD hotspots.

[1] R.Verdecchia, I.Malavolta, and P.Lago.
Architectural Technical Debt Identification: The
Research Landscape. In TechDebt 2018.
[2] Android and Architecture. Android Developers Blog.
https://androiddevelopers.google.blog.com/2017/05/an
droid-and-architecture.html
[3] H.Bagheri, J.Garcia, A.Sadeghi, S.Malek, and
N.Medvidovic. 2016. Software architectural principles in
contemporary mobile software: from conception to
practice. JSS 119 (2016), 31–44.

Future	work	and	outlook

We plan to fully automate the process and extensively

evaluate it on large dataset of apps. In addition, the fully

automated process enables us to carry out evolutionary

studies of ATD in Android, through which a higher

precision of the approach could be achieved.


