l[dentifying Architectural Technical Debt in Android

Applications through Automated Compliance Checking

Roberto Verdecchia - IN FEW WORDS -------------- -~

mail: roberto.verdecchia@gssi.it
supervisor: Patricia Lago
co-supervisor: lvano Malavolta

\ 4 Compliance checking

~

what (project goals):

During this process, items of non-adherence of the

v Reusable Android Reference Architecture

v Automated process for architectural technical debt implemented architecture w.r.t. the Android reference

€ Questions? Look for me around!

hotspot analysis of Android applications architecture are identified. The items are stored for a

subsequent analysis carried out in Step 5. Due to its
how (technique): a 4 P

, o , complexity this step has to be carried out (semi)
» Manual extraction and formalization of Android

automatically through a model comparison tool.

Mobile application business model is tightly coupled to

architectural guidelines

users satisfaction. Promptly and efficiently releasing > Automated implemented architecture reverse

new versions to introduce new features, fix bugs, and Example of guideline violation

engineering

adapt to users’ needs is crucial. Architectural technical Activity

» Automated model-based compliance checking

—_—_—_—__—_—_—_—_—_—_—_—_—_-
_____—_—_—_—_—_—_—_—_—_—_—_’

debt (ATD) hinders by definition evolvability. Among » Quantitative assessment of compliance-violations to e lAsyncTask-executeO
other techniques, compliance checking is used to \ identify hotspot components / 4 Asyne
N ’/ 2]
undercover ATD [1]. Recently, effort was spent in oo oo oo oo oo o m T y
- queries()

standardizing Android architectural components to

lower complexity of Android apps and provide a Android

architectural guidelines [2]. We present a novel Implemented
architecture

_) ,) N reverse
approach, based on (i) guideline extraction, (ii) engineering
architecture reverse engineering and (iii) compliance Architecture NG

guidelines e Android
checking, for identifying ATD hotspots in Android apps. transcript j Reference
Archltecture‘
e Once the set of non-adherence items is
Implqmented Android
1 Guidelines extraction everse { Relerence computed, it is possible to analyze the
Validation and engineering OCL
{ quality Constraints gathered data to identify which architectural
assessment T
The first step consists in an architectural Developer ‘["""""""" \ elements of the implemented architecture
interviews
guideline extraction from heterogeneous Ao Android Implemented violate the highest number of Android
Guideline APK architecture
sources. Guidelines should embed Extraction l ! ¢ architectural guidelines. Distinct violation
architectural rules designed to avoid Compliance Checking types can even be associated to specific
incurring in potential ATD. The extracted \ weights to support a more involved
Non-
guidelines are validated through developers | 7 ad_r;erence prioritization process. The final architectural
ems
interviews. . / elements identified through this process are
Grey
Literature referred to as Android ATD hotspots.
Academic Quantitative
l ﬁ “\ Researches Assessment
— ﬁ @k Ancioi / Future work and outlook
Official Android Academic Grey Documentation
Documentation Researches literature]
N— _ Android :
NV vY¥Y ATD We plan to fully automate the process and extensively
Hotspots
O evaluate it on large dataset of apps. In addition, the fully
Data extraction
& P automated process enables us to carry out evolutionary
&
Lo : : : studies of ATD in Android, through which a higher
VETSEE il 3 Architecture reverse engineering
developers precision of the approach could be achieved.
- L Bl 0 References —cc-oomoomoooe
?) Reference architecture = @ ,- References S
- —)00 —_—> I’ [1] R.Verdecchia, I.Malavolta, and P.Lago. ,
APK Tool-assisted - - i Architectural Technical Debt Identification: The :
This step consists in developing an ADL Android APK file reverse engineering implemented : Research Landscape. In TechDebt 2018. :
reference model conveying the architectural architecture : [2] Android and Architecture. Android Developers Blog. :
_ _ . _ . . https://androiddevelopers.google.blog.com/2017/05/an |
guidelines. Additionally, a set of design constraints is This step consists in the reverse engineering of the ! droid-and-architecture.html |
established (e.g. expressed through an Object architecture of an implemented Android application i [3] H.Bagheri, J.Garcia, A.Sadeghi, S.Malek, and |
_ . . ' N.Medvidovic. 2016. Software architectural principles in
Constraint Language). The combination of reference through the analysis of its source code or APK. This | contemporary mobile software: from conception to |
I .
model and constraints is referred to as Android process is carried out by extracting the most relevant \\P"GC“CE- JSS 119 (2016), 31-44.)
reference architecture. . Android Android architectural =~ components and their
Reference
’ \ A’C”"’ec’”’e‘_‘ implementation [3]. The reference architecture and the E WANT MORE INFO?
Android implemented one must adhere to the same metamodel or)
Reference Download the abstract and more at
Model be linked by a suitable model-to-model transformation https://roberto.verdecchia.github.io/

Constraints .

GRAN SASSO :
SCIENCE INSTITUTE VRIJE H .

SCHOOL OF ADVANCED STUDIES | U N IVE RS ITEIT M 0 B I LE
Scuola Universitaria Superiore m AM STERDAM SOFT 2018

STHIEEE/ACM INTERNATIONAL CONFERENCE ON
MOBILE SOFTWARE ENGINEERING AND SYSTEMS

